1. In each of the following cases, find whether the integral exists, and if so find its value.

(i) \(\int_{3}^{\infty} x^{-3/2} \, dx \).
(ii) \(\int_{1}^{2} (x-1)^{-2/3} \, dx \).
(iii) \(\int_{0}^{1} \ln x \, dx \).
(iv) \(\int_{1}^{\infty} \ln x \, dx \).
(v) \(\int_{0}^{\pi/2} \tan x \, dx \).

2. Evaluate
(i) \(\int_{-2}^{2} \sinh(x^3) \, dx \).
(ii) \(\int_{-3}^{3} e^{-5|x|} \, dx \).

3. Determine the length of the curve \(y = \cosh x \) which lies between the lines \(x = 0 \) and \(x = 1 \).
(This curve, called a catenary, is the shape of a heavy cable hanging under gravity.)

4. Find the length of the curve \(y = \frac{x^2}{4} - \frac{1}{2} \ln x \) between \(x = 1 \) and \(x = 3 \).

5. The curve described by the cable of a suspension bridge is given by
\[y = \frac{H}{L^2} x^2 - 2 \frac{H}{L} x + H, \]
where \(x \) is the distance from one end of the bridge of length \(2L \) and \(H \) is the height of the top of the cable above its lowest point.
Show that the length of the cable is
\[(L^2 + 4H^2)^{1/2} + \frac{1}{2} \frac{L^2}{H} \sinh^{-1} \frac{2H}{L}. \]
If \(H \) is much smaller than \(L \), show that the length of the cable is approximately
\[2L \left\{ 1 + \frac{2}{3} \left(\frac{H}{L} \right)^2 \right\}. \]
[Hint: put \(\varepsilon = \frac{2H}{L} \) and note that \(\sinh^{-1} \varepsilon = \varepsilon - \frac{\varepsilon^3}{6} + \ldots \).]

6. Find the length of the curve \(x = \theta + \sin \theta, \ y = 1 + \cos \theta \) between \(\theta = 0 \) and \(\theta = \pi \).

Answers for Problems 7

1. (i) \(\frac{1}{2} \ln \left| \frac{x}{2-3x} \right| + c \).
 (ii) \(\frac{1}{2} \ln \left| \frac{x^2}{x+1} \right| + c \).
 (iii) \(\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + c \).
 (iv) \(2x^{1/2} - 2 \tan^{-1} x^{1/2} + c \).
 (v) \(\ln |x^3 + 2x^2 + x| + c \).
 (vi) \(\frac{1}{2} (\tan^{-1} x^2) \).
 (vii) \(\ln |\ln x| + c \).
 (viii) \(\tan x - x + c \).
 (ix) \(\frac{1}{2} \ln |\sin x + \cos x| + \frac{\pi}{2} + c \).
 (x) \(\left(\frac{2}{\sqrt{3}} \right) \tan^{-1} \left(\left(\frac{2}{\sqrt{3}} \right) \tan \frac{x}{2} + \frac{1}{\sqrt{3}} \right) + c \).
 (xi) \(x^2 \sin x + 2x \cos x - 2 \sin x + c \).
 (xii) \(\frac{1}{2} e^x (\sin x + \cos x) + c \).
 (xiii) \(\ln |\tan \frac{x}{2}| - x \cosecx + c \).
 (xiv) \(\frac{x^{k+1}}{k+1} \left(\ln |x| - \frac{1}{k+1} \right) + c \).
 (xv) \(\frac{\pi}{8} \).
 (xvi) \(\frac{2}{3} \).
 (xvii) \(\ln |(x^2 + 4x + 13)^{1/2} + x + 2| + c \).

2. 1. \(-x^4 \cos x + 4x^3 \sin x + 12x^2 \cos x - 24x \sin x - 24 \cos x + c \).
 4. \(\frac{1}{2} \ln 2 - \frac{1}{4} \).