(1) Calculate the greatest common divisor \(d = (a, b) \) and find integers \((x, y)\) such that \(ax + by = d \) in the following cases:

\[(i) \ a = 841, \ b = 160 \quad (ii) \ a = 2613, \ b = 2171 \quad (iii) \ a = 8991, \ b = 3293 \]

(2) Let \(a, b \) be positive integers with \(a > b > 1 \). Let \(\lambda(a, b) \) be the number of steps (i.e. individual applications of the Euclidean algorithm) required to compute \(d = (a, b) \) via successive applications of the Euclidean algorithm. Clearly \(\lambda(a, b) < b \). Prove that

\[\lambda(a, b) \leq 2 \frac{\log b}{\log 2} \]

(3) (i) Suppose that \(n \) is known to be the product of two primes. Show how one can determine these primes from the knowledge of \(n \) and \(\varphi(n) \).

(ii) Suppose that \(n \) is not a perfect square, and satisfies

\[n - n^{2/3} < \varphi(n) < n - 1. \]

Deduce that \(n \) is the product of two distinct primes.

(4) Let \(p \) be a prime dividing \(b^n - 1 \), where \(b \) and \(n \) are integers \(> 1 \). Show that either \(p \equiv 1 \mod n \), or \(p|b^d - 1 \) for some divisor \(d \) of \(n \). If \(p > 2 \) and \(n \) is odd, then in the second case \(p \equiv 1 \mod 2n \). Using this, find the prime factorization of the following numbers:

\[2^{11} - 1 = 2047, \quad 3^{12} - 1 = 531440, \quad 2^{35} - 1 = 34359738367. \]

[Hint: If \(p|2^{11} - 1 \), for example, then \(p \equiv 1 \mod 22 \) so test \(p = 23, 67 \ldots \) You only need to test up to \(\sqrt{2047} \).]
(5) (i) Find the smallest nonnegative integer x such that

$$\begin{align*}
x &\equiv 2 \mod 3 \\
x &\equiv 3 \mod 5 \\
x &\equiv 4 \mod 11 \\
x &\equiv 5 \mod 16
\end{align*}$$

(ii) Find the smallest nonnegative integer x satisfying

$$\begin{align*}
19x &\equiv 103 \mod 900 \\
10x &\equiv 511 \mod 841
\end{align*}$$

(6) Let A be the group $(\mathbb{Z}/65520\mathbb{Z})^\times$. Determine the least positive integer n such that $g^n = 1$ for all $g \in A$.

(7) Prove that -2 is a primitive root modulo 23. Determine all solutions to the congruences $x^7 \equiv 17 \mod 23$ and $x^{26} \equiv 10 \mod 23$.

(8) Find a generator of $(\mathbb{Z}/p\mathbb{Z})^\times$ for $p = 5, 7, 11, 13$. Determine how many of the integers $1, 2, ..., p-1$ are generators.

(9) Suppose that $p|2^{2^k} + 1$, where $k > 1$. Then:

1. Show that $p \equiv 1 \mod 2^{k+1}$.

2. By asking whether 2 is a quadratic residue $\mod p$, show that $p \equiv 1 \mod 2^{k+2}$.

3. Use this to show that $2^{16} + 1$ is prime.