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Introduction Local Search Methods Comments Simulation study

Introduction

I f : A→ R, A ⊂ Rd .

I Goal: Find x∗ ∈ Rd such that

f (x∗) = min
x∈A

f (x)

I Example: finding the maximum likelihood estimator.

I Can have side conditions:
g : A→ Rq some function. Want to

minimisex∈Af (x) subject to g(x) = 0

I Explicit solutions: Lagrange Multipliers.
With inequality constraints: Kuhn-Tucker conditions.
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Local Search Methods - No Side Conditions

I Main idea: create a sequence x0, x1, x2, . . . approximations to x∗.
Hopefully xn → x∗ as n→∞.

I Choice of algorithm depends on how many derivatives of f are
available. Some Examples:

no derivatives: Nelder-Mead: works with d + 1 points that move
towards x∗ and then contract around it.

gradient ∇f : Gradient descent:

xn = xn−1 − εn∇f (xn−1)

other methods: conjugate gradient, ...
gradient ∇f +Hessian H: Newton’s Method:

xn = xn−1 − H(f , xn−1)−1∇f (xn−1)

Typically: the more derivatives are available the better the
convergence rate.

I Global convergence only guaranteed if f is convex.
I If global convergence cannot be guaranteed, the very least one

should do is use several starting values.
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Optimisation with Side Conditions

minimisex∈Af (x) subject to g(x) = 0

I f linear, g linear: “linear programming”, Simplex algorithm

I f quadratic, g linear: quadratic programming

I more general structure:
sequential quadratic programming algorithms may work:
idea: approximate the problem locally by a quadratic
programming problem.
(implemented e.g. in the NAG library)

I More heuristic approach: put side condition into objective
function, i.e. minimise f (x) + λ(g(x))2 for some large λ > 0.
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Comments

I Optimisation (in particular with side conditions and non-convex)
can be a tough problem

I Local search algorithms are not the only algorithms - many more
approaches (simulated annealing, random optimisation, genetic
optimisation)

I Many solutions have been developed that work well for specific
problems.

I Try to use implementation of algorithms written by experts!

I Useful resource: Decision Tree for Optimisation Software
http://plato.asu.edu/guide.html
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Simulation study of various optimization algorithms

Various algorithms implemented in optim() in R:

I Nelder-Mead: a simplex-based method.

I BFGS: quasi-Newton method (BroydenFletcherGoldfarbShanno
method)

I CG: a conjugate gradient method.

I L-BFGS-B: an algorithm that would allow bounds on the
parameters.

I Simulated annealing with default settings.

I Simulated annealing with more steps and slower cooling.

Applied to 3 functions.
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Example 1 - quadratic function

f : R2 → R, f (x , y) = x2 + y2

(global minimum at (0,0))
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Applying standard R algorithms to the quadratic function

N-M BFGS CG L-BFGS-B SANN1 SANN2
Conv 1 1 1 1 1 1

0% 2.73e-09 7.24e-28 7.42e-15 1.53e-41 9e-07 1.01e-07
25% 1.14e-07 1.61e-24 2.13e-14 3.96e-40 4.19e-05 2.47e-06
50% 2.46e-07 1.55e-23 3.76e-14 7.69e-40 8.21e-05 7.54e-06
75% 5.56e-07 7.11e-23 5.27e-14 1.37e-39 0.0002 1.4e-05

100% 5.04e-06 1.86e-21 8.91e-13 2.72e-39 0.000896 4.84e-05
neval 65.8 9.66 21.8 4.24 1e+04 1e+05

Table: Started from 100 different starting points in [-10,10]x[-10,10].
Conv=Proportion of successful convergence indicated; Quantiles of
f(minimizer); neval=average number of function evaluations.
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Example 2 - Rosenbrock Banana function

f : R2 → R, f (x , y) = (1− x)2 + 100(y − x2)2

(global minimum at (1,1))
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Applying standard R algorithms to the Banana function

