(1) Suppose that $f: X \to Y$ be a quotient map of topological spaces.

(a) Show that if Y is Hausdorff, then the fibers $f^{-1}(y)$ ($y \in Y$) are closed.

(b) Is Y necessarily Hausdorff if all the fibers are closed?

(2) Let X,Y be topological spaces, $A \subset X$ a subspace, and $f: A \to Y$ a quotient map. Show that the two definitions of $X \sqcup_f Y$ are equivalent: in other words, $(X \sqcup Y)/R$ is homeomorphic to X/\sim, where R is the equivalence relation on $X \sqcup Y$ generated by $x R f(x)$ for all $x \in A$, and \sim is the equivalence relation on X generated by $x_1 \sim x_2$ for all $x_1, x_2 \in A$ for which $f(x_1) = f(x_2)$.

(3) Show that the quotient of $\mathbb{R} \times \{0,1\}$ by the equivalence relation generated by $(x,0) \sim (\frac{1}{x}, 1)$ for all $x \neq 0$ is homeomorphic to $S^1 = \{z \in \mathbb{C} | |z| = 1\}$.
We will take it for granted that the Klein bottle \(K \) is homeomorphic to the quotient space \([0, 1] \times [0, 1]) / \sim \), where \(\sim \) is generated by \((x, 0) \sim (x, 1) \) and \((0, y) \sim (1, 1 - y) \).

Using this fact, draw pictures to convince me that \(K \) can be written as two Möbius strips \(M_1, M_2 \) attached to each other along their boundaries (formally: as the quotient of the disjoint union \(M_1 \sqcup M_2 \) by the equivalence relation generated by \(x \sim f(x) \) for \(x \in \partial M_1 \), where \(f: \partial M_1 \to \partial M_2 \) is a certain continuous map—in fact, a homeomorphism—that you don’t need to specify).

This is very similar to (4)). Show that one of the three equivalent constructions (given in class) of \(P^2(\mathbb{R}) \) is homeomorphic to a Möbius strip \(M \) attached to a disk \(D^2 \) attached along their boundaries. Here, try to be as specific as possible in defining the attachment, and the homeomorphism as well as its inverse.

We defined in class \(\mathbb{P}^n(\mathbb{C}) = (\mathbb{C}^{n+1} \setminus \{0\}) / \mathbb{C}^\times \). Briefly argue that \(\mathbb{P}^n(\mathbb{C}) = S^{2n+1} / \sim \), where \(S^{2n+1} = \{ z \in \mathbb{C}^{n+1} \mid |z_1|^2 + \ldots + |z_{n+1}|^2 = 1 \} \) and \(\sim \) refers to the usual action of the group \(S^1 \) of unit complex numbers. Write \(p_n: S^{2n+1} \to \mathbb{P}^n(\mathbb{C}) \) for the quotient map. Also denote by \(H^n_\mathbb{C} = \{ z \in S^{2n+1} \mid z_{n+1} \in [0, \infty) \} \) the complex hemisphere.

(a) Show that the restriction of \(p_n \) to \(H^n_\mathbb{C} \) is still surjective.

(b) Show that if \(z, w \in H^n_\mathbb{C} \) and \(z \sim w \), but \(z \neq w \), then \(z_{n+1} = w_{n+1} = 0 \).

(c) Show that the map \((z_1, ..., z_n, z_{n+1}) \mapsto (z_1, ..., z_n) \) defines a homeomorphism \(H^n_\mathbb{C} \to B^{2n} \).

Remark: Question 2 shows that (a) & (b) imply that \(\mathbb{P}^n(\mathbb{C}) = H^n_\mathbb{C} \cup_f \mathbb{P}^{n-1}(\mathbb{C}) \), where \(f \) is the restriction of \(p_n \) to the complex equator \(S^{2n-1} = \{ z \in S^{2n+1} \mid z_{n+1} = 0 \} \).

Let \(f: S^1 \to X \) be a continuous map. Show that the following are equivalent:

(a) \(f \) is nullhomotopic.

(b) There exists a continuous map \(g: B^2 \to X \) such that \(g|_{\partial B^2} = f \).
(8) Let X be a topological space and let $x, y, z, w \in X$. Let f, g, h be paths from x to y, y to z, and z to w, respectively. Show that the paths $(f \cdot g) \cdot h$ and $f \cdot (g \cdot h)$ are homotopic relative endpoints. (Remark: You need to write down an explicit homotopy.)

(9) Using the isomorphism $\Phi: \mathbb{Z} \to \pi_1(S^1, 1)$ discussed in lectures, show that every group homomorphism $\phi: \mathbb{Z} \to \mathbb{Z}$ can be written as $\phi = \Phi^{-1} \circ f_* \circ \Phi$ for some map $f: (S^1, 1) \to (S^1, 1)$. (Hint: ϕ is determined by its action on a generator of \mathbb{Z}.)

(10) The Borsuk–Ulam theorem states that if $f: S^2 \to \mathbb{R}^2$ is a continuous map, then there is a point $x \in S^2$ such that $f(x) = f(-x)$.

Can something like this be true for the torus $T^2 = S^1 \times S^1$ in place of S^2? I.e. is it true that for every map $f: S^1 \times S^1 \to \mathbb{R}^2$ there exists a point (z, w) such that $f(z, w) = f(-z, -w)$?