

Advanced Computational Methods in Statistics: Lecture 2 Optimisation

Axel Gandy

Department of Mathematics Imperial College London http://www2.imperial.ac.uk/~agandy

London Taught Course Centre for PhD Students in the Mathematical Sciences Autumn 2015

Lecture 2 - Optimisation

- Part 1 Deterministic Optimisation
- Part 2 EM algorithm
- Part 3 LASSO and LARS
- Part 4 NP-complete Problems
- Part 5 Stochastic Approximation

Comments

Simulation study

Part I

Deterministic Optimisation

Introduction

Local Search Methods

Comments

Simulation study

▶
$$f : A \to \mathbb{R}, A \subset \mathbb{R}^d$$
.

• Goal: Find $\mathbf{x}^* \in \mathbb{R}^d$ such that

$$f(\mathbf{x}^*) = \min_{\mathbf{x} \in A} f(\mathbf{x})$$

- Example: finding the maximum likelihood estimator.
- Can have side conditions:
 - $g: A
 ightarrow \mathbb{R}^q$ some function. Want to

minimise_{$x \in A$} f(x) subject to g(x) = 0

Explicit solutions: Lagrange Multipliers.
 With inequality constraints: Kuhn-Tucker conditions.

Local Search Methods - No Side Conditions

- Main idea: create a sequence x₀, x₁, x₂,... approximations to x*. Hopefully x_n → x* as n → ∞.
- Choice of algorithm depends on how many derivatives of f are available. Some Examples:

no derivatives: Nelder-Mead: works with d+1 points that move towards \mathbf{x}^* and then contract around it.

gradient ∇f : Gradient descent:

 $x_n = x_{n-1} - \epsilon_n \nabla f(x_{n-1})$

other methods: conjugate gradient, ... gradient ∇f +Hessian *H*: Newton's Method:

$$x_n = x_{n-1} - H(f, x_{n-1})^{-1} \nabla f(x_{n-1})$$

Typically: the more derivatives are available the better the convergence rate.

- ► Global convergence only guaranteed if *f* is convex.
- If global convergence cannot be guaranteed, the very least one should do is use several starting values.

Optimisation with Side Conditions

minimise_{$x \in A$} f(x) subject to g(x) = 0

- ► f linear, g linear: "linear programming", Simplex algorithm
- ► f quadratic, g linear: quadratic programming
- more general structure: sequential quadratic programming algorithms may work: idea: approximate the problem locally by a quadratic programming problem. (implemented e.g. in the NAG library)
- More heuristic approach: put side condition into objective function, i.e. minimise f(x) + λ(g(x))² for some large λ > 0.

Comments

- Optimisation (in particular with side conditions and non-convex) can be a tough problem
- Local search algorithms are not the only algorithms many more approaches (simulated annealing, random optimisation, genetic optimisation)
- Many solutions have been developed that work well for specific problems.
- Try to use implementation of algorithms written by experts!
- Useful resource: Decision Tree for Optimisation Software http://plato.asu.edu/guide.html

Simulation study of various optimization algorithms

Various algorithms implemented in *optim()* in R:

- ► Nelder-Mead: a simplex-based method.
- BFGS: quasi-Newton method (BroydenFletcherGoldfarbShanno method)
- CG: a conjugate gradient method.
- L-BFGS-B: an algorithm that would allow bounds on the parameters.
- Simulated annealing with default settings.
- Simulated annealing with more steps and slower cooling.

Applied to 3 functions.

Example 1 - quadratic function

$$f: \mathbb{R}^2 \to \mathbb{R}, f(x, y) = x^2 + y^2$$

Applying standard R algorithms to the quadratic function

	N-M	BFGS	CG	L-BFGS-B	SANN1	SANN2
Conv	1	1	1	1	1	1
0%	2.73e-09	7.24e-28	7.42e-15	1.53e-41	9e-07	1.01e-07
25%	1.14e-07	1.61e-24	2.13e-14	3.96e-40	4.19e-05	2.47e-06
50%	2.46e-07	1.55e-23	3.76e-14	7.69e-40	8.21e-05	7.54e-06
75%	5.56e-07	7.11e-23	5.27e-14	1.37e-39	0.0002	1.4e-05
100%	5.04e-06	1.86e-21	8.91e-13	2.72e-39	0.000896	4.84e-05
neval	65.8	9.66	21.8	4.24	1e+04	1e+05

Table: Started from 100 different starting points in [-10,10]x[-10,10]. Conv=Proportion of successful convergence indicated; Quantiles of f(minimizer); neval=average number of function evaluations.

Example 2 - Rosenbrock Banana function $f : \mathbb{R}^2 \to \mathbb{R}, f(x, y) = (1 - x)^2 + 100(y - x^2)^2$

Applying standard R algorithms to the Banana function

	N-M	BFGS	CG	L-BFGS-B	SANN1	SANN2
Conv	1	0.85	0.01	0.99	1	1
0%	4.32e-08	9.93e-11	0.000187	1.98e-10	1.76e-06	8.25e-07
25%	3.8e-05	2.93e-08	0.0765	3.03e-08	0.000194	9.81e-06
50%	0.000747	3.95e-08	0.203	3.99e-08	0.000444	2.18e-05
75%	0.0489	4e-08	3.66	4e-08	0.00105	4.58e-05
100%	1e+06	1e+06	1e+06	1e+06	2.36	0.000199
neval	129	111	253	54	1e+04	1e+05

Table: Started from 100 different starting points in $[-10,10]\times[-10,10]$. Conv=Proportion of successful convergence indicated; Quantiles of f(minimizer); neval=average number of function evaluations.