N-M BFGS CG L-BFGS-B SANN1 SANN2
Conv 1 0.85 0.01 0.99 1 1

0% 4.32e-08 9.93e-11 0.000187 1.98e-10 1.76e-06 8.25e-07
25% 3.8e-05 2.93e-08 0.0765 3.03e-08 0.000194 9.81e-06
50% 0.000747 3.95e-08 0.203 3.99e-08 0.000444 2.18e-05
75% 0.0489 4e-08 3.66 4e-08 0.00105 4.58e-05

100% 1e+06 1e+06 1e+06 1e+06 2.36 0.000199
neval 129 111 253 54 1e+04 1e+05

Table: Started from 100 different starting points in [-10,10]x[-10,10].
Conv=Proportion of successful convergence indicated; Quantiles of
f(minimizer); neval=average number of function evaluations.
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Example 3
f : R2 → R, f (x , y) = (x sin(20y) + y sin(20x))2 cosh(sin(10x)x) +
(x cos(10y)− y sin(10x))2 cosh(cos(20y)y) + |x |+ |y |

(global minimum at (0,0))
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Applying standard R algorithms to Example 3

N-M BFGS CG L-BFGS-B SANN1 SANN2
Conv 0.99 1 0.21 0.78 1 1

0% 2.4e-08 3.59e-20 4.57e-10 1.35e-14 0.00125 0.000241
25% 6.69 3.06e-18 2.79 8.25 0.0123 0.00148
50% 9.74 6.75 7.99 11.5 6.01 0.003
75% 13.4 11.9 11.7 29.4 10.9 0.00427

100% 181 263 269 178 22.7 18.4
neval 103 65.1 413 41.2 1e+04 1e+05

Table: Started from 100 different starting points in [-10,10]x[-10,10].
Conv=Proportion of successful convergence indicated; Quantiles of
f(minimizer); neval=average number of function evaluations.
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Comments

I Functions that are “nice” (no local minima, maybe even
convex): standard numerical algorithms work best, the more
derivatives are used the better.

I Functions with local minima: Need to add noise to avoid getting
trapped (needs tuning)

I General advice:
I Use several starting values
I Plot function (if possible)

Axel Gandy Deterministic Optimisation 15



Introduction Example - Mixtures Theoretical Properties

Part II

The EM Algorithm

Introduction

Example - Mixtures

Theoretical Properties

Axel Gandy The EM Algorithm 16



Introduction Example - Mixtures Theoretical Properties

EM Algorithm - Introduction

I Expectation-Maximisation algorithm; two steps:
I E-step
I M-Step

I General-purpose algorithm for maximum likelihood estimation in
incomplete data problems.

I Main reference: Dempster et al. (1977)

I According to scholar.google.com: cited > 14000 times!
(narrowly beating e.g. Cox “Regression Models and Life Tables”
with roughly 13500 citations)
[citation count on 19/1/2009]

I Most of the material in this chapter is based on McLachlan &
Krishnan (2008). An overview article is Ng et al. (2004).

Axel Gandy The EM Algorithm 17

scholar.google.com


Introduction Example - Mixtures Theoretical Properties

Situations in which the EM algorithm is applicable

I Incomplete data situations such as
I missing data
I truncated distributions
I censored or grouped observations

I Statistical models such as
I random effects
I mixtures
I convolutions
I latent class/variable structures
I . . .

I Even if a problem appears not to be an incomplete data problem
- writing it as such a problem can sometimes simplify its analysis
(by simplifying the likelihood).
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The EM algorithm - Notation

y observed data, incomplete data (corresponding r.v.: Y)

g(·,ψ) density of Y

ψ unknown parameter vector

Likelihood L(ψ) := g(y,ψ).
Want to find the MLE, i.e. maximise L.

z missing data (corresponding r.v.: Z)

x = (y, z) complete data (corresponding r.v.: X)

gc(·;ψ) density of X

Note: g(y, ψ) = E[gc(Y,Z;ψ)|Y = y]

Axel Gandy The EM Algorithm 19



y observed, z missing, x = (y, z), Q(ψ,ψk) = E[log gc(X;ψ)|Y = y;ψk ]
g density of y, gc density of x, k = gc/g density of z|y

The EM-algorithm

I Let ψ0 be some initial value for ψ.

