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COMPONENTS OF MODULI STACKS OF TWO-DIMENSIONAL

GALOIS REPRESENTATIONS

ANA CARAIANI, MATTHEW EMERTON, TOBY GEE, AND DAVID SAVITT

Abstract. In the article [CEGS20b] we introduced various moduli stacks of
two-dimensional tamely potentially Barsotti–Tate representations of the ab-
solute Galois group of a p-adic local field, as well as related moduli stacks of
Breuil–Kisin modules with descent data. We study the irreducible components
of these stacks, establishing in particular that the components of the former
are naturally indexed by certain Serre weights.
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1. Introduction

Fix a prime number p, and let K/Qp be a finite extension with residue field k

and absolute Galois group GK := Gal(K/K). In the paper [CEGS20b], inspired by
a construction of Kisin [Kis09] in the setting of formal deformations, we constructed
and began to study the geometry of certain moduli stacks Zdd. The stacks Zdd

can be thought of as moduli of two-dimensional tamely potentially Barsotti–Tate
representations of GK ; they are in fact moduli stacks of étale ϕ-modules with
descent data, and by construction are equipped with a partial resolution

Cdd,BT → Zdd

where Cdd,BT is a moduli stack of rank two Breuil–Kisin modules with tame descent
data and height one.
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The purpose of this paper is to make an explicit study of the morphism Cdd,BT →
Zdd at the level of irreducible components. To be precise, for each two-dimensional
tame inertial type τ there are closed substacks Cτ,BT ⊂ Cdd,BT and Zτ ⊂ Zdd

corresponding to representations having inertial type τ , and a morphism Cτ,BT →
Zτ . These are p-adic formal algebraic stacks; let Cτ,BT,1 be the special fibre of
Cτ,BT, and Zτ,1 its scheme-theoretic image in Zτ (in the sense of [EG21]). These
were proved in [CEGS20b] to be equidimensional of dimension [K : Qp]. Moreover
the finite type points Spec(F) → Zτ,1 are in bijection with Galois representations
GK → GL2(F) admitting a potentially Barsotti–Tate lift of type τ .

(In fact Cτ,BT,1 is shown in [CEGS20b] to be reduced, from which it follows that
Zτ,1 is also reduced. The special fibre of Zτ need not be reduced, so it need not
equal Zτ,1, but it will be proved in the sequel [CEGS20a] that it is generically
reduced, using the results of this paper as input.)

Much of the work in our study of the irreducible components of Zτ,1 involves an
explicit construction of families of extensions of characters. Intuitively, a natural
source of “families” of representations r : GK → GL2(Fp) is given by the extensions

of two fixed characters. Indeed, given two characters χ1, χ2 : GK → F
×

p , the Fp-

vector space Ext1GK
(χ2, χ1) is usually [K : Qp]-dimensional, and a back of the

envelope calculation suggests that as a stack the collection of these representations
should have dimension [K : Qp] − 2: the difference between an extension and a
representation counts for a −1, as does the Gm of endomorphisms. Twisting χ1, χ2

independently by unramified characters gives a candidate for a [K : Qp]-dimensional
family; if contained in Zτ , then since Zτ is equidimensional of dimension [K : Qp],
the closure of such a family should be an irreducible component of Zτ .

Since there are only finitely many possibilities for the restrictions of the χi to
the inertia subgroup IK , this gives a finite list of maximal-dimensional families. On
the other hand, there are up to unramified twist only finitely many irreducible two-
dimensional representations of GK , which suggests that the irreducible representa-
tions should correspond to 0-dimensional substacks. Together these considerations
suggest that the irreducible components of our moduli stack should be given by
the closures of the families of extensions considered in the previous paragraph, and
in particular that the irreducible representations should arise as limits of reducible
representations. This could not literally be the case for families of Galois represen-
tations, rather than families of étale ϕ-modules, and may seem surprising at first
glance, but it is indeed what happens.

In the body of the paper we make this analysis rigorous, and we show that the
different families that we have constructed exhaust the irreducible components. We
can therefore label the irreducible components of Zτ,1 as follows. A component is

specified by an ordered pair of characters IK → F
×

p , which via local class field

theory corresponds to a pair of characters k× → F
×

p . Such a pair can be thought of

as the highest weight of a Serre weight : an irreducible Fp-representation of GL2(k).
To each irreducible component we have thus associated a Serre weight. (In fact,
we need to make a shift in this dictionary, corresponding to half the sum of the
positive roots of GL2(k), but we ignore this for the purposes of this introduction.)

This might seem artificial, but in fact it is completely natural, for the following
reason. Following the pioneering work of Serre [Ser87] and Buzzard–Diamond–
Jarvis [BDJ10] (as extended in [Sch08] and [Gee11]), we now know how to associate
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a set W (r) of Serre weights to each continuous representation r : GK → GL2(Fp),

with the property that if F is a totally real field and ρ : GF → GL2(Fp) is an
irreducible representation coming from a Hilbert modular form, then the possible
weights of Hilbert modular forms giving rise to ρ are precisely determined by the
sets W (ρ|GFv

) for places v|p of F (see for example [BLGG13, GK14, GLS15]).
Going back to our labelling of irreducible components above, we have associ-

ated a Serre weight σ to each irreducible component of Zτ,1. The inertial local
Langlands correspondence assigns a finite set of Serre weights JH(σ(τ)) to τ , the
Jordan–Hölder factors of the reduction mod p of the representation σ(τ) of GL2(OK)
corresponding to τ . One of our main theorems is that the components of Zτ,1 are
labeled precisely by the Serre weights σ ∈ JH(σ(τ)). Furthermore the component
labeled by σ has a dense set of finite type points r with σ ∈ W (r). In the sequel
[CEGS20a] this will be strengthened to the statement that the representations r
on the irreducible component labelled by σ are precisely the representations with
σ ∈W (r),

We also study the irreducible components of the stack Cτ,BT,1. If τ is a non-
scalar principal series type then the set JH(σ(τ)) can be identified with a subset
of the power set S of the set of embeddings k →֒ Fp (hence, after fixing one such
embedding, with a subset Pτ of Z/fZ). For generic choices of τ , this subset is the
whole of S. We are able to show, using the theory of Dieudonné modules, that for
any non-scalar principal series type τ the irreducible components of Cτ,BT,1 can be
identified with S, and those irreducible components not corresponding to elements
of JH(σ(τ)) have image in Zτ of positive codimension. There is an analogous
statement for cuspidal types, while for scalar types, both Cτ,BT,1 and Zτ,1 are
irreducible.

To state our main results precisely we must first introduce a bit more notation.
Fix a tame inertial type τ and a uniformiser π of K. Let L be the unramified
quadratic extension of K, and write f for the inertial degree of K/Qp. We set

K ′ = K(π1/pf−1) if τ is principal series, and set K ′ = L(π1/(p2f−1)) if τ is cuspidal.
Our moduli stacks of p-adic Hodge theoretic objects with descent data will have
descent data from K ′ to K. Let f ′ be the inertial degree of K ′/Qp, so that f ′ = f
if the type τ is principal series, while f ′ = 2f if the type τ is cuspidal.

We say that a subset J ⊂ Z/f ′Z is a shape if:

— τ is scalar and J = ∅,

— τ is a non-scalar principal series type and J is arbitrary, or

— τ is cuspidal and J has the property that i ∈ J if and only if i+ f 6∈ J .
If τ is non-scalar then there are exactly 2f shapes.

