(1) From the way we did things in class, it is natural to take these assertions in the order (i), (iii), (iv), (ii); I am sorry if this has caused you some difficulty.

(i) We want to show that

\[
n^2 - 1 \equiv \begin{cases}
\text{even if} & n \equiv 1, 7 \pmod{8} \\
\text{odd if} & n \equiv 3, 5 \pmod{8}
\end{cases}
\]

There are four small calculations to do. For example, if \(n = 8k + 1 \), then

\[
n^2 = 64k^2 + 16k + 1
\]

and \(\frac{n^2 - 1}{8} = 2k(4k + 1) \) is even. Similarly, if \(n = 8k + 3 \), then

\[
n^2 = 64k^2 + 48k + 9
\]

and \(\frac{n^2 - 1}{8} = 2k(4k + 3) + 1 \) is odd. The cases \(n = 8k + 5 \) and \(n = 8k + 7 \) are similar.

(iii) Let us write \(a = 2k + 1 \) and \(b = 2h + 1 \). Then

\[
a^2b^2 - a^2 - b^2 - 1 = (a^2 - 1)(b^2 - 1) = 16kh(k - 1)(h - 1)
\]

is divisible by 16, therefore

\[
\frac{a^2b^2 - a^2 - b^2 - 1}{8} = \frac{a^2b^2 - 1}{8} - \frac{a^2 - 1}{8} - \frac{b^2 - 1}{8} \equiv 0 \pmod{2}.
\]

(iv) Follows almost immediately from (iii).

(ii) We know that if \(p \) is an odd prime then

\[
\left(\frac{2}{p} \right) = \begin{cases}
1 & \text{if} \quad p \equiv 1, 7 \pmod{8} \\
-1 & \text{if} \quad p \equiv 3, 5 \pmod{8}
\end{cases}
\]

By what we did in part (i) then

\[
\left(\frac{2}{n} \right) = (-1)^{\frac{n^2 - 1}{8}} \tag{1}
\]

if \(n \) is prime. The result follows for all \(n \) by factorizing \(n \) into primes, because both sides of Equation 1 are multiplicative in \(n \).

(2) Here we go:

\[
\left(\frac{5}{13} \right) = \left(\frac{13}{5} \right) = \left(\frac{3}{5} \right) = \left(\frac{2}{3} \right) = -1;
\]

\[
\left(\frac{13}{13} \right) = 0;
\]

\[
\left(\frac{456}{123} \right) = \left(\frac{-36}{123} \right) = \left(\frac{-1}{123} \right) \left(\frac{6}{123} \right)^2 = \left(\frac{-1}{123} \right) 0^2 = 0;
\]

\[
\left(\frac{11}{10001} \right) = \left(\frac{10001}{11} \right) = \left(\frac{2}{11} \right) = -1.
\]
(4)(i) Since \(\mathbb{Z}/p\mathbb{Z} \) is a field, the quadratic formula holds

\[
x = \frac{-b \pm \sqrt{\Delta}}{2a}
\]

So one solution if \(\Delta \equiv 0 \mod p \), two solutions if \(p \) does not divide \(\Delta \) and \(\Delta \) is a quadratic residue, and no solutions if if \(p \) does not divide \(\Delta \) and \(\Delta \) is a quadratic nonresidue.

(ii) I should have stated that 31957 is a prime number although it is not too much of a chore to show that it is prime; the square root is about 178 and you only have to test divisibility by primes up to 178; there are 40 primes smaller than 178, so with a pocket calculator you “only” have to perform 40 divisions.

In any case, by the first part, the equation has a solution if and only if the discriminant

\[
\Delta = 9 + 4 = 13
\]

is a square mod 31957. We calculate the Jacobi symbol

\[
\left(\frac{31957}{13} \right) = \left(\frac{3}{13} \right) \left(\frac{13}{3} \right) = \left(\frac{1}{3} \right) = 1 :
\]

the equation does have a solution.

(5) As we know, \(\mathbb{Z}/p\mathbb{Z}^\times \) is a cyclic group of order \(p - 1 \). Property (F) says: an element \(g \in \mathbb{Z}/p\mathbb{Z}^\times \) is a generator if and only if \(g \) is not a square. Viewing the group additively: \(\mathbb{Z}/p\mathbb{Z}^\times \cong \mathbb{Z}/(p - 1)\mathbb{Z} \), this translates into: an element of the additive group \(\mathbb{Z}/(p - 1)\mathbb{Z} \) is a generator if and only if it is odd. In general, for all positive integers \(m \), an element \(a \in \mathbb{Z}/m\mathbb{Z} \) is an (additive) generator if and only if \(\text{hcf}(a, m) = 1 \). We can finally re-phrase property (F) as follows:

Property (F) for a prime \(p \): \(\text{hcf}(a, p - 1) = 1 \) if and only if \(a \) is odd.