I For k = 0, 1, . . .

E-step Calculate Q(ψ,ψk), where

Q(ψ,ψk) = E[log gc(X;ψ)|Y = y;ψk ]

M-step
ψk+1 = argmaxψ Q(ψ,ψk)

I Employ some convergence criterion (e.g. based on log gc(x;ψk))

Note:

Q(ψ,ψk) =

∫
log gc(y, z;ψ)k(z|y;ψ)dz,

where k(z|y;ψ) = gc(y, z;ψ)/g(y;ψ) is the conditional density of z
given Y = y.
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y observed, z missing, x = (y, z), Q(ψ,ψk) = E[log gc(X;ψ)|Y = y;ψk ]
g density of y, gc density of x, k = gc/g density of z|y

Monotonicity of the EM Algorithm

I Then log g(y;ψ) = log(gc(x;ψ))− log k(x|y;ψ).

I Take expectations with density k(x|y;ψ)

log g(y;ψ) = Q(ψ,ψk)− E[log k(X|y;ψ)|Y = y;ψk ]︸ ︷︷ ︸
=:H(ψ,ψk )

I Thus

log g(y;ψk+1)− log g(y;ψk) =

= (Q(ψk+1,ψk)− Q(ψk ,ψk)︸ ︷︷ ︸
≥0 (Def EM)

) + (H(ψk ,ψk)− H(ψk+1,ψk))︸ ︷︷ ︸
≥0 (next slide)

)

I Hence, log g(y;ψk)↗ as k →∞.
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y observed, z missing, x = (y, z), Q(ψ,ψk) = E[log gc(X;ψ)|Y = y;ψk ]
g density of y, gc density of x, k = gc/g density of z|y

Monotonicity of the EM Algorithm (cont)

I H(ψ,ψk) = E[log k(X|y;ψ)|Y = y;ψk ] is maximised at
ψ = ψk .

I Indeed,

H(ψk ,ψk)− H(ψ,ψk) = E[− log
k(X|y;ψ)

k(X|y;ψk)
|Y = y;ψk ]

≥ − log E[
k(X|y;ψ)

k(X|y;ψk)
|Y = y;ψk ] (Jensen’s inequality)

= − log

∫
k(X|y;ψ)

k(X|y;ψk)
k(X|y;ψk)dx

= − log

∫
k(x|y;ψ)dx = − log(1) = 0

I Thus H(ψk ,ψk)− H(ψk+1,ψk) ≥ 0.
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The inqeuality for h is a special form of the following general
inequality:
Let X be a r.v. with density g . Let f be any other density. Then

E [log(f (X ))] ≤ E [log(g(X ))]

Proof: Jensen’s inequality.
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Generalised EM algorithm(GEM)

I The M-step may not have a close-form solution.

I It may not be feasible to find a global maximum of Q(·,ψk)

I Replace M-step by:

choose ψk+1 such that

Q(ψk+1,ψk) ≥ Q(ψk ,ψk)
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Mixture Distribution

I Consider a mixture distribution
I ψ1, . . . , ψd ≥ 0, mixing proportions,

∑d
i=1 ψi = 1.

I f1, . . . , fd component densities.

With probability ψi sample from fi .
Resulting density:

f (x) =
d∑

i=1

ψi fi (x)

I We will assume that f1, . . . , fd are known, but that
ψ = (ψ1, . . . , ψd) is unknown.
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Mixture of Normals

I d = 3

I f1 = pdf of N(3, 1)

I f2 = pdf of N(−3, 0.5)

I f3 = pdf of N(0, 1)

I ψ = (0.2, 0.1, 0.7)
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Mixture Distributions (cont.)

I Let Y1, . . . ,Yn be an iid sample from the mixture distribution.
I The likelihood of the incomplete data is

g(y;ψ) =
n∏

i=1

d∑
j=1

ψj fj(yi )

I Missing data: Zij indicator variables of chosen component
I Complete density:

gc(y, z;ψ) =
n∏

i=1

d∏
j=1

(ψj fj(yi ))zij

Hence, the log-likelihood for the full data is

log gc(y, z;ψ) =
n∑

i=1

d∑
j=1

zij log(ψj) + C ,

where C does not depend on ψ.
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Mixture of Normals (cont.)
A sample
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Mixture Distributions (cont.)