As above, write σ(τ) for the representation of GL2(OK) corresponding to τ
under the inertial local Langlands correspondence of Henniart. The Jordan–Hölder
factors of the reduction mod p of σ(τ) are parameterized by an explicit set of shapes
Pτ , and we write σ(τ)J for the factor corresponding to J .

To each shape J , we will associate a closed substack C(J) of Cτ,BT,1. The stack
Z(J) is then defined to be the scheme-theoretic image of C(J) under the map
Cτ,BT,1 → Zτ,1, in the sense of [EG21]. Then the following is our main result.

Theorem 1.1. The irreducible components of Cτ,BT,1 and Zτ,1 are as follows.

(1) The irreducible components of Cτ,1 are precisely the C(J) for shapes J , and
if J 6= J ′ then C(J) 6= C(J ′).
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(2) The irreducible components of Zτ,1 are precisely the Z(J) for shapes J ∈
Pτ , and if J 6= J ′ then Z(J) 6= Z(J ′).

(3) For each J ∈ Pτ , there is a dense open substack U of C(J) such that the
map C(J)→ Z(J) restricts to an open immersion on U .

(4) For each J ∈ Pτ , there is a dense set of finite type points of Z(J) with
the property that the corresponding Galois representations have σ(τ)J as a
Serre weight, and which furthermore admit a unique Breuil–Kisin model of
type τ .

Remark 1.2. We emphasize in Theorem 1.1 that the components of Zτ,1 are indexed
by shapes J ∈ Pτ , not by all shapes. If J 6∈ Pτ , then the stack Z(J) has dimension
strictly smaller than [K : Qp], and so is properly contained in some component

of Zτ,1. We anticipate that the loci Z(J) will nevertheless be of interest when
J 6∈ Pτ : we expect that they will correspond to “phantom” (partial weight one)
Serre weights of relevance to the geometric variant of the weight part of Serre’s
conjecture proposed by Diamond–Sasaki [DS17]. This will be the subject of future
work.

We assume that p > 2 in much of the paper; while we expect that our results
should also hold if p = 2, there are several reasons to exclude this case. We
are frequently able to considerably simplify our arguments by assuming that the
extension K ′/K is not just tamely ramified, but in fact of degree prime to p; this is
problematic when p = 2, as the consideration of cuspidal types involves a quadratic
unramified extension. Furthermore, in the sequel [CEGS20a] we will use results
on the Breuil–Mézard conjecture which ultimately depend on automorphy lifting
theorems that are not available in the case p = 2 at present (although it is plausible
that the methods of [Tho17] could be used to prove them).

We conclude this introduction by discussing the relationship between our results
and those of [EG22]. Two of us (M.E. and T.G.) have constructed moduli stacks

Xd of rank d étale (ϕ,Γ)-modules for K, as well as substacks X λ,τd which may be
regarded as stacks of potentially crystalline representations of GK with inertial type
τ and Hodge type λ. When d = 2 and λ is the trivial Hodge type, these are stacks

X τ,BT
2 of potentially Barsotti–Tate representations of GK of inertial type τ , and we

anticipate that X τ,BT
2 is isomorphic to Zτ,BT (but since we do not need this fact,

we have not proved it).
One of the main results of the book [EG22] is that the irreducible components

of the underlying reduced stacks Xd,red are in bijection with the irreducible repre-
sentations of GLd(k). This bijection is characterised in essentially exactly the same
way as our description of the components of Zτ,1 in this paper: a Serre weight has
a highest weight, which corresponds to a tuple of inertial characters, which gives
rise to a family of successive extensions of 1-dimensionals representations. Then
the closure of this family is a component of Xd,red.

The crucial difference between our setting and that of [EG22] is that we could
prove in [CEGS20b] that the stacks Zτ,1 are reduced. The proof makes use of the
resolution Cτ,BT,1 → Zτ,1 and the fact that we are able to relate the stack Cτ,BT

to a local model at Iwahori level, whose special fibre is known to be reduced. In
the sequel [CEGS20a] we combine the characterisation of the components of Zτ,1
from this paper with the reducedness of Zτ,1 from [CEGS20b] to prove that the
special fibre of Zτ is generically reduced. This will then allow us to completely
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characterise all of the finite type points on each component of Zτ,1 (not just a
dense set of points), and to prove geometrisations of the Breuil–Mézard conjecture
and of the weight part of Serre’s conjecture for the stacks Zdd,1. Furthermore, by
means of a comparison of versal rings, these results can be transported to the stacks

X τ,BT
2 of [EG22] as well.

1.3. Acknowledgements. We would like to thank Kalyani Kansal for helpful com-
ments.

1.4. Notation and conventions.

Topological groups. IfM is an abelian topological group with a linear topology, then
as in [Sta13, Tag 07E7] we say that M is complete if the natural morphism M →
lim−→i

M/Ui is an isomorphism, where {Ui}i∈I is some (equivalently any) fundamental

system of neighbourhoods of 0 consisting of subgroups. Note that in some other
references this would be referred to as being complete and separated. In particular,
any p-adically complete ring A is by definition p-adically separated.

Galois theory and local class field theory. If M is a field, we let GM denote its
absolute Galois group. If M is a global field and v is a place of M , let Mv denote
the completion ofM at v. IfM is a local field, we write IM for the inertia subgroup
of GM .

Let p be a prime number. Fix a finite extension K/Qp, with ring of integers
OK and residue field k. Let e and f be the ramification and inertial degrees of
K, respectively, and write #k = pf for the cardinality of k. Let K ′/K be a finite
tamely ramified Galois extension. Let k′ be the residue field of K ′, and let e′, f ′ be
the ramification and inertial degrees of K ′ respectively.

Our representations of GK will have coefficients in Qp, a fixed algebraic closure

of Qp whose residue field we denote by Fp. Let E be a finite extension of Qp

contained in Qp and containing the image of every embedding of K ′ into Qp. Let

O be the ring of integers in E, with uniformiser ̟ and residue field F ⊂ Fp.
Fix an embedding σ0 : k′ →֒ F, and recursively define σi : k

′ →֒ F for all i ∈ Z

so that σpi+1 = σi; of course, we have σi+f ′ = σi for all i. We let ei ∈ k′ ⊗Fp
F

denote the idempotent satisfying (x ⊗ 1)ei = (1 ⊗ σi(x))ei for all x ∈ k′; note
that ϕ(ei) = ei+1. We also denote by ei the natural lift of ei to an idempotent in
W (k′)⊗Zp

O. If M is an W (k′)⊗Zp
O-module, then we write Mi for eiM .

We write ArtK : K× → W ab
K for the isomorphism of local class field theory,

normalised so that uniformisers correspond to geometric Frobenius elements.

Lemma 1.4.1. Let π be any uniformiser of OK . The composite IK → O×
K → k×,

where the map IK → O×
K is induced by the restriction of Art−1

K , sends an element

g ∈ IK to the image in k× of g(π1/(pf−1))/π1/(pf−1).

Proof. This follows (for example) from the construction in [Yos08, Prop. 4.4(iii),
Prop. 4.7(ii), Cor. 4.9, Def. 4.10]. �

For each σ ∈ Hom(k,Fp) we define the fundamental character ωσ to σ to be the
composite

IK // O×
K

// k×
σ

// F
×

p ,

https://stacks.math.columbia.edu/tag/07E7
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where the map IK → O×
K is induced by the restriction of Art−1

K . Let ε denote
the p-adic cyclotomic character and ε the mod p cyclotomic character, so that∏
σ∈Hom(k,Fp)

ωeσ = ε. We will often identify characters of IK with characters of k×

via the Artin map.