From here, it is easy to see that a prime \(p \) satisfies property (F) if and only if it is of the form \(2^k \).

(6) (i) This always happens if \(\text{hcf}(a, n) = 1 \) and \(a \) is a square mod \(n \). Indeed then \(a \) is a square mod \(p \) for every prime \(p \) that divides \(n \), so \(\left(\frac{a}{p} \right) = 1 \) for every prime that divides \(n \), and then \(\left(\frac{a}{n} \right) = 1 \) by definition of the Jacobi symbol.

(ii) This can happen if \(\text{hcf}(a, n) \neq 1 \); for example if \(n = p \) is prime, and \(p | a \), then by definition \(\left(\frac{a}{p} \right) = 0 \) but \(a \equiv 0 \mod p \) is certainly a square mod \(p \).

(iii) This can happen and we saw an example in class; take \(n = 15 \) and \(a = -1 \); then \(\left(\frac{-1}{15} \right) = 1 \) but \(-1 \) is not a square mod 15.

(iv) This can also happen; for example every time that \(n = p \) is prime and \(p \not| a \).

(8) This is fun: first, we look at

\[
y^2 = x^3 + 23
\]

modulo 4; \(y^2 \equiv 0 \) or 1 mod 4; correspondingly, \(x^3 \equiv 1 \) or 2 mod 4; but only the first case is possible with \(x \equiv 1 \mod 4 \) and \(y \) even.

Now we have

\[
y^2 + 4 = x^3 + 27 = (x + 3)(x^2 - 3x + 9)
\]
and the factor $x^2 - 3x + 9 \equiv 3 \mod 4$, so it is the product of odd primes and at least one of them, say $p \equiv 3 \mod 4$. From

$$y^2 + 4 \equiv 0 \mod p$$

we get $\left(\frac{-1}{p}\right) = 1$, a contradiction.

(10) This problem tests your understanding of the method of Fermat descent. Whether you guessed correctly or not, the answer is: If p is an odd prime, then the equation

$$x^2 + 2y^2 = p$$

is soluble for integers x, y if and only if $p \equiv 1$ or $3 \mod 8$.

Indeed, if a solution exists then -2 is a residue mod p, that is

$$\left(\frac{-2}{p}\right) = 1$$

and the condition follows from our knowledge of the Legendre symbol.

Viceversa, let us assume that $\left(\frac{-2}{p}\right) = 1$. First, we can find integers A, B and $0 < M < p$ such that

$$A^2 + 2B^2 = Mp$$

Indeed, by choosing $-p/2 < A, B < p/2$ (and coprime with p) such that $A^2 + 2B^2 \equiv 0 \mod p$, we also ensure that

$$A^2 + 2B^2 = Mp < \frac{1}{4}p^2 + 2 \times \frac{1}{4}p^2 = \frac{3}{4}p^2, \quad \text{hence} \quad M < p.$$

Now if $M = 1$ we are done, so let us assume that $M > 1$. We try to set up a machine to make M smaller.

Everything is based on the key identity:

$$(A^2 + 2B^2)(u^2 + 2v^2) = (Au + 2Bv)^2 + 2(Bu - Av)^2$$

(Verify the identity, play with it, make sure you understand it.)

Choose u, v with

$$\begin{cases} u \equiv A \mod M \\ v \equiv B \mod M \end{cases} \quad \text{and} \quad -\frac{M}{2} \leq u, v < \frac{M}{2},$$

we get that $u^2 + 2v^2 \equiv A^2 + 2B^2 \equiv 0 \mod M$, hence we can write

$$u^2 + 2v^2 \equiv rM$$

for some integer $0 < r$, and note that, since:

$$u^2 + 2v^2 \leq \frac{1}{4}M^2 + 2 \times \frac{1}{4}M^2 = \frac{3}{4}M^2 < M^2,$$

we also get that $r < M$. But now by the key identity:

$$(A^2 + 2B^2)(u^2 + 2v^2) = (Au + 2Bv)^2 + 2(Bu - Av)^2 \equiv rM^2$$
and \(Au + 2Bv \equiv a^2 + 2v^2 \equiv 0 \mod M \), and \(Bu - 2Av \equiv BA - AB \equiv 0 \mod M \), so, dividing through by \(M \):

\[
\left(\frac{Au + 2Bv}{M} \right)^2 + \left(\frac{Bu - Av}{M} \right)^2 = rp
\]

and, as I said before, \(0 < r < M \). We are done by descending induction (or ‘descent’, à la Fermat).

As a final note: You could have done all of this by studying the imaginary quadratic field \(K = \mathbb{Q}(\sqrt{-2}) \), with ring of integers \(\mathcal{O} = \mathbb{Z}[i\sqrt{2}] \); show that \(\mathcal{O} \) is a Euclidean domain (with the logical norm), study the primes in \(\mathcal{O} \), etcetera.