Q(ψ,ψk) = E[log gc(y, z;ψ); y,ψk ] =
n∑

i=1

d∑
j=1

log(ψj) E[zij ; y,ψk ] + C ,

where

E[zij ; y,ψk ] =
ψk
j fj(yi )∑

ν ψ
k
ν fν(yi )

=: aij

We want to maximise

Q(ψ,ψk) =
d∑

j=1

(
n∑

i=1

aij) log(ψj)

subject to
∑
ψj = 1. Using e.g. Lagrange multipliers and

∑
j aij = 1

one can see that the optimum is at

ψk+1
j =

1

n

n∑
i=1

aij , j = 1, . . . , d

Note: aij depends on ψk
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Mixture Distributions (cont.)
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Mixture Distributions (cont.)
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Mixture of Normals
Applying the EM algorithm
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k ψk
1 ψk

2 ψk
3

1 0.333 0.333 0.333
2 0.261 0.115 0.624
3 0.225 0.097 0.678
4 0.216 0.094 0.69
5 0.214 0.094 0.692
6 0.213 0.094 0.693
7 0.213 0.094 0.693
8 0.213 0.094 0.693
9 0.213 0.094 0.693

10 0.213 0.094 0.693
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Convergence Results

I We have already seen that L(ψk) is increasing in k .

I Thus, if L is bounded from above, L(ψk) converges to some L∗.

I In almost all applications, L∗ is a stationary value,
i.e. L∗ = L(ψ∗) for some ψ∗ such that

∂L(ψ)

∂ψ
|ψ=ψ∗ = 0

I Want L∗ to be a global maximum.

I However, general theorems will only guarantee that L∗ is a
stationary point or a local maximum.

I There are some theorems that ensure convergence to a global
maximum (assuming unimodality of L).

I Main reference for convergence results: Wu (1983).
(see also McLachlan & Krishnan (2008))
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EM-Algorithm - Some Warnings

I There are (pathological?) examples, where the (Generalised)
EM-algorithm does not work as expected, e.g. where there may

I convergence to a saddle point,
I convergence to a local MINIMUM,
I L(ψk) converges, but ψk does not.

(see (McLachlan & Krishnan, 2008, Section 3.6))

I Don’t trust the output of the EM result blindly!
The very least you can do is try using different starting values.
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Comments

I If the E-step cannot be computed analytically then Monte-Carlo
techniques can be used. The resulting algorithm is often called
“MCEM” algorithm.
MCMC techniques (e.g. Gibbs sampling) can come into play
here.

I For an overview of theoretical work concerning the convergence
rate of the EM-algorithm see (McLachlan & Krishnan, 2008,
Chapter 4).
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Part III

LASSO and related algorithms

LASSO

Penalised Regression

LARS algorithm

Comments
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LASSO Penalised Regression LARS algorithm Comments

Ordinary least squares (OLS)

I Linear Model:
Y = Xβ + ε

Y vector of responses (n-dimensional)
X ∈ Rn×p matrix of covariates
β ∈ Rp vector of regression coefficients (unknown)

ε vector of errors, E ε = 0, Cov ε = σ2In
I Classical approach (if n > p):
β is chosen as minimiser of the Sum of squares

S(β) = ‖Y − Xβ‖2 =
n∑

i=1

(Yi − (Xβ)i )
2,

where ‖a‖2 =
∑

i a
2
i .

I Many modern datasets (e.g. microarrays):
high-dimensional covariates, even n << p (large p small n)
⇒ β̂ is not uniquely identified!
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Lasso

Lasso (’least absolute shrinkage and selection operator’)
(Tibshirani, 1996)

β̂ solution of {
‖Y − Xβ‖22 → min∑d

i=1 |βi | ≤ c

where c ∈ R is a constant.