Inertial local Langlands. A two-dimensional tame inertial type is (the isomorphism
class of) a tamely ramified representation τ : IK → GL2(Zp) that extends to a
representation of GK and whose kernel is open. Such a representation is of the
form τ ≃ η ⊕ η′, and we say that τ is a tame principal series type if η, η′ both
extend to characters of GK . Otherwise, η′ = ηq, and η extends to a character
of GL, where L/K is a quadratic unramified extension. In this case we say that τ
is a tame cuspidal type.

Henniart’s appendix to [BM02] associates a finite dimensional irreducible E-
representation σ(τ) of GL2(OK) to each inertial type τ ; we refer to this association
as the inertial local Langlands correspondence. Since we are only working with tame
inertial types, this correspondence can be made very explicit as follows.

If τ ≃ η⊕η′ is a tame principal series type, then we also write η, η′ : k× → O× for
the multiplicative characters determined by η ◦ArtK |O×

K
, η′ ◦ArtK |O×

K
respectively.

If η = η′, then we set σ(τ) = η ◦ det. Otherwise, we write I for the Iwahori
subgroup of GL2(OK) consisting of matrices which are upper triangular modulo a
uniformiser ̟K of K, and write χ = η′ ⊗ η : I → O× for the character

(
a b

̟Kc d

)
7→ η′(a)η(d).

Then σ(τ) := Ind
GL2(OK)
I χ.

If τ = η⊕ηq is a tame cuspidal type, then as above we write L/K for a quadratic
unramified extension, and l for the residue field of OL. We write η : l× → O× for
the multiplicative character determined by η ◦ ArtL|O×

L
; then σ(τ) is the inflation

to GL2(OK) of the cuspidal representation of GL2(k) denoted by Θ(η) in [Dia07].

p-adic Hodge theory. We normalise Hodge–Tate weights so that all Hodge–Tate
weights of the cyclotomic character are equal to −1. We say that a potentially
crystalline representation ρ : GK → GL2(Qp) has Hodge type 0, or is potentially

Barsotti–Tate, if for each ς : K →֒ Qp, the Hodge–Tate weights of ρ with respect
to ς are 0 and 1. (Note that this is a more restrictive definition of potentially
Barsotti–Tate than is sometimes used; however, we will have no reason to deal
with representations with non-regular Hodge-Tate weights, and so we exclude them
from consideration. Note also that it is more usual in the literature to say that ρ is
potentially Barsotti–Tate if it is potentially crystalline, and ρ∨ has Hodge type 0.)

We say that a potentially crystalline representation ρ : GK → GL2(Qp) has
inertial type τ if the traces of elements of IK acting on τ and on

Dpcris(ρ) = lim−→
K′/K

(Bcris ⊗Qp
Vρ)

GK′

are equal (here Vρ is the underlying vector space of Vρ). A representation r : GK →
GL2(Fp) has a potentially Barsotti–Tate lift of type τ if and only if r admits a lift

to a representation r : GK → GL2(Zp) of Hodge type 0 and inertial type τ .
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Serre weights. By definition, a Serre weight is an irreducible F-representation of
GL2(k). Concretely, such a representation is of the form

σ~t,~s := ⊗
f−1
j=0 (det

tj Symsj k2)⊗k,σj
F,

where 0 ≤ sj , tj ≤ p − 1 and not all tj are equal to p − 1. We say that a Serre
weight is Steinberg if sj = p− 1 for all j, and non-Steinberg otherwise.

A remark on normalisations. Given a continuous representation r : GK → GL2(Fp),
there is an associated (nonempty) set of Serre weights W (r) whose precise defini-
tion we will recall in Appendix A. There are in fact several different definitions
of W (r) in the literature; as a result of the papers [BLGG13, GK14, GLS15], these
definitions are known to be equivalent up to normalisation.

However, the normalisations of Hodge–Tate weights and of inertial local Lang-
lands used in [GK14, GLS15, EGS15] are not all the same, and so for clarity we lay
out how they differ, and how they compare to the normalisations of this paper.

Our conventions for Hodge–Tate weights and inertial types agree with those
of [GK14, EGS15], but our representation σ(τ) is the representation σ(τ∨) of [GK14,
EGS15] (where τ∨ = η−1⊕(η′)−1); to see this, note the dual in the definition of σ(τ)
in [GK14, Thm. 2.1.3] and the discussion in §1.9 of [EGS15]. 1

In all cases one chooses to normalise the set of Serre weights so that the condition
of Lemma A.5(1) holds. Consequently, our set of weights W (r) is the set of duals
of the weights W (r) considered in [GK14]. In turn, the paper [GLS15] has the
opposite convention for the signs of Hodge–Tate weights to our convention (and to
the convention of [GK14]), so we find that our set of weights W (r) is the set of
duals of the weights W (r∨) considered in [GLS15].

Stacks. We follow the terminology of [Sta13]; in particular, we write “algebraic
stack” rather than “Artin stack”. More precisely, an algebraic stack is a stack
in groupoids in the fppf topology, whose diagonal is representable by algebraic
spaces, which admits a smooth surjection from a scheme. See [Sta13, Tag 026N]
for a discussion of how this definition relates to others in the literature, and [Sta13,
Tag 04XB] for key properties of morphisms representable by algebraic spaces.

For a commutative ring A, an fppf stack over A (or fppf A-stack) is a stack fibred
in groupoids over the big fppf site of SpecA.

2. Preliminaries

We begin by reviewing the various constructions and results that we will need
from [CEGS20b]. Section 2.1 recalls the definition and a few basic algebraic prop-
erties of Breuil–Kisin modules with coefficients and descent data, while Section 2.2
does the same for étale ϕ-modules. In Section 2.3 we define the stacks Cτ,BT,1

and Zτ,1 (as well as various other related stacks) and state the main results of
[CEGS20b]. Finally, in Section 2.4 we introduce and study stacks of Dieudonné
modules that will be used at the end of the paper to determine the irreducible
components of Cτ,BT,1.

1. However, this dual is erroneously omitted when the inertial local Langlands correspondence
is made explicit at the end of [EGS15, §3.1]. See Remark A.1.

http://stacks.math.columbia.edu/tag/026N
http://stacks.math.columbia.edu/tag/04XB


8 A. CARAIANI, M. EMERTON, T. GEE, AND D. SAVITT

2.1. Breuil–Kisin modules with descent data. Recall that we have a finite
tamely ramified Galois extension K ′/K. Suppose further that there exists a uni-

formiser π′ of OK′ such that π := (π′)e(K
′/K) is an element of K, where e(K ′/K)

is the ramification index of K ′/K. Recall that k′ is the residue field of K ′, while
e′, f ′ are the ramification and inertial degrees of K ′ respectively. Let E(u) be the
minimal polynomial of π′ over W (k′)[1/p].

Let ϕ denote the arithmetic Frobenius automorphism of k′, which lifts uniquely
to an automorphism of W (k′) that we also denote by ϕ. Define S := W (k′)[[u]],
and extend ϕ to S by

ϕ
(∑

aiu
i
)
=
∑

ϕ(ai)u
pi.