Imperial College London

Example 3

 $f : \mathbb{R}^2 \to \mathbb{R}, f(x, y) = (x \sin(20y) + y \sin(20x))^2 \cosh(\sin(10x)x) + (x \cos(10y) - y \sin(10x))^2 \cosh(\cos(20y)y) + |x| + |y|$

Applying standard R algorithms to Example 3

	N-M	BFGS	CG	L-BFGS-B	SANN1	SANN2
Conv	0.99	1	0.21	0.78	1	1
0%	2.4e-08	3.59e-20	4.57e-10	1.35e-14	0.00125	0.000241
25%	6.69	3.06e-18	2.79	8.25	0.0123	0.00148
50%	9.74	6.75	7.99	11.5	6.01	0.003
75%	13.4	11.9	11.7	29.4	10.9	0.00427
100%	181	263	269	178	22.7	18.4
neval	103	65.1	413	41.2	1e+04	1e+05

Table: Started from 100 different starting points in [-10,10]x[-10,10]. Conv=Proportion of successful convergence indicated; Quantiles of f(minimizer); neval=average number of function evaluations.

Comments

- Functions that are "nice" (no local minima, maybe even convex): standard numerical algorithms work best, the more derivatives are used the better.
- Functions with local minima: Need to add noise to avoid getting trapped (needs tuning)
- General advice:
 - Use several starting values
 - Plot function (if possible)

Example - Mixtures

Theoretical Properties

Part II

The EM Algorithm

Introduction

Example - Mixtures

Theoretical Properties

EM Algorithm - Introduction

- Expectation-Maximisation algorithm; two steps:
 - E-step
 - M-Step
- General-purpose algorithm for maximum likelihood estimation in incomplete data problems.
- Main reference: Dempster et al. (1977)
- According to scholar.google.com: cited > 14000 times! (narrowly beating e.g. Cox "Regression Models and Life Tables" with roughly 13500 citations) [citation count on 19/1/2009]
- Most of the material in this chapter is based on McLachlan & Krishnan (2008). An overview article is Ng et al. (2004).

Situations in which the EM algorithm is applicable

- Incomplete data situations such as
 - missing data
 - truncated distributions
 - censored or grouped observations
- Statistical models such as
 - random effects
 - mixtures
 - convolutions
 - latent class/variable structures
 - ▶ ...
- Even if a problem appears not to be an incomplete data problem
 writing it as such a problem can sometimes simplify its analysis (by simplifying the likelihood).

The EM algorithm - Notation

y observed data, incomplete data (corresponding r.v.: **Y**) $g(\cdot, \psi)$ density of **Y**

 ψ unknown parameter vector

Likelihood $L(\psi) := g(\mathbf{y}, \psi)$. Want to find the MLE, i.e. maximise L.

Note: $g(\mathbf{y}, \psi) = \mathsf{E}[g_c(\mathbf{Y}, \mathbf{Z}; \psi) | \mathbf{Y} = \mathbf{y}]$

y observed, **z** missing, $\mathbf{x} = (\mathbf{y}, \mathbf{z})$, $Q(\psi, \psi^k) = \mathsf{E}[\log g_c(\mathbf{X}; \psi) | \mathbf{Y} = \mathbf{y}; \psi^k]$ g density of **y**, g_c density of **x**, $k = g_c/g$ density of $\mathbf{z}|\mathbf{y}$ The EM-algorithm

- Let ψ^0 be some initial value for ψ .
- For k = 0, 1, ...

E-step Calculate $Q(\psi, \psi^k)$, where

$$\mathit{Q}(oldsymbol{\psi},oldsymbol{\psi}^k) = \mathsf{E}[\log \mathit{g_c}(\mathbf{X};oldsymbol{\psi})|\mathbf{Y}=\mathbf{y};oldsymbol{\psi}^k]$$

M-step

$$oldsymbol{\psi}^{k+1} = \operatorname{argmax}_{oldsymbol{\psi}} oldsymbol{Q}(oldsymbol{\psi},oldsymbol{\psi}^k)$$

Employ some convergence criterion (e.g. based on log g_c(**x**; ψ^k)) Note:

$$Q(\psi, \psi^k) = \int \log g_c(\mathbf{y}, \mathbf{z}; \psi) k(\mathbf{z}|\mathbf{y}; \psi) d\mathbf{z},$$

where $k(\mathbf{z}|\mathbf{y}; \psi) = g_c(\mathbf{y}, \mathbf{z}; \psi)/g(\mathbf{y}; \psi)$ is the conditional density of \mathbf{z} given $\mathbf{Y} = \mathbf{y}$.

Imperial College London

Axel Gandy

y observed, **z** missing, $\mathbf{x} = (\mathbf{y}, \mathbf{z})$, $Q(\psi, \psi^k) = \mathsf{E}[\log g_c(\mathbf{X}; \psi) | \mathbf{Y} = \mathbf{y}; \psi^k]$ g density of **y**, g_c density of **x**, $k = g_c/g$ density of $\mathbf{z}|\mathbf{y}$ The EM-algorithm

- Let ψ^0 be some initial value for ψ .
- For k = 0, 1, ...