Remark:
Instead of side condition, can use L1-penalty

‖Y − Xβ‖2 + λ

d∑
i=1

|βi | → min

with a constant λ > 0.
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Example:

(
Y1

Y2

)
=

(
1 0
0 1

)(
β1
β2

)
+ ε. Using c = 1,{

(Y1 − β1)2 + (Y2 − β2)2 → min

|β1|+ |β2| ≤ 1

β1

β2

1

1

Y
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Y2

)
=

(
1 0
0 1

)(
β1
β2

)
+ ε. Using c = 1,{

(Y1 − β1)2 + (Y2 − β2)2 → min

|β1|+ |β2| ≤ 1

β1

β2

sparse
solutions
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LASSO Penalised Regression LARS algorithm Comments

Penalised Regression

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

p= 0.5
p= 1
p= 1.5
p= 2

add regularity conditions on β:

p(β) ≤ t for a constant t

Examples:
I p(β) = ‖β‖0 = #{i : βi 6= 0} (best subset selection)
I p(β) = ‖β‖1 =

∑p
i=1 |βi | (LASSO, ’least absolute shrinkage and

selection operator’, see Tibshirani (1996))
I p(β) = ‖β‖22 =

∑p
i=1 |βi |2 (ridge regression)

I Bridge Regression - families of penalties, e.g.:
I pd(β) = ‖β‖d2 =

∑p
i=1 |βi |d where 0 ≤ d ≤ 2

I elastic net

Thus overall:
S(β)→ min subject to p(β) ≤ t

Alternatively: For some constant λ,

S(β) + λp(β)→ min
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LASSO Penalised Regression LARS algorithm Comments

Finding the Solution of Penalised Regression

I Best subset regression: NP hard problem

I Convex optimisation problem for e.g. LASSO, Ridge
→ standard optimisation techniques could be used to find a
solution.

I LARS/LASSO algorithm: faster algorithm for p(β) =
∑p

j=1 |βj |.
I How to choose the threshold t (or λ)? Use cross-validation.
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LASSO Penalised Regression LARS algorithm Comments

Least Angle Regression

I Introduced in Efron et al. (2004).

I Efficient stepwise algorithm.

I LASSO modification of the LARS algorithm:
generates LASSO solutions for all thresholds t.
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LASSO Penalised Regression LARS algorithm Comments

Assumptions

Will assume that

I response has mean 0, i.e.

n∑
i=1

Yi = 0

I covariates have mean 0 and length 1, i.e.

n∑
i=1

Xij = 0 and
n∑

i=1

X 2
ij = 1 for j = 1, . . . , p
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LASSO Penalised Regression LARS algorithm Comments

LARS algorithm

Least Angle Regression (Efron et al., 2004)
A rough description:
Let x1, . . . , xp be the predictors, i.e. the columns of X .

I Start with all coefficient vectors equal to 0, i.e.
β1 = 0, . . . , βp = 0

I Let A be the set of covariates that are most correlated with the
current residual (initially the residual is the response).

I Initially, A = {xj1}.
I take the largest step possible in the direction of xj1 until another

predictor xj2 enters A
I continue in the direction equiangular between xj1 and xj2 until a

third predictor xj3 enters A
I continue in the direction equiangular between xj1 , xj2 , xj3 until a

fourth predictor xj4 enters the most correlated set
I . . .
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LASSO Penalised Regression LARS algorithm Comments

Illustration of the Algorithm for m = 2 Covariates

x1

x2

Ỹ

I Ỹ projection of Y onto the plane spanned by x1, x2.

I µ̂j estimate after j-th step.
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LASSO Penalised Regression LARS algorithm Comments

Illustration of the Algorithm for m = 2 Covariates

x1

x2

Ỹ

µ̂0

I Ỹ projection of Y onto the plane spanned by x1, x2.

I µ̂j estimate after j-th step.
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LASSO Penalised Regression LARS algorithm Comments

Illustration of the Algorithm for m = 2 Covariates

x1

x2

Ỹ

µ̂0 µ̂1

I Ỹ projection of Y onto the plane spanned by x1, x2.