By our assumptions that (π′)e(K
′/K) ∈ K and that K ′/K is Galois, for each g ∈

Gal(K ′/K) we can write g(π′)/π′ = h(g) with h(g) ∈ µe(K′/K)(K
′) ⊂ W (k′), and

we let Gal(K ′/K) act on S via

g
(∑

aiu
i
)
=
∑

g(ai)h(g)
iui.

Let A be a p-adically complete Zp-algebra, set SA := (W (k′) ⊗Zp
A)[[u]], and

extend the actions of ϕ and Gal(K ′/K) on S to actions on SA in the obvious
(A-linear) fashion.

Lemma 2.1.1. An SA-module is projective if and only if it is projective as an
A[[u]]-module.

Proof. Suppose that M is an SA-module that is projective as an A[[u]]-module.
Certainly W (k′) ⊗Zp

M is projective over SA, and we claim that it has M as an
SA-module direct summand. Indeed, this follows by rewritingM asW (k′)⊗W (k′)M

and noting thatW (k′) is aW (k′)-module direct summand ofW (k′)⊗Zp
W (k′). �

The actions of ϕ and Gal(K ′/K) on SA extend to actions on SA[1/u] =
(W (k′) ⊗Zp

A)((u)) in the obvious way. It will sometimes be necessary to con-

sider the subring S0
A := (W (k) ⊗Zp

A)[[v]] of SA consisting of power series in

v := ue(K
′/K), on which Gal(K ′/K) acts trivially.

Definition 2.1.2. Fix a p-adically complete Zp-algebra A. A Breuil–Kisin module
with A-coefficients and descent data from K ′ to K (or often simply a Breuil–Kisin
module) is a triple (M, ϕM, {ĝ}g∈Gal(K′/K)) consisting of a SA-module M and a
ϕ-semilinear map ϕM : M→M such that:

— the SA-module M is finitely generated and projective, and

— the induced map ΦM = 1 ⊗ ϕM : ϕ∗M → M is an isomorphism after
inverting E(u) (here as usual we write ϕ∗M := SA ⊗ϕ,SA

M),

together with additive bijections ĝ : M→M, satisfying the further properties that
the maps ĝ commute with ϕM, satisfy ĝ1 ◦ ĝ2 = ĝ1 ◦ g2, and have ĝ(sm) = g(s)ĝ(m)
for all s ∈ SA, m ∈ M. We say that M is has height at most h if the cokernel of
ΦM is killed by E(u)h.

The Breuil–Kisin module M is said to be of rank d if the underlying finitely
generated projective SA-module has constant rank d. It is said to be free if the
underlying SA-module is free.

A morphism of Breuil–Kisin modules with descent data is a morphism of SA-
modules that commutes with ϕ and with the ĝ. In the case that K ′ = K the
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data of the ĝ is trivial, so it can be forgotten, giving the category of Breuil–Kisin
modules with A-coefficients. In this case it will sometimes be convenient to elide the
difference between a Breuil–Kisin module with trivial descent data, and a Breuil–
Kisin module without descent data, in order to avoid making separate definitions
in the case of Breuil–Kisin modules without descent data.

Remark 2.1.3. We refer the reader to [EG21, §5.1] for a discussion of foundational
results concerning finitely generated modules over the power series ring A[[u]]. In
particular (using Lemma 2.1.1) we note the following.

(1) An SA-module M is finitely generated and projective if and only if it is
u-torsion free and u-adically complete, and M/uM is a finitely generated
projective A-module ([EG21, Prop. 5.1.8]).

(2) If the SA-module M is projective of rank d, then it is Zariski locally free of
rank d in the sense that there is a cover of SpecA by affine opens SpecBi
such that each of the base-changed modules M ⊗SA

SBi
is free of rank d

([EG21, Prop. 5.1.9]).

(3) If A is coherent (so in particular, if A is Noetherian), then A[[u]] is faithfully
flat over A, and so SA is faithfully flat over A, but this need not hold if A
is not coherent.

Definition 2.1.4. If Q is any (not necessarily finitely generated) A-module, and M

is an A[[u]]-module, then we let M ⊗̂AQ denote the u-adic completion of M⊗A Q.

Lemma 2.1.5. If M is a Breuil–Kisin module and B is an A-algebra, then the
base change M ⊗̂AB is a Breuil–Kisin module.

Proof. This is [CEGS20b, Lem. 2.1.4]. �

We make the following two further remarks concerning base change.

Remark 2.1.6. (1) If A is Noetherian, if Q is finitely generated over A, and if N
is finitely generated over A[[u]], then N⊗A Q is finitely generated over A[[u]], and
hence (by the Artin–Rees lemma) is automatically u-adically complete. Thus in
this case the natural morphism N⊗A Q→ N ⊗̂AQ is an isomorphism.

(2) Note that A[[u]] ⊗̂AQ = Q[[u]] (the A[[u]]-module consisting of power series
with coefficients in the A-module Q), and so if N is Zariski locally free on SpecA,
then N ⊗̂AQ is Zariski locally isomorphic to a direct sum of copies of Q[[u]], and
hence is u-torsion free (as well as being u-adically complete). In particular, by
Remark 2.1.3(2), this holds if N is projective.

Let A be a Zp-algebra. We define a Dieudonné module of rank d with A-
coefficients and descent data from K ′ to K to be a finitely generated projective
W (k′)⊗Zp

A-module D of constant rank d on SpecA, together with:

— A-linear endomorphisms F, V satisfying FV = V F = p such that F is
ϕ-semilinear and V is ϕ−1-semilinear for the action of W (k′), and

— a W (k′) ⊗Zp
A-semilinear action of Gal(K ′/K) which commutes with F

and V .

Definition 2.1.7. If M is a Breuil–Kisin module of height at most 1 and rank d
with descent data, then there is a corresponding Dieudonné module D = D(M)
of rank d defined as follows. We set D := M/uM with the induced action of
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Gal(K ′/K), and F given by the induced action of ϕ. The endomorphism V is
determined as follows. Write E(0) = cp, so that we have p ≡ c−1E(u) (mod u).
The condition that the cokernel of ϕ∗M→M is killed by E(u) allows us to factor
the multiplication-by-E(u) map on M uniquely as V ◦ ϕ, and V is defined to be
c−1V modulo u.

2.2. Étale ϕ-modules and Galois representations.

Definition 2.2.1. Let A be a Z/paZ-algebra for some a ≥ 1. A weak étale ϕ-
module with A-coefficients and descent data from K ′ to K is a triple (M,ϕM , {ĝ})
consisting of:

— a finitely generated SA[1/u]-module M ;

— a ϕ-semilinear map ϕM :M →M with the property that the induced map

ΦM = 1⊗ ϕM : ϕ∗M := SA[1/u]⊗ϕ,SA[1/u] M →M

is an isomorphism,

together with additive bijections ĝ : M → M for g ∈ Gal(K ′/K), satisfying the
further properties that the maps ĝ commute with ϕM , satisfy ĝ1 ◦ ĝ2 = ĝ1 ◦ g2, and
have ĝ(sm) = g(s)ĝ(m) for all s ∈ SA[1/u], m ∈M .

If M as above is projective as an SA[1/u]-module then we say simply that M is
an étale ϕ-module. The étale ϕ-module M is said to be of rank d if the underlying
finitely generated projective SA[1/u]-module has constant rank d.