E-step Calculate $Q(\psi, \psi^k)$, where

$$\mathit{Q}(oldsymbol{\psi},oldsymbol{\psi}^k) = \mathsf{E}[\log \mathit{g_c}(\mathbf{X};oldsymbol{\psi})|\mathbf{Y}=\mathbf{y};oldsymbol{\psi}^k]$$

M-step

$$oldsymbol{\psi}^{k+1} = \operatorname{argmax}_{oldsymbol{\psi}} oldsymbol{Q}(oldsymbol{\psi},oldsymbol{\psi}^k)$$

• Employ some convergence criterion (e.g. based on log $g_c(\mathbf{x}; \psi^k)$)

Note:

$$Q(\psi,\psi^k) = \int \log g_c(\mathbf{y},\mathbf{z};\psi) k(\mathbf{z}|\mathbf{y};\psi) d\mathbf{z},$$

where $k(\mathbf{z}|\mathbf{y}; \psi) = g_c(\mathbf{y}, \mathbf{z}; \psi)/g(\mathbf{y}; \psi)$ is the conditional density of \mathbf{z} given $\mathbf{Y} = \mathbf{y}$.

Imperial College London **y** observed, **z** missing, $\mathbf{x} = (\mathbf{y}, \mathbf{z})$, $Q(\psi, \psi^k) = \mathsf{E}[\log g_c(\mathbf{X}; \psi) | \mathbf{Y} = \mathbf{y}; \psi^k]$ g density of **y**, g_c density of **x**, $k = g_c/g$ density of $\mathbf{z}|\mathbf{y}$ Monotonicity of the EM Algorithm

- Then $\log g(\mathbf{y}; \psi) = \log(g_c(\mathbf{x}; \psi)) \log k(\mathbf{x}|\mathbf{y}; \psi)$.
- Take expectations with density $k(\mathbf{x}|\mathbf{y}; \boldsymbol{\psi})$

$$\log g(\mathbf{y}; \boldsymbol{\psi}) = Q(\boldsymbol{\psi}, \boldsymbol{\psi}^k) - \underbrace{\mathsf{E}[\log k(\mathbf{X}|\mathbf{y}; \boldsymbol{\psi})|\mathbf{Y} = \mathbf{y}; \boldsymbol{\psi}^k]}_{=:H(\boldsymbol{\psi}, \boldsymbol{\psi}^k)}$$

$$\begin{split} \log g(\mathbf{y}; \boldsymbol{\psi}^{k+1}) &- \log g(\mathbf{y}; \boldsymbol{\psi}^{k}) = \\ &= (\underbrace{\mathcal{Q}(\boldsymbol{\psi}^{k+1}, \boldsymbol{\psi}^{k}) - \mathcal{Q}(\boldsymbol{\psi}^{k}, \boldsymbol{\psi}^{k})}_{\geq 0 \text{ (Def EM)}}) + (\underbrace{\mathcal{H}(\boldsymbol{\psi}^{k}, \boldsymbol{\psi}^{k}) - \mathcal{H}(\boldsymbol{\psi}^{k+1}, \boldsymbol{\psi}^{k}))}_{\geq 0 \text{ (next slide)}}) \end{split}$$

$$lacksim ext{ Hence, } \log g(\mathbf{y}; oldsymbol{\psi}^k)
earrow ext{ as } k
ightarrow \infty.$$

Imperial College London

Axel Gandy

y observed, **z** missing, $\mathbf{x} = (\mathbf{y}, \mathbf{z})$, $Q(\psi, \psi^k) = \mathsf{E}[\log g_c(\mathbf{X}; \psi) | \mathbf{Y} = \mathbf{y}; \psi^k]$ g density of **y**, g_c density of **x**, $k = g_c/g$ density of $\mathbf{z}|\mathbf{y}$ Monotonicity of the EM Algorithm

- Then $\log g(\mathbf{y}; \psi) = \log(g_c(\mathbf{x}; \psi)) \log k(\mathbf{x}|\mathbf{y}; \psi)$.
- Take expectations with density $k(\mathbf{x}|\mathbf{y}; \boldsymbol{\psi})$

$$\log g(\mathbf{y}; \boldsymbol{\psi}) = Q(\boldsymbol{\psi}, \boldsymbol{\psi}^k) - \underbrace{\mathsf{E}[\log k(\mathbf{X}|\mathbf{y}; \boldsymbol{\psi})|\mathbf{Y} = \mathbf{y}; \boldsymbol{\psi}^k]}_{=:H(\boldsymbol{\psi}, \boldsymbol{\psi}^k)}$$

Thus

$$\begin{split} &\log g(\mathbf{y}; \boldsymbol{\psi}^{k+1}) - \log g(\mathbf{y}; \boldsymbol{\psi}^{k}) = \\ &= (\underbrace{Q(\boldsymbol{\psi}^{k+1}, \boldsymbol{\psi}^{k}) - Q(\boldsymbol{\psi}^{k}, \boldsymbol{\psi}^{k})}_{\geq 0 \text{ (Def EM)}}) + (\underbrace{H(\boldsymbol{\psi}^{k}, \boldsymbol{\psi}^{k}) - H(\boldsymbol{\psi}^{k+1}, \boldsymbol{\psi}^{k})}_{\geq 0 \text{ (next slide)}}) \end{split}$$

▶ Hence, log
$$g(\mathbf{y}; oldsymbol{\psi}^k)
earrow$$
 as $k o \infty$.

y observed, **z** missing, $\mathbf{x} = (\mathbf{y}, \mathbf{z})$, $Q(\psi, \psi^k) = E[\log g_c(\mathbf{X}; \psi) | \mathbf{Y} = \mathbf{y}; \psi^k]$ *g* density of **y**, g_c density of **x**, $k = g_c/g$ density of $\mathbf{z}|\mathbf{y}$ Monotonicity of the EM Algorithm (cont)

•
$$H(\psi, \psi^k) = E[\log k(\mathbf{X}|\mathbf{y}; \psi)|\mathbf{Y} = \mathbf{y}; \psi^k]$$
 is maximised at $\psi = \psi^k$.