I µ̂j estimate after j-th step.
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LASSO Penalised Regression LARS algorithm Comments

Illustration of the Algorithm for m = 2 Covariates

x1

x2

Ỹ

µ̂0 µ̂1

x2

I Ỹ projection of Y onto the plane spanned by x1, x2.

I µ̂j estimate after j-th step.
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LASSO Penalised Regression LARS algorithm Comments

Illustration of the Algorithm for m = 2 Covariates

x1

x2

Ỹ = µ̂2

µ̂0 µ̂1

x2x2

I Ỹ projection of Y onto the plane spanned by x1, x2.

I µ̂j estimate after j-th step.
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LASSO Penalised Regression LARS algorithm Comments

LARS - Diabetes Data

I from Efron et al. (2004)
I 442 patients
I covariates: age, sex, BMI, blood pressure, 6 blood serum

measurements
I Response: “a measure of disease progression”
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LASSO Penalised Regression LARS algorithm Comments

LASSO Modification of the LARS Algorithm

I LARS algorithm needs to be modified to yield all LASSO
solutions

I essentially a modification is needed when a βj crosses 0.
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LASSO Penalised Regression LARS algorithm Comments

LASSO - Diabetes Data
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Note: now 12 steps instead of 10 with the LARS algorithms
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LASSO Penalised Regression LARS algorithm Comments

Comments

I R-package: lars

I A LASSO fit has no more than n − 1 (centred) predictors with
nonzero coefficient

I Number of operations needed:

p < n: O(p3 + np2)
p > n: O(n3 + n2p)

I Other algorithm: coordinate descent
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LASSO Penalised Regression LARS algorithm Comments

Further recent approaches

I Group Lasso

‖Y − Xβ‖2 + λ
∑
j

( ∑
ν∈Kj

|βν |2
)1/2

→ min

where Kj are disjoint groups of variables and λ > 0.

I Fused Lasso

‖Y − Xβ‖2 + λ1‖β‖1 + λ2
∑

(i ,j)∈A

|βi − βj | → min

where A ⊂ {1, . . . , n}2 and λ1, λ2 > 0.

I Recent “hot” topics: compressed sensing, matrix completion,
stability selection.
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Part IV

NP complete problems
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NP-complete Problems I

I Concerns decision problems
I Input: 0-1 sequence of length n
I Output: “yes” or “no”

I P= class of all decision problems that can be solved in at most
polynomial time in n (on a Turing machine)

I NP is the set of decision problems for which a solution can be
verified in polynomical time with some additional input of
polynomial size.
As a consequence: all problems in NP can be solved in
exponential time.

I A decision problem is NP-complete if any other decision problem
in NP can be reduced to it in polynomial time.
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NP-complete Problems II
I There is a large number of NP-complete problems, e.g.

I Travelling Salesman Problem
Phrased as decision problem:
Let x be some fixed length. Is there a roundtrip for the salesman
of length ≤ x?

I Best subset regression: (phrased as decision problem)
I ....

(see http://en.wikipedia.org/wiki/List_of_

NP-complete_problems for a long list)

I It is not clear if P 6= NP. This is one of the Millennium Prize
Problems with a $1,000,000 prize, see
http://www.claymath.org/millennium/P_vs_NP/
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The Robbins-Monro Algorithm Example

Part V

Stochastic Approximation

The Robbins-Monro Algorithm

Example
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The Robbins-Monro Algorithm Example

Stochastic Approximation
Robbins-Monro/Kiefer-Wolfowitz algorithm

I Want to minimise z(θ) over Θ ⊂ Rd

e.g.: z(θ) = E(f (X ,θ)), where X is a random vector with
known distribution and f is a known function.

I Iterative algorithm: successive approximations θ1,θ2, . . .
I Standard approach - Gradient Descent:

θn+1 = θn − εn∇z(θn)

for some deterministic sequence εn.
I Assume that we cannot evaluate ∇z(θ) directly.
I Available Yn “close to” ∇z(θ).

In the Robbins-Monro-algorithm, see Robbins & Monro (1951),
one assumes

Yn = ∇z(θ) + ε

with E(ε) = 0.
Iteration:

θn+1 = θn − εnYn+1,
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The Robbins-Monro Algorithm Example

How to choose εn?