Remark 2.2.2. We could also consider étale ϕ-modules for general p-adically com-
plete Zp-algebras A, but we would need to replaceSA[1/u] by its p-adic completion.
As we will not need to consider these modules in this paper, we do not do so here,
but we refer the interested reader to [EG22].

A morphism of weak étale ϕ-modules with A-coefficients and descent data from
K ′ to K is a morphism of SA[1/u]-modules that commutes with ϕ and with the
ĝ. Again, in the case K ′ = K the descent data is trivial, and we obtain the usual
category of étale ϕ-modules with A-coefficients.

Note that if A is a Z/paZ-algebra, and M is a Breuil–Kisin module with descent
data, then M[1/u] naturally has the structure of an étale ϕ-module with descent
data.

Suppose that A is an O-algebra (where O is as in Section 1.4). In making
calculations, it is often convenient to use the idempotents ei (again as in Section 1.4).
In particular if M is a Breuil–Kisin module, then writing as usual Mi := eiM, we
write ΦM,i : ϕ

∗(Mi−1) →Mi for the morphism induced by ΦM. Similarly if M is
an étale ϕ-module then we write Mi := eiM , and we write ΦM,i : ϕ

∗(Mi−1)→Mi

for the morphism induced by ΦM .
To connect étale ϕ-modules to GK∞ -representations we begin by recalling from

[Kis09] some constructions arising in p-adic Hodge theory and the theory of fields of
norms, which go back to [Fon90]. Following Fontaine, we write R := lim←−x 7→xp

OK̄/p.
Fix a compatible system (pn

√
π )n≥0 of pnth roots of π in K̄ (compatible in the

obvious sense that
(

pn+1√
π
)p

= pn
√
π ), and let K∞ := ∪nK( pn

√
π), and also

K ′
∞ := ∪nK ′( pn

√
π). Since (e(K ′/K), p) = 1, the compatible system (pn

√
π )n≥0

determines a unique compatible system (pn
√
π′ )n≥0 of pnth roots of π′ such that

(pn
√
π′ )e(K

′/K) = pn
√
π. Write π′ = ( pn

√
π′)n≥0 ∈ R, and [π′] ∈ W (R) for its image

under the natural multiplicative map R→ W (R). We have a Frobenius-equivariant
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inclusion S →֒ W (R) by sending u 7→ [π′]. We can naturally identify Gal(K ′
∞/K∞)

with Gal(K ′/K), and doing this we see that the action of g ∈ GK∞ on u is via
g(u) = h(g)u.

We let OE denote the p-adic completion of S[1/u], and let E be the field
of fractions of OE . The inclusion S →֒ W (R) extends to an inclusion E →֒
W (Frac(R))[1/p]. Let Enr be the maximal unramified extension of E inW (Frac(R))[1/p],
and let OEnr ⊂W (Frac(R)) denote its ring of integers. Let O

Ênr be the p-adic com-
pletion of OEnr . Note that O

Ênr is stable under the action of GK∞ .

Definition 2.2.3. Suppose that A is a Z/paZ-algebra for some a ≥ 1. If M
is a weak étale ϕ-module with A-coefficients and descent data, set TA(M) :=(
O

Ênr ⊗S[1/u] M
)ϕ=1

, an A-module with a GK∞ -action (via the diagonal action
on O

Ênr and M , the latter given by the ĝ). If M is a Breuil–Kisin module with
A-coefficients and descent data, set TA(M) := TA(M[1/u]).

Lemma 2.2.4. Suppose that A is a local Zp-algebra and that |A| < ∞. Then TA
induces an equivalence of categories from the category of weak étale ϕ-modules with
A-coefficients and descent data to the category of continuous representations of
GK∞ on finite A-modules. If A→ A′ is finite, then there is a natural isomorphism

TA(M) ⊗A A′ ∼−→ TA′(M ⊗A A′). A weak étale ϕ-module with A-coefficients and
descent data M is free of rank d if and only if TA(M) is a free A-module of rank d.

Proof. This is due to Fontaine [Fon90], and can be proved in exactly the same way
as [Kis09, Lem. 1.2.7]. �

We will frequently simply write T for TA. Note that if we let M ′ be the étale
ϕ-module obtained from M by forgetting the descent data, then by definition we
have T (M ′) = T (M)|GK′

∞
.

Remark 2.2.5. Although étale ϕ-modules naturally give rise to representations
of GK∞ , those coming from Breuil–Kisin modules of height at most 1 admit canon-
ical extensions to GK by [Kis09, Prop. 1.1.13].

Lemma 2.2.6. If r, r′ : GK → GL2(Fp) are continuous representations, both of
which arise as the reduction mod p of potentially Barsotti–Tate representations of
tame inertial type, and there is an isomorphism r|GK∞

∼= r′|GK∞
, then r ∼= r′.

Proof. The extension K∞/K is totally wildly ramified. Since the irreducible Fp-
representations ofGK are induced from tamely ramified characters, we see that r|GK∞

is irreducible if and only if r is irreducible, and if r or r′ is irreducible then we are
done. In the reducible case, we see that r and r′ are extensions of the same charac-
ters, and the result then follows from [GLS15, Lem. 5.4.2] and Lemma A.5 (2). �

2.3. Recollections from [CEGS20b]. The main objects of study in this paper
are certain algebraic stacks Cτ,BT and Zτ,1, of rank two Breuil–Kisin modules and
étale ϕ-modules respectively, that were introduced and studied in [CEGS20b]. We
review their definitions now, and recall the main properties of these stacks that
were established in [CEGS20b].

To define Cτ,BT,1 we first introduce stacks of Breuil–Kisin modules with descent
data; then we impose two conditions on them, corresponding (in the analogy with
Galois representations) to fixing an inertial type τ and requiring all pairs Hodge–
Tate weights to be {0, 1}.
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Take K ′/K to be any Galois extension such that [K ′ : K] is prime to p, and
write N = K ·W (k′)[1/p].

Definition 2.3.1. For each integer a ≥ 1, we let Cdd,ad,h be the fppf stack over O/̟a

which associates to any O/̟a-algebra A the groupoid Cdd,ad,h (A) of rank d Breuil–

Kisin modules of height at most h with A-coefficients and descent data from K ′

to K.
By [Sta13, Tag 04WV], we may also regard each of the stacks Cdd,ad,h as an fppf

stack overO, and we then write Cddd,h := lim−→a
Cdd,ad,h ; this is again an fppf stack overO.

We will omit the subscripts d, h from this notation when doing so will not cause
confusion.

Definition 2.3.2. Let τ be a d-dimensional E-representation of I(K ′/K). We say
that an object M of Cdd,a is has type τ if Zariski locally on SpecA there is an
I(K ′/K)-equivariant isomorphism Mi/uMi

∼= A⊗O τ◦ for each i. (Here we recall
that Mi := eiM, and τ◦ denotes an O-lattice in τ .)

Definition 2.3.3. Let Cτ be the étale substack of Cdd consisting of the objects of
type τ . This is an open and closed substack of Cdd (see [CEGS20b, Prop. 3.3.5]).

For the remainder of this section we fix d = 2 and h = 1. Suppose that A is an
O/̟a-algebra and consider a pair (L,L+), where:

— L is a rank 2 projective OK′ ⊗Zp
A-module, with a Gal(K ′/K)-semilinear,

A-linear action of Gal(K ′/K);

— L+ is an OK′ ⊗Zp
A-submodule of L, which is locally on SpecA a direct

summand of L as anA-module (or equivalently, for which L/L+ is projective
as an A-module), and is preserved by Gal(K ′/K).