Indeed,

$$\begin{aligned} H(\psi^{k},\psi^{k}) - H(\psi,\psi^{k}) &= \mathsf{E}[-\log\frac{k(\mathbf{X}|\mathbf{y};\psi)}{k(\mathbf{X}|\mathbf{y};\psi^{k})}|\mathbf{Y} = \mathbf{y};\psi^{k}] \\ &\geq -\log\mathsf{E}[\frac{k(\mathbf{X}|\mathbf{y};\psi)}{k(\mathbf{X}|\mathbf{y};\psi^{k})}|\mathbf{Y} = \mathbf{y};\psi^{k}] \quad \text{(Jensen's inequality)} \\ &= -\log\int\frac{k(\mathbf{X}|\mathbf{y};\psi)}{k(\mathbf{X}|\mathbf{y};\psi^{k})}k(\mathbf{X}|\mathbf{y};\psi^{k})dx \\ &= -\log\int k(\mathbf{x}|\mathbf{y};\psi)d\mathbf{x} = -\log(1) = 0 \end{aligned}$$

• Thus $H(\psi^k, \psi^k) - H(\psi^{k+1}, \psi^k) \ge 0.$

Imperial College London

Axel Gandy

y observed, **z** missing, $\mathbf{x} = (\mathbf{y}, \mathbf{z})$, $Q(\psi, \psi^k) = E[\log g_c(\mathbf{X}; \psi) | \mathbf{Y} = \mathbf{y}; \psi^k]$ g density of **y**, g_c density of **x**, $k = g_c/g$ density of $\mathbf{z}|\mathbf{y}$ Monotonicity of the EM Algorithm (cont)

•
$$H(\psi, \psi^k) = \mathsf{E}[\log k(\mathbf{X}|\mathbf{y}; \psi)|\mathbf{Y} = \mathbf{y}; \psi^k]$$
 is maximised at $\psi = \psi^k$.

Indeed,

$$\begin{aligned} H(\psi^{k},\psi^{k}) - H(\psi,\psi^{k}) &= \mathsf{E}[-\log\frac{k(\mathbf{X}|\mathbf{y};\psi)}{k(\mathbf{X}|\mathbf{y};\psi^{k})}|\mathbf{Y} = \mathbf{y};\psi^{k}] \\ &\geq -\log\mathsf{E}[\frac{k(\mathbf{X}|\mathbf{y};\psi)}{k(\mathbf{X}|\mathbf{y};\psi^{k})}|\mathbf{Y} = \mathbf{y};\psi^{k}] \quad \text{(Jensen's inequality)} \\ &= -\log\int\frac{k(\mathbf{X}|\mathbf{y};\psi)}{k(\mathbf{X}|\mathbf{y};\psi^{k})}k(\mathbf{X}|\mathbf{y};\psi^{k})dx \\ &= -\log\int k(\mathbf{x}|\mathbf{y};\psi)d\mathbf{x} = -\log(1) = 0 \end{aligned}$$

• Thus
$$H(\psi^k,\psi^k) - H(\psi^{k+1},\psi^k) \ge 0.$$

Imperial College London

Axel Gandy

The inquality for h is a special form of the following general inequality:

Let X be a r.v. with density g. Let f be any other density. Then

 $E[\log(f(X))] \leq E[\log(g(X))]$

Proof: Jensen's inequality.

Generalised EM algorithm(GEM)

- The M-step may not have a close-form solution.
- ▶ It may not be feasible to find a global maximum of $Q(\cdot, \psi^k)$
- Replace M-step by:

choose ψ^{k+1} such that

$$Q(\psi^{k+1},\psi^k)\geq Q(\psi^k,\psi^k)$$

Mixture Distribution

- Consider a mixture distribution
 - $\psi_1, \ldots, \psi_d \ge 0$, mixing proportions, $\sum_{i=1}^d \psi_i = 1$.
 - f_1, \ldots, f_d component densities.

With probability ψ_i sample from f_i . Resulting density:

$$f(x) = \sum_{i=1}^{d} \psi_i f_i(x)$$

• We will assume that f_1, \ldots, f_d are known, but that $\psi = (\psi_1, \ldots, \psi_d)$ is unknown.

Mixture of Normals

- ► *d* = 3
- $f_1 = pdf of N(3, 1)$
- $f_2 = pdf of N(-3, 0.5)$
- $f_3 = pdf of N(0, 1)$
- ▶ $\psi = (0.2, 0.1, 0.7)$

Mixture Distributions (cont.)

- Let Y_1, \ldots, Y_n be an iid sample from the mixture distribution.
- The likelihood of the incomplete data is

$$g(\mathbf{y};\psi) = \prod_{i=1}^n \sum_{j=1}^d \psi_j f_j(y_i)$$

- ► Missing data: Z_{ij} indicator variables of chosen component
- Complete density:

$$g_c(\mathbf{y}, \mathbf{z}; \boldsymbol{\psi}) = \prod_{i=1}^n \prod_{j=1}^d (\psi_j f_j(y_i))^{z_{ij}}$$

Hence, the log-likelihood for the full data is

$$\log g_c(\mathbf{y}, \mathbf{z}; \boldsymbol{\psi}) = \sum_{i=1}^n \sum_{j=1}^d z_{ij} \log(\psi_j) + C,$$

where C does not depend on ψ .