θn+1 = θn − εnYn+1

Requirements on εn
I To be able to reach any point:

∞∑
n=0

εn =∞

(assuming E Yn is bounded)

I To get convergence of θn, need

εn → 0

(assuming Var(Yn) 6→ 0):

Canonical choice: εn = an−δ for some 0 < δ ≤ 1 and some a > 0.
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The Robbins-Monro Algorithm Example

How can one obtain Yn?

Some options for z(θ) = E(f (X,θ)):

I finite differences (Kiefer-Wolfowitz algorithm, Kiefer &
Wolfowitz (1952)): Let M(θ) be such that E(M(θ)) = z(θ)

Yn,i =
M(θ + cn)−M(θ − cn)

2cn

I Infinitesimal Perturbation Analysis (IPA)
Main Idea: often ∂

∂θ z(θ) = ∂
∂θ E(f (X,θ)) = E( ∂∂θ f (X,θ)).

Define Yn as Monte Carlo estimate of the RHS:

Yn =
1

m

m∑
i=1

∂

∂θ
f (Xi ,θ)

where X,X1, . . . ,Xm is iid.
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The Robbins-Monro Algorithm Example

Stochastic-Approximation - Example

based on (Asmussen & Glynn, 2007, Section VIII 5a)
I Minimise

z(θ) = E[max(θX1 + X2, (1− θ)X3)],

where Xi ∼ Gamma(2, 2/i), i = 1, . . . , 3 are independent.
(the correct minimiser is 0.625)

I Estimate z ′(θn) by MC simulation:
Note z ′(θ) = E[g(X1,X2,X3, θ)], where

g(x1, x2, x3, θ) =

{
x1 θx1 + x2 ≥ (1− θ)x3

−x3 otherwise

Use the estimator

Yn =
1

m

m∑
i=1

g(X i
1,X

i
2,X

i
3, θ)

where X i
j ∼ Xj , j = 1, . . . , 3, i = 1, . . . ,m are independent
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The Robbins-Monro Algorithm Example

Stochastic-Approximation - one run

m = 10, εn = n−δ/10, θ0 = 0.4
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Axel Gandy Stochastic Approximation 57



The Robbins-Monro Algorithm Example

Stochastic-Approximation - Sensitivity to θ

Same parameters as before
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The Robbins-Monro Algorithm Example

Stochastic Approximation - Comments

I Very general class of algorithms - related to stochastic control.
I Several Parameters need tuning (best done on a case by case

basis)
I How many samples m to take at each step?

Should m depend n?
I What εn to use?

I A lot of theoretical work has been concerned with establishing
theoretical properties of these algorithms.
Main idea:

I Relate the sequence the sequence θn to the solution θ(t) of the
deterministic dynamical system

∂

∂t
θ(t) = −∇z(θ(t))

and use martingale theory to analyse the differences.
See e.g. Kushner & Yin (2003) for details.

I A shorter introduction can be found in e.g. Asmussen & Glynn
(2007).
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Part VI

Appendix
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References

Topics in the coming lectures:

I MCMC methods

I Bootstrap

I Particle Filtering
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137–168, Springer.

Axel Gandy Appendix 62



References

References II
Robbins, H. & Monro, S. (1951). A stochastic approximation method. The Annals

of Mathematical Statistics 22, 400–407.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B (Methodological) 58, 267–288.

Wu, C. F. J. (1983). On the convergence properties of the em algorithm. The
Annals of Statistics 11, 95–103.

Axel Gandy Appendix 63


	Introduction
	Deterministic Optimisation
	Introduction
	Local Search Methods
	Comments
	Simulation study

	The EM Algorithm
	Introduction
	The Basic EM algorithm

	Example - Mixtures
	Mixture Distribution

	Theoretical Properties
	Convergence to a Stationary Value
	Comments


	LASSO and related algorithms
	LASSO
	Penalised Regression
	LARS algorithm
	Comments

	NP complete problems
	Stochastic Approximation
	The Robbins-Monro Algorithm
	Example

	Appendix
	References