For each character ξ : I(K ′/K) → O×, let Lξ (resp. L+
ξ ) be the ON ⊗Zp

A-

submodule of L (resp. L+) on which I(K ′/K) acts through ξ. We say that the
pair (L,L+) satisfies the strong determinant condition if Zariski locally on SpecA
the following condition holds: for all α ∈ ON and all ξ, we have

(2.3.4) detA(α|L+
ξ ) =

∏

ψ:N →֒E

ψ(α)

as polynomial functions on ON in the sense of [Kot92, §5].

Definition 2.3.5. An object M of Cdd,a satisfies the strong determinant condition
if the pair (M/E(u)M, imΦM/E(u)M) satisfies the strong determinant condition
as in the previous paragraph.

We define Cτ,BT to be the substack of Cτ of objects satisfying the strong deter-
minant condition. This is a ̟-adic formal algebraic stack of finite presentation
over O by [CEGS20b, Prop. 4.2.7], and so its special fibre Cτ,BT,1 is an alge-
braic stack, locally of finite type over F. The Spf(OE′)-points of Cτ,BT, for any
finite extension E′/E, correspond to potentially Barsotti–Tate Galois representa-
tions GK → GL2(OE′) of inertial type τ ([CEGS20b, Lem. 4.2.16]).

The following result combines [CEGS20b, Cor. 4.5.3, Prop. 5.2.21].

Theorem 2.3.6. We have:

(1) Cτ,BT is analytically normal, and Cohen–Macaulay.

http://stacks.math.columbia.edu/tag/04WV
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(2) The special fibre Cτ,BT,1 is reduced and equidimensional of dimension equal
to [K : Qp].

(3) Cτ,BT is flat over O.
We now introduce our stacks of étale ϕ-modules.

Definition 2.3.7. Let Rdd,1 be the fppf F-stack which associates to any F-algebra
A the groupoid Rdd,1(A) of rank 2 étale ϕ-modules with A-coefficients and descent
data from K ′ to K.

Inverting u gives a proper morphism Cdd,1 → Rdd,1, which then restricts to a
proper morphism Cτ,BT,1 →Rdd,1 for each τ .

We now briefly remind the reader of some definitions from [EG21, §3.2]. Let
X → F be a proper morphism of stacks over a locally Noetherian base-scheme S,
where X is an algebraic stack which is locally of finite presentation over S, and the
diagonal of F is representable by algebraic spaces and locally of finite presentation.

We refer to [EG21, Defn. 3.2.8] for the definition of the scheme-theoretic image Z
of the proper morphism X → F . By definition, it is a full subcategory in groupoids
of F , and in fact by [EG21, Lem. 3.2.9] it is a Zariski substack of F . By [EG21,
Lem. 3.2.14], the finite type points of Z are precisely the finite type points of F for
which the corresponding fibre of X is nonzero.

The results of [EG21, §3.2] give criteria for Z to be an algebraic stack, and
prove a number of associated results (such as universal properties of the morphism
Z → F , and a description of versal deformation rings for Z). This formalism
applies in particular to the proper morphism Cτ,BT,1 → Rdd,1, and so we make the
following definition.

Definition 2.3.8. We define Zτ,1 to be the scheme-theoretic image (in the sense
of [EG21, Defn. 3.2.8]) of the morphism Cτ,BT,1 →Rdd,1.

In [CEGS20b, Thm. 5.1.2, Prop. 5.2.20] we established the following properties
of this construction.

Proposition 2.3.9.

(1) Zτ,1 is an algebraic stack of finite presentation over F, and is a closed
substack of Rdd,1.

(2) The morphism Cτ,BT,1 → Rdd,1 factors through a morphism Cτ,BT,1 →
Zdd,1 which is representable by algebraic spaces, scheme-theoretically dom-
inant, and proper.

(3) The Fp-points of Zτ,1 are naturally in bijection with the continuous repre-

sentations r : GK → GL2(Fp) which have a potentially Barsotti–Tate lift
of type τ .

Theorem 2.3.10. The algebraic stacks Zτ,1 are equidimensional of dimension
equal to [K : Qp].

2.4. Dieudonné and gauge stacks. We now specialise the choice of K ′ in the
following way. Choose a tame inertial type τ = η ⊕ η′. Fix a uniformiser π of K.

If τ is a tame principal series type, we take K ′ = K(π1/(pf−1)), while if τ is a
tame cuspidal type, we let L be an unramified quadratic extension of K, and set

K ′ = L(π1/(p2f−1)). Let N be the maximal unramified extension of K in K ′.
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In either case K ′/K is a Galois extension; in the principal series case, we have
e′ = (pf − 1)e, f ′ = f , and in the cuspidal case we have e′ = (p2f − 1)e, f ′ = 2f .
We refer to this choice of extension as the standard choice (for the fixed type τ and
uniformiser π).

For the rest of this section we assume that η 6= η′ (we will not need to consider
Dieudonné modules for scalar types). Let M be an object of Cτ,BT(A), and let
D := M/uM be its corresponding Dieudonné module as in Definition 2.1.7. The
group I(K ′/K) is abelian of order prime to p, and so we can write D = Dη ⊕Dη′ ,
where Dη is the submodule on which I(K ′/K) acts via η. Setting Dη,j := ejDη, it
follows from the projectivity of M that each Dη,j is an invertible A-module. The
maps F, V induce linear maps F : Dη,j → Dη,j+1 and V : Dη,j+1 → Dη,j such that
FV = V F = p.

Definition 2.4.1. If τ is a principal series type we define a stack

Dη :=
[(
SpecW (k)[X0, Y0, . . . , Xf−1, Yf−1]/(XjYj − p)j=0,...,f−1)

)
/Gf

m

]
,

where the f copies of Gm act as (u0, . . . , uf−1) ·(Xj , Yj) 7→ (uju
−1
j+1Xj , uj+1u

−1
j Yj).

If instead τ is a cuspidal type we define

Dη :=
[(
SpecW (k)[X0, Y0, . . . , Xf−1, Yf−1]/(XjYj − p)j=0,...,f−1)×Gm

)
/Gf+1

m

]
,

where the f + 1 copies of Gm act as

(u0, . . . , uf−1, uf ) · ((Xj , Yj), α) 7→ ((uju
−1
j+1Xj , uj+1u

−1
j Yj), α).

In [CEGS20b, Sec. 4.6] we explained how the stack Dη classifies the line bundles
Dη,j together with the maps F, V , so that in either case (principal series or cuspidal)
there is a natural map Cτ,BT → Dη.

It will be helpful to introduce another stack, the stack Gη of η-gauges. This
classifies f -tuples of line bundles Dj (j = 0, . . . , f − 1) equipped with sections

Xj ∈ Dj and Yj ∈ D−1
j . Explicitly, it can be written as the quotient stack

Gη :=
[(
SpecW (k)[X0, Y0, . . . , Xf−1, Yf−1]/(XjYj − p)j=0,...,f−1)

)
/Gf

m

]
,

where the f copies of Gm act as follows:

(v0, . . . , vf−1) · (Xj , Yj) 7→ (vjXj , v
−1
j Yj).