Axel Gandy

Example - Mixtures

Theoretical Properties

Mixture of Normals (cont.) A sample

Mixture Distributions (cont.)

$$Q(\boldsymbol{\psi}, \boldsymbol{\psi}^k) = \mathsf{E}[\log g_c(\mathbf{y}, \mathbf{z}; \boldsymbol{\psi}); \mathbf{y}, \boldsymbol{\psi}^k] = \sum_{i=1}^n \sum_{j=1}^d \log(\psi_j) \, \mathsf{E}[z_{ij}; \mathbf{y}, \boldsymbol{\psi}^k] + C,$$

where

$$\mathsf{E}[z_{ij}; \mathbf{y}, \psi^k] = \frac{\psi_j^k f_j(y_i)}{\sum_{\nu} \psi_{\nu}^k f_{\nu}(y_i)} =: \mathsf{a}_{ij}$$

We want to maximise

$$Q(\psi,\psi^k) = \sum_{j=1}^d (\sum_{i=1}^n a_{ij}) \log(\psi_j)$$

subject to $\sum \psi_j=1.$ Using e.g. Lagrange multipliers and $\sum_j a_{ij}=1$ one can see that the optimum is at

$$\psi_j^{k+1} = \frac{1}{n} \sum_{i=1}^n a_{ij}, \quad j = 1, \dots, d$$

Note: a_{ij} depends on ψ^k

Imperial College London

Axel Gandy

Mixture Distributions (cont.)

$$Q(\boldsymbol{\psi}, \boldsymbol{\psi}^k) = \mathsf{E}[\log g_c(\mathbf{y}, \mathbf{z}; \boldsymbol{\psi}); \mathbf{y}, \boldsymbol{\psi}^k] = \sum_{i=1}^n \sum_{j=1}^d \log(\psi_j) \, \mathsf{E}[z_{ij}; \mathbf{y}, \boldsymbol{\psi}^k] + C,$$

where

$$\mathsf{E}[z_{ij}; \mathbf{y}, \boldsymbol{\psi}^k] = \frac{\psi_j^k f_j(y_i)}{\sum_{\nu} \psi_{\nu}^k f_{\nu}(y_i)} =: \mathsf{a}_{ij}$$

We want to maximise

$$Q(\psi,\psi^k) = \sum_{j=1}^d (\sum_{i=1}^n a_{ij}) \log(\psi_j)$$

subject to $\sum \psi_j = 1$. Using e.g. Lagrange multipliers and $\sum_j a_{ij} = 1$ one can see that the optimum is at

$$\psi_j^{k+1} = \frac{1}{n} \sum_{i=1}^n a_{ij}, \quad j = 1, \dots, d$$

Note: a_{ij} depends on ψ^k

Imperial College London

Axel Gandy

Mixture Distributions (cont.)

$$Q(\boldsymbol{\psi}, \boldsymbol{\psi}^k) = \mathsf{E}[\log g_c(\mathbf{y}, \mathbf{z}; \boldsymbol{\psi}); \mathbf{y}, \boldsymbol{\psi}^k] = \sum_{i=1}^n \sum_{j=1}^d \log(\psi_j) \, \mathsf{E}[z_{ij}; \mathbf{y}, \boldsymbol{\psi}^k] + C,$$

where

$$\mathsf{E}[z_{ij}; \mathbf{y}, \boldsymbol{\psi}^k] = \frac{\psi_j^k f_j(y_i)}{\sum_{\nu} \psi_{\nu}^k f_{\nu}(y_i)} =: \mathsf{a}_{ij}$$

We want to maximise

$$Q(\psi,\psi^k) = \sum_{j=1}^d (\sum_{i=1}^n a_{ij}) \log(\psi_j)$$

subject to $\sum \psi_j = 1$. Using e.g. Lagrange multipliers and $\sum_j a_{ij} = 1$ one can see that the optimum is at

$$\psi_j^{k+1} = \frac{1}{n} \sum_{i=1}^n a_{ij}, \quad j = 1, \dots, d$$

Note: a_{ij} depends on ψ^k

Imperial College London

Axel Gandy

Example - Mixtures

Theoretical Properties

Mixture of Normals

Applying the EM algorithm

k	ψ_1^k	ψ_2^k	$\psi_{3}^{\pmb{k}}$
1	0.333	0.333	0.333
2	0.261	0.115	0.624
3	0.225	0.097	0.678
4	0.216	0.094	0.69
5	0.214	0.094	0.692
6	0.213	0.094	0.693
7	0.213	0.094	0.693
8	0.213	0.094	0.693
9	0.213	0.094	0.693
10	0.213	0.094	0.693

Convergence Results

- We have already seen that $L(\psi^k)$ is increasing in k.
- Thus, if L is bounded from above, $L(\psi^k)$ converges to some L^* .
- In almost all applications, L^* is a stationary value,
 - i.e. $L^* = L(\psi^*)$ for some ψ^* such that

$$rac{\partial \mathcal{L}(oldsymbol{\psi})}{\partial oldsymbol{\psi}}|_{oldsymbol{\psi}=oldsymbol{\psi}^*}=oldsymbol{0}$$

- ▶ Want *L*^{*} to be a global maximum.
- ► However, general theorems will only guarantee that L* is a stationary point or a local maximum.
- There are some theorems that ensure convergence to a global maximum (assuming unimodality of L).
- Main reference for convergence results: Wu (1983). (see also McLachlan & Krishnan (2008))
EM-Algorithm - Some Warnings

- There are (pathological?) examples, where the (Generalised) EM-algorithm does not work as expected, e.g. where there may
 - convergence to a saddle point,
 - convergence to a local MINIMUM,
 - $L(\psi^k)$ converges, but ψ^k does not.