(12)(i) This could be interpreted as a routine exercise on the Euclidean algorithm in \(\mathbb{Z}[i] \). It is more fun to do it thus:

(a) Let us first compute norms: \(8 + 38i = 2(4 + 19i) \) and \(N(4 + 19i) = 16 + 361 = 377 = 13 \times 29 \). Now 13 = 9 + 4 = (3 + 2i)(3 - 2i) is the prime decomposition in \(\mathbb{Z}[i] \) and it follows that either 3 + 2i|4 + 19i or 3 - 2i|4 + 19i. A small experiment shows that the latter holds:

\[
8 + 38i = 2(4 + 19i) = -i(1 + i)^2(3 - 2i)(-2 + 5i)
\]

and this must be the prime decomposition of \(8 + 38i \) in \(\mathbb{Z}[i] \) (why?)—note that these are not normalised primes, but who cares.

Similarly, \(N(9 + 59i) = 81 + 3841 = 3562 = 2 \times 13 \times 137 \). A small experiment shows that

\[
9 + 59i = (3 - 2i)(-7 + 15i)
\]

(is this the prime decomposition of \(9 + 59i \) in \(\mathbb{Z}[i] \) (?)). From this we can conclude that

\[
\text{hcf}(8 + 38i, 9 + 59i) = (1 + i)(3 - 2i)
\]

(supply your own argument based on this or finish computing the prime factorisation of \(9 + 59i \) in \(\mathbb{Z}[i] \) and conclude from there...).

(b) From part (a) we know all about \(-19 + 4i\):

\[
-19 + 4i = i(4 + 19i) = i(3 - 2i)(-2 + 5i)
\]

-the prime decomposition in \(\mathbb{Z}[i] \). Now \(N(-9 + 19i) = 81 + 361 = 442 = 2 \times 13 \times 17 \); we check if \(-9 + 19i\) is divisible by \(3 - 2i \):

\[
\frac{-9 + 19i}{3 - 2i} = \frac{(-9 + 19i)(3 + 2i)}{13} = \frac{-65 + 39i}{13} = -5 + 3i.
\]

It is, so we conclude \(\text{hcf}(-19 + 4i, -9 + 19i) = 3 - 2i \).

(ii) The answer is—remember: we want normalised primes:

\[
23 - 11i = -(1 + i)(2 + i)^2(2 + 3i)
\]

The first thing you should have done is to calculate the norm:

\[
23^2 + 11^2 = 650 = 2 \times 25 \times 13
\]

From this it is clear that \((1 + i) \), for example, divides \(\alpha = 23 - 11i \) (why?); also either \((2 + i)^2\) or \((2 - i)^2\) divides \(\alpha \), but not both (why?); and \(3 + 2i \) or \(3 - 2i \) divides \(\alpha \) (but not both). You can then find what exactly is going on by trial
and error. Finally you have to be a bit careful: for instance, $3 - 2i$ divides α but it is not normalized; you have to use $i(3 - 2i) = 2 + 3i$ instead!

(14) $2925 = 3^2 \times 5^2 \times 13$; the divisors $d \equiv 1 \mod 4$ are

$1, 5, 9, 13, 25, 45, 65, 117, 225, 325, 585, 2925$

and those $\equiv 3 \mod 4$ are

$3, 15, 39, 75, 195, 975$.

Hence $D_1 = 12$, $D_3 = 6$ and there are 24 integer pairs of solutions of the equation

$x^2 + y^2 = 2925$

Explicitly to enumerate the solutions, it is best to go back to the proof. The prime factorisation of $n = 2925$ in $\mathbb{Z}[i]$ is:

$2925 = (2 + i)^2(2 - i)^2(3 + 2i)(3 - 2i) \times 3^2$

Solutions of $x^2 + y^2 = 2925$ are given by

$x + iy = u(2 + i)^2(3 + 2i) = u(1 + 18i)$;

$= u(2 + i)^2(3 - 2i) = u(17 + 6i)$;

$= u(2 + i)(2 - i)(3 + 2i) = u(15 + 10i)$;

$= u(2 + i)(2 - i)(3 - 2i) = u(15 - 10i)$;

$= u(2 - i)^2(3 + 2i) = u(17 - 6i)$;

$= u(2 - i)^2(3 - 2i) = u(1 - 18i)$.

where u can be any unit: ± 1 or $\pm i$ (for a total of $6 \times 4 = 24$ solutions). The 24 solutions are: $(\pm 1, \pm 18), (\pm 18, \pm 1)$ (8 solutions); $(\pm 6, \pm 17), (\pm 17, \pm 6)$ (8 solutions); and $(\pm 10, \pm 15), (\pm 15, \pm 10)$ (8 solutions).