There is a morphism of stacks Dη → Gη which we can define explicitly using their
descriptions as quotient stacks. Indeed, in the principal series case we have a mor-
phism Gf

m → Gf
m given by (uj)j=0,...,f−1 7→ (uju

−1
j+1)j=0,...,f−1, which is compati-

ble with the actions of these two groups on SpecW (k)[(Xj , Yj)j=0,...,f−1]/(XjYj −
p)j=0,...,f−1, and we are just considering the map from the quotient by the first
Gf
m to the quotient by the second Gf

m. In the cuspidal case we have a mor-
phism Gf+1

m → Gf
m given by (uj)j=0,...,f 7→ (uju

−1
j+1)j=0,...,f−1, and the morphism

Dη → Gη is the obvious one which forgets the factor of Gm coming from α.
Composing our morphism Cτ,BT → Dη with the forgetful morphism Dη → Gη,

we obtain a morphism Cτ,BT → Gη.
For our analysis of the irreducible components of the stacks Cτ,BT,1 at the end

of Section 3, it will be useful to have a more directly geometric interpretation of a
morphism S → Gη, in the case that the source is a flat W (k)-scheme, or, more gen-
erally, a flat p-adic formal algebraic stack over SpfW (k). In order to do this we will
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need some basic material on effective Cartier divisors for (formal) algebraic stacks;
while it is presumably possible to develop this theory in considerable generality, we
only need a very special case, and we limit ourselves to this setting.

The property of a closed subscheme being an effective Cartier divisor is not
preserved under arbitrary pull-back, but it is preserved under flat pull-back. More
precisely, we have the following result.

Lemma 2.4.2. If X is a scheme, and Z is a closed subscheme of X, then the
following are equivalent:

(1) Z is an effective Cartier divisor on X.

(2) For any flat morphism of schemes U → X, the pull-back Z ×X U is an
effective Cartier divisor on U .

(3) For some fpqc covering {Xi → X} of X, each of the pull-backs Z ×X Xi is
an effective Cartier divisor on Xi.

Proof. Since Z is an effective Cartier divisor if and only if its ideal sheaf IZ is an
invertible sheaf on X , this follows from the fact that the invertibility of a quasi-
coherent sheaf is a local property in the fpqc topology. �

Lemma 2.4.3. If A is a Noetherian adic topological ring, then pull-back under the
natural morphism Spf A→ SpecA induces a bijection between the closed subschemes
of SpecA and the closed subspaces of Spf A.

Proof. It follows from [Sta13, Tag 0ANQ] that closed immersions Z → Spf A are
necessarily of the form Spf B → Spf A, and correspond to continuous morphisms
A→ B, for some complete linearly topologized ring B, which are taut (in the sense
of [Sta13, Tag 0AMX]), have closed kernel, and dense image. Since A is adic, it ad-
mits a countable basis of neighbourhoods of the origin, and so it follows from [Sta13,
Tag 0APT] (recalling also [Sta13, Tag 0AMV]) that A→ B is surjective. Because
any ideal of definition I of A is finitely generated, it follows from [Sta13, Tag 0APU]
that B is endowed with the I-adic topology. Finally, since A is Noetherian, any
ideal in A is I-adically closed. Thus closed immersions Spf B → Spf A are deter-
mined by giving the kernel of the corresponding morphism A → B, which can be
arbitrary. The same is true of closed immersions SpecB → SpecA, and so the
lemma follows. �

Definition 2.4.4. If A is a Noetherian adic topological ring, then we say that a
closed subspace of Spf A is an effective Cartier divisor on Spf A if the corresponding
closed subscheme of SpecA is an effective Cartier divisor on SpecA.

Lemma 2.4.5. Let Spf B → Spf A be a flat adic morphism of Noetherian affine
formal algebraic spaces. If Z →֒ Spf A is a Cartier divisor, then Z ×Spf A Spf B →֒
Spf B is a Cartier divisor. Conversely, if Spf B → Spf A is furthermore surjective,
and if Z →֒ Spf A is a closed subspace for which the base-change Z ×SpfA Spf B →֒
Spf B is a Cartier divisor, then Z is a Cartier divisor on Spf A.

Proof. The morphism Spf B → Spf A corresponds to an adic flat morphism A→ B
([Sta13, Tag 0AN0] and [Eme, Lem. 8.18]) and hence is induced by a flat morphism
SpecB → SpecA, which is furthermore faithfully flat if and only if Spf B → Spf A
is surjective (again by [Eme, Lem. 8.18]). The present lemma thus follows from
Lemma 2.4.2. �

http://stacks.math.columbia.edu/tag/0ANQ
http://stacks.math.columbia.edu/tag/0AMX
http://stacks.math.columbia.edu/tag/0APT
http://stacks.math.columbia.edu/tag/0AMV
http://stacks.math.columbia.edu/tag/0APU
http://stacks.math.columbia.edu/tag/0AN0
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The preceding lemma justifies the following definition.

Definition 2.4.6. We say that a closed substack Z of a locally Noetherian for-
mal algebraic stack X is an effective Cartier divisor on X if for any morphism
U → X whose source is a Noetherian affine formal algebraic space, and which is
representable by algebraic spaces and flat, the pull-back Z ×X U is an effective
Cartier divisor on U .

We consider theW (k)-scheme SpecW (k)[X,Y ]/(XY −p), which we endow with
a Gm-action via u · (X,Y ) := (uX, u−1Y ). There is an obvious morphism

SpecW (k)[X,Y ]/(XY − p)→ SpecW (k)[X ] = A1

given by (X,Y )→ X , which is Gm-equivariant (for the action of Gm on A1 given
by u ·X := uX), and so induces a morphism

(2.4.7) [
(
SpecW (k)[X,Y ]/(XY − p)

)
/Gm]→ [A1/Gm].

Lemma 2.4.8. If X is a locally Noetherian p-adic formal algebraic stack which is
furthermore flat over SpfW (k), then the groupoid of morphisms

X → [SpecW (k)[X,Y ]/(XY − p)/Gm]

is in fact a setoid, and is equivalent to the set of effective Cartier divisors on X
that are contained in the effective Cartier divisor (Spec k)×SpfW (k) X on X .
Proof. Essentially by definition (and taking into account [Eme, Lem. 8.18]), it suf-
fices to prove this in the case when X = Spf B, where B is a flat Noetherian adic
W (k)-algebra admitting (p) as an ideal of definition. In this case, the restriction
map

[SpecW (k)[X,Y ]/(XY−p)/Gm](SpecB)→ [SpecW (k)[X,Y ]/(XY−p)/Gm](Spf B)

is an equivalence of groupoids. Indeed, the essential surjectivity follows from the
(standard and easily verified) fact that if {Mi} is a compatible family of locally free
B/piB-modules of rank one, then M := lim←−Mi is a locally free B-module of rank

one, for which each of the natural morphisms M/piM → Mi is an isomorphism.
The full faithfulness follows from the fact that a locally free B-module of rank one
is p-adically complete, and so is recovered as the inverse limit of its compatible
family of quotients {M/piM}.