(see (McLachlan & Krishnan, 2008, Section 3.6))

 Don't trust the output of the EM result blindly! The very least you can do is try using different starting values.

I	n	tı	rc)(d	u	С	t	ic	r
Ì	1	Ĭ.	i	i	I					

Example - Mixtures

Comments

 If the E-step cannot be computed analytically then Monte-Carlo techniques can be used. The resulting algorithm is often called "MCEM" algorithm.

MCMC techniques (e.g. Gibbs sampling) can come into play here.

► For an overview of theoretical work concerning the convergence rate of the EM-algorithm see (McLachlan & Krishnan, 2008, Chapter 4).

Comments

Part III

LASSO and related algorithms

LASSO

Penalised Regression

LARS algorithm

Comments

Ordinary least squares (OLS)

► Linear Model:

$$\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

Y vector of responses (n-dimensional)
 X ∈ ℝ^{n×p} matrix of covariates
 β ∈ ℝ^p vector of regression coefficients (unknown)
 ϵ vector of errors, E ϵ = 0, Cov ϵ = σ² I_n
 Classical approach (if n > p):
 β is chosen as minimiser of the Sum of squares

$$S(\boldsymbol{\beta}) = \|\mathbf{Y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 = \sum_{i=1}^n (Y_i - (\boldsymbol{X}\boldsymbol{\beta})_i)^2,$$

where ||a||² = ∑_i a_i².
Many modern datasets (e.g. microarrays): high-dimensional covariates, even n << p (large p small n) ⇒ β̂ is not uniquely identified!

Comments

Lasso

Lasso ('least absolute shrinkage and selection operator') (Tibshirani, 1996)

 $\hat{\beta}$ solution of

$$\begin{cases} \|\mathbf{Y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2 \to \min \\ \sum_{i=1}^d |\beta_i| \le c \end{cases}$$

where $c \in \mathbb{R}$ is a constant.

Remark:

Instead of side condition, can use L_1 -penalty

$$\|\mathbf{Y} - X\boldsymbol{\beta}\|^2 + \lambda \sum_{i=1}^d |\beta_i| \to \min$$

with a constant $\lambda > 0$.

Example:
$$\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \epsilon$$
. Using $c = 1$,
$$\begin{cases} (Y_1 - \beta_1)^2 + (Y_2 - \beta_2)^2 \to \min \\ |\beta_1| + |\beta_2| \le 1 \end{cases}$$

Example:
$$\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \epsilon$$
. Using $c = 1$,
$$\begin{cases} (Y_1 - \beta_1)^2 + (Y_2 - \beta_2)^2 \to \min\\ |\beta_1| + |\beta_2| \le 1 \end{cases}$$

Penalised Regression

Penalised Regression

add regularity conditions on β :

$$p(oldsymbol{eta}) \leq t$$
 for a constant t

Examples:

- $\dot{p}(\beta) = \|\beta\|_0 = \#\{i : \beta_i \neq 0\}$ (best subset selection)
- $p(\beta) = \|\beta\|_2^2 = \sum_{i=1}^p |\beta_i|^2$ (ridge regression)
- Bridge Regression families of penalties, e.g.:

•
$$p_d(\beta) = \|\beta\|_2^d = \sum_{i=1}^p |\beta_i|^d$$
 where $0 \le d \le 2$

elastic net

Thus overall:

$$\mathcal{S}(oldsymbol{eta})
ightarrow \mathsf{min}$$
 subject to $p(oldsymbol{eta}) \leq t$

 $S(\beta) + \lambda p(\beta) \rightarrow \min$

Alternatively: For some constant λ ,

Imperial College London

Axel Gandy

ASSO and related algorithms

Finding the Solution of Penalised Regression

- Best subset regression: NP hard problem
- ► Convex optimisation problem for e.g. LASSO, Ridge → standard optimisation techniques could be used to find a solution.
- LARS/LASSO algorithm: faster algorithm for $p(\beta) = \sum_{j=1}^{p} |\beta_j|$.
- How to choose the threshold t (or λ)? Use cross-validation.

Least Angle Regression

- Introduced in Efron et al. (2004).
- Efficient stepwise algorithm.
- LASSO modification of the LARS algorithm: generates LASSO solutions for all thresholds t.

Comments

Assumptions

Will assume that

▶ response has mean 0, i.e.

$$\sum_{i=1}^n Y_i = 0$$

covariates have mean 0 and length 1, i.e.

$$\sum_{i=1}^{n} X_{ij} = 0$$
 and $\sum_{i=1}^{n} X_{ij}^{2} = 1$ for $j = 1, \dots, p$

LARS algorithm

Least Angle Regression (Efron et al., 2004)

A rough description:

Let $\mathbf{x}_1, \ldots, \mathbf{x}_p$ be the predictors, i.e. the columns of X.

- Start with all coefficient vectors equal to 0, i.e. $\beta_1 = 0, \dots, \beta_n = 0$
- ► Let A be the set of covariates that are most correlated with the current residual (initially the residual is the response).
- Initially, $\mathcal{A} = \{\mathbf{x}_{j_1}\}.$
- ► take the largest step possible in the direction of x_{j1} until another predictor x_{j2} enters A
- ► continue in the direction equiangular between x_{j1} and x_{j2} until a third predictor x_{j3} enters A
- continue in the direction equiangular between x_{j1}, x_{j2}, x_{j3} until a fourth predictor x_{j4} enters the most correlated set

▶ ...

- $\tilde{\mathbf{Y}}$ projection of \mathbf{Y} onto the plane spanned by $\mathbf{x}_1, \mathbf{x}_2$.
- $\hat{\mu}_j$ estimate after j-th step.

- $\tilde{\mathbf{Y}}$ projection of \mathbf{Y} onto the plane spanned by $\mathbf{x}_1, \mathbf{x}_2$.
- $\hat{\mu}_j$ estimate after j-th step.

- $\tilde{\mathbf{Y}}$ projection of \mathbf{Y} onto the plane spanned by $\mathbf{x}_1, \mathbf{x}_2$.
- $\hat{\mu}_j$ estimate after j-th step.

- $\tilde{\mathbf{Y}}$ projection of \mathbf{Y} onto the plane spanned by $\mathbf{x}_1, \mathbf{x}_2$.
- $\hat{\mu}_j$ estimate after j-th step.

- $\tilde{\mathbf{Y}}$ projection of \mathbf{Y} onto the plane spanned by $\mathbf{x}_1, \mathbf{x}_2$.
- $\hat{\mu}_j$ estimate after j-th step.

LARS - Diabetes Data

- ▶ from Efron et al. (2004)
- 442 patients
- covariates: age, sex, BMI, blood pressure, 6 blood serum measurements
- Response: "a measure of disease progression"

LASSO Modification of the LARS Algorithm

- LARS algorithm needs to be modified to yield all LASSO solutions
- essentially a modification is needed when a β_i crosses 0.

LASSO - Diabetes Data

Note: now 12 steps instead of 10 with the LARS algorithms

Comments

- R-package: lars
- ► A LASSO fit has no more than n 1 (centred) predictors with nonzero coefficient
- Number of operations needed:

 $p < n: O(p^3 + np^2)$ $p > n: O(n^3 + n^2p)$

Other algorithm: coordinate descent

Further recent approaches

► Group Lasso

$$\|\mathbf{Y} - X\boldsymbol{\beta}\|^2 + \lambda \sum_j \left(\sum_{\nu \in K_j} |\beta_\nu|^2\right)^{1/2} \to \min$$

where K_j are disjoint groups of variables and $\lambda > 0$.

Fused Lasso

$$\|\mathbf{Y} - X\boldsymbol{\beta}\|^2 + \lambda_1 \|\boldsymbol{\beta}\|_1 + \lambda_2 \sum_{(i,j) \in A} |\beta_i - \beta_j| \to \min$$

where $A \subset \{1, \ldots, n\}^2$ and $\lambda_1, \lambda_2 > 0$.

 Recent "hot" topics: compressed sensing, matrix completion, stability selection.

Part IV

NP complete problems

NP-complete Problems I

- Concerns decision problems
 - ▶ Input: 0-1 sequence of length *n*
 - Output: "yes" or "no"
- P = class of all decision problems that can be solved in at most polynomial time in n (on a Turing machine)
- NP is the set of decision problems for which a solution can be verified in polynomical time with some additional input of polynomial size.

As a consequence: all problems in NP can be solved in *exponential* time.

A decision problem is NP-complete if any other decision problem in NP can be reduced to it in polynomial time.

NP-complete Problems II

- ▶ There is a large number of NP-complete problems, e.g.
 - Travelling Salesman Problem
 Phrased as decision problem:
 Let x be some fixed length. Is there a roundtrip for the salesman of length ≤ x?
 - Best subset regression: (phrased as decision problem)
 - ▶

(see http://en.wikipedia.org/wiki/List_of_ NP-complete_problems for a long list)

► It is not clear if P ≠ NP. This is one of the Millennium Prize Problems with a \$1,000,000 prize, see http://www.claymath.org/millennium/P_vs_NP/

Part V

Stochastic Approximation

The Robbins-Monro Algorithm

Example

Stochastic Approximation

Robbins-Monro/Kiefer-Wolfowitz algorithm

- Want to minimise z(θ) over Θ ⊂ ℝ^d e.g.: z(θ) = E(f(X, θ)), where X is a random vector with known distribution and f is a known function.
- ▶ Iterative algorithm: successive approximations $\theta_1, \theta_2, \ldots$
- Standard approach Gradient Descent:

$$\boldsymbol{\theta}_{n+1} = \boldsymbol{\theta}_n - \epsilon_n \nabla \boldsymbol{z}(\boldsymbol{\theta}_n)$$

for some deterministic sequence ϵ_n .

• Assume that we cannot evaluate $\nabla z(\theta)$ directly.

٦

• Available \mathbf{Y}_n "close to" $\nabla z(\boldsymbol{\theta})$. In the Robbins-Monro-algorithm, see Robbins & Monro (1951), one assumes

$$\mathbf{Y}_n = \nabla z(\theta) + \epsilon$$

with $E(\epsilon) = \mathbf{0}$. Iteration:

$$\boldsymbol{\theta}_{n+1} = \boldsymbol{\theta}_n - \boldsymbol{\epsilon}_n \mathbf{Y}_{n+1},$$

Imperial College London

Stochastic Approximation

How to choose ϵ_n ?

$$\boldsymbol{\theta}_{n+1} = \boldsymbol{\theta}_n - \boldsymbol{\epsilon}_n \mathbf{Y}_{n+1}$$

Requirements on ϵ_n

To be able to reach any point:

$$\sum_{n=0}^{\infty} \epsilon_n = \infty$$

(assuming $E \mathbf{Y}_n$ is bounded)

• To get convergence of θ_n , need

$$\epsilon_n \rightarrow 0$$

(assuming $Var(Y_n) \not\rightarrow 0$):

Canonical choice: $\epsilon_n = an^{-\delta}$ for some $0 < \delta \le 1$ and some a > 0.

How can one obtain Y_n ?

Some options for $z(\theta) = E(f(\mathbf{X}, \theta))$:

Finite differences (Kiefer-Wolfowitz algorithm, Kiefer & Wolfowitz (1952)): Let M(θ) be such that E(M(θ)) = z(θ)

$$Y_{n,i} = \frac{M(\theta + c_n) - M(\theta - c_n)}{2c_n}$$

▶ Infinitesimal Perturbation Analysis (IPA) Main Idea: often $\frac{\partial}{\partial \theta} z(\theta) = \frac{\partial}{\partial \theta} E(f(\mathbf{X}, \theta)) = E(\frac{\partial}{\partial \theta} f(\mathbf{X}, \theta))$. Define Y_n as Monte Carlo estimate of the RHS:

$$Y_n = \frac{1}{m} \sum_{i=1}^m \frac{\partial}{\partial \theta} f(\mathbf{X}^i, \boldsymbol{\theta})$$

where $\mathbf{X}, \mathbf{X}^1, \dots, \mathbf{X}^m$ is iid.

Example

Stochastic-Approximation - Example

based on (Asmussen & Glynn, 2007, Section VIII 5a)

Minimise

$$z(\theta) = \mathsf{E}[\max(\theta X_1 + X_2, (1-\theta)X_3)],$$

where $X_i \sim Gamma(2, 2/i), i = 1, ..., 3$ are independent. (the correct minimiser is 0.625)

• Estimate $z'(\theta_n)$ by MC simulation: Note $z'(\theta) = E[g(X_1, X_2, X_3, \theta)]$, where $x_1 = \theta x_1 + x_2 \ge (1 - \theta) x_3$

$$g(x_1, x_2, x_3, \theta) = \begin{cases} x_1 & 0 x_1 + x_2 \ge (1 - \theta)x_1 \\ -x_3 & \text{otherwise} \end{cases}$$

Use the estimator

$$Y_n = \frac{1}{m} \sum_{i=1}^m g(X_1^i, X_2^i, X_3^i, \theta)$$

where $X_j^i \sim X_j$, $j = 1, \ldots, 3$, $i = 1, \ldots, m$ are independent

Stochastic Approximation

Stochastic-Approximation - one run

$$m = 10, \ \epsilon_n = n^{-\delta}/10, \ heta_0 = 0.4$$

Example

Stochastic-Approximation - Sensitivity to θ

Stochastic Approximation
London

Stochastic Approximation - Comments

- Very general class of algorithms related to stochastic control.
- Several Parameters need tuning (best done on a case by case basis)
 - How many samples m to take at each step? Should m depend n?
 - ▶ What *e_n* to use?
- A lot of theoretical work has been concerned with establishing theoretical properties of these algorithms. Main idea:
 - Relate the sequence the sequence θ_n to the solution θ(t) of the deterministic dynamical system

$$\frac{\partial}{\partial t} \boldsymbol{\theta}(t) = -\nabla z(\boldsymbol{\theta}(t))$$

and use martingale theory to analyse the differences.

See e.g. Kushner & Yin (2003) for details.

A shorter introduction can be found in e.g. Asmussen & Glynn (2007).
Axel Gandy
Stochastic Approximation

< *₫* > 59

Part VI

Appendix

Topics in the coming lectures:

- MCMC methods
- Bootstrap
- Particle Filtering

References I

- Asmussen, S. & Glynn, P. W. (2007). Stochastic Simulation Algorithms and Analysis. Springer.
- Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. *Journal of the Royal Statistical Society. Series B (Methodological)* **39**, 1–38.
- Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. (2004). Least angle regression. *The Annals of Statistics* **32**, 407–451.
- Kiefer, J. & Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression function. *The Annals of Mathematical Statistics* 23, 462–466.
- Kushner, H. J. & Yin, G. (2003). Stochastic Approximation and Recursive Algorithms and Recursive Algorithms and Applications. Springer.
- McLachlan, G. J. & Krishnan, T. (2008). *The EM Algorithm and Extensions*. Second ed., Wiley.
- Ng, S. K., Krishnan, T. & McLachlan, G. J. (2004). The EM algorithm. In *Computational Statistics* (eds. J. Gentle, W. Härdle & Y. Mori), chap. II.5, 137–168, Springer.

Appendix

References II

- Robbins, H. & Monro, S. (1951). A stochastic approximation method. *The Annals of Mathematical Statistics* **22**, 400–407.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society. Series B (Methodological)* **58**, 267–288.
- Wu, C. F. J. (1983). On the convergence properties of the em algorithm. The Annals of Statistics 11, 95–103.