We are therefore reduced to the same statement with X = SpecB. The com-
posite morphism SpecB → [A1/Gm] induced by (2.4.7) corresponds to giving a
pair (D, X) where D is a line bundle on SpecB, and X is a global section of D−1.
Indeed, giving a morphism SpecB → [A1/Gm] is equivalent to giving a Gm-torsor
P → SpecB, together with a Gm-equivariant morphism P → A1. Giving a Gm-
torsor P over SpecB is equivalent to giving an invertible sheaf D on SpecB (the
associatedGm-torsor is then obtained by deleting the zero section from the line bun-
dle D → X corresponding to D), and giving a Gm-equivariant morphism P → A1

is equivalent to giving a global section of D−1.
It follows that giving a morphism SpecB → [SpecW (k)[X,Y ]/(XY − p)/Gm]

corresponds to giving a line bundle D and sections X ∈ D−1, Y ∈ D satisfying
XY = p. To say that B is flat over W (k) is just to say that p is a regular element
on B, and so we see that X (resp. Y ) is a regular section of D−1 (resp. D). Again,
since p is a regular element on B, we see that Y is uniquely determined byX and the
equation XY = p, and so giving a morphism SpecB → [SpecW (k)[X,Y ]/(XY −
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p)/Gm] is equivalent to giving a line bundle D and a regular section X of D−1,

such that pB ⊂ X ⊗B D ⊂ D−1 ⊗B D ∼−→ B; this last condition guarantees the
existence of the (then uniquely determined) Y .

Now giving a line bundle D on SpecB and a regular section X ∈ D−1 is the
same as giving the zero locus D of X , which is a Cartier divisor on SpecB. (There
is a canonical isomorphism (D, X) ∼=

(
ID, 1

)
, where ID denotes the ideal sheaf of

D.) The condition that pB ⊂ X ⊗B D is equivalent to the condition that p ∈ ID,
i.e. that D be contained in SpecB/pB, and we are done. �

Lemma 2.4.9. If S is a locally Noetherian p-adic formal algebraic stack which is
flat over W (k), then giving a morphism S → Gη over W (k) is equivalent to giving
a collection of effective Cartier divisors Dj on S (j = 0, . . . , f − 1), with each Dj
contained in the Cartier divisor S cut out by the equation p = 0 on S (i.e. the
special fibre of S).

Proof. This follows immediately from Lemma 2.4.8, by the definition of Gη. �

3. Families of extensions of Breuil–Kisin modules

The goal of the next two sections is to construct certain universal families of
extensions of rank one Breuil–Kisin modules overF with descent data; these families
will be used in Section 5 to describe the generic behaviour of the various irreducible
components of the special fibres of Cτ,BT and Zτ .

In Subsections 3.1 and 3.2 we present some generalities on extensions of Breuil–
Kisin modules and on families of these extensions, respectively. In Subsection 3.3
we specialize the discussion of Subsection 3.2 to the case of extensions of two rank
one Breuil–Kisin modules, and thus explain how to construct our desired families
of extensions. In Section 4 we recall the fundamental computations related to
extensions of rank one Breuil–Kisin modules from [DS15], to which the results
of Subsection 3.3 will be applied at the end of Subsection 4.2 to construct the
components C(J) and Z(J) of Theorem 1.1.

We assume throughout this section that [K ′ : K] is not divisible by p; since we
are assuming throughout the paper that K ′/K is tamely ramified, this is equivalent
to assuming that K ′ does not contain an unramified extension of K of degree p. In
our final applications K ′/K will contain unramified extensions of degree at most 2,
and p will be odd, so this assumption will be satisfied. (In fact, we specialize to
such a context begining in Subsection 5.2.)

3.1. Extensions of Breuil–Kisin modules with descent data. When dis-
cussing the general theory of extensions of Breuil–Kisin modules, it is convenient to
embed the category of Breuil–Kisin modules in a larger category which is abelian,
contains enough injectives and projectives, and is closed under passing to arbitrary
limits and colimits. The simplest way to obtain such a category is as the category
of modules over some ring, and so we briefly recall how a Breuil–Kisin module
with A-coefficients and descent data can be interpreted as a module over a certain
A-algebra.

Let SA[F ] denote the twisted polynomial ring over SA, in which the variable F
obeys the following commutation relation with respect to elements s ∈ SA:

F · s = ϕ(s) · F.
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Let SA[F,Gal(K ′/K)] denote the twisted group ring over SA[F ], in which the
elements g ∈ Gal(K ′/K) commute with F , and obey the following commutation
relations with elements s ∈ SA:

g · s = g(s) · g.
One immediately confirms that giving a left SA[F,Gal(K ′/K)]-moduleM is equiva-
lent to equipping the underlying SA-module M with a ϕ-linear morphism ϕ : M→
M and a semi-linear action of Gal(K ′/K) which commutes with ϕ.

In particular, if we let K(A) denote the category of left SA[F,Gal(K ′/K)]-
modules, then a Breuil–Kisin module with descent data from K ′ to K may nat-
urally be regarded as an object of K(A). In the following lemma, we record the
fact that extensions of Breuil–Kisin modules with descent data may be computed
as extensions in the category K(A).

Lemma 3.1.1. If 0 → M′ → M → M′′ → 0 is a short exact sequence in K(A),
such that M′ (resp. M′′) is a Breuil–Kisin module with descent data of rank d′ and
height at most h′ (resp. of rank d′′ and height at most h′′), then M is a Breuil–Kisin
module with descent data of rank d′ + d′′ and height at most h′ + h′′.

More generally, if E(u)h ∈ AnnSA
(cokerΦM′)AnnSA

(cokerΦM′′), then M is a
Breuil–Kisin module with descent data of height at most h.

Proof. Note that since ΦM′ [1/E(u)] and ΦM′′ [1/E(u)] are both isomorphisms by
assumption, it follows from the snake lemma that ΦM[1/E(u)] is isomorphism.
Similarly we have a short exact sequence of SA-modules

0→ cokerΦM′ → cokerΦM → cokerΦM′′ → 0.

The claims about the height and rank of M follow immediately. �

We now turn to giving an explicit description of the functors Exti(M, – ) for a
Breuil–Kisin module with descent data M.

Definition 3.1.2. Let M be a Breuil–Kisin module with A-coefficients and descent
data (of some height). If N is any object of K(A), then we let C•

M(N) denote the
complex

HomSA[Gal(K′/K)](M,N)→ HomSA[Gal(K′/K)](ϕ
∗M,N),

with differential being given by

α 7→ ΦN ◦ ϕ∗α− α ◦ ΦM.

Also let Φ∗
M denote the map C0

M(N) → C1
M(N) given by α 7→ α ◦ ΦM. When M

is clear from the context we will usually suppress it from the notation and write
simply C•(N).

Each Ci(N) is naturally an S0
A-module. The formation of C•(N) is evidently

functorial in N, and is also exact in N, since M, and hence also ϕ∗M, is projective
overSA, and since Gal(K ′/K) has prime-to-p order. Thus the cohomology functors
H0
(
C•(–)

)
and H1

(
C•(–)

)
form a δ-functor on K(A).

Lemma 3.1.3. There is a natural isomorphism

HomK(A)(M, – ) ∼= H0
(
C•(– )

)
.

Proof. This is immediate. �
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It follows from this lemma and a standard dimension shifting argument (or,
equivalently, the theory of δ-functors) that there is an embedding of functors

(3.1.4) Ext1K(A)(M, – ) →֒ H1
(
C•(–)

)
.

Lemma 3.1.5. The embedding of functors (3.1.4) is an isomorphism.

Proof. We first describe the embedding (3.1.4) explicitly. Suppose that

0→ N→ E→M→ 0

is an extension in K(A). Since M is projective over SA, and since Gal(K ′/K) is
of prime-to-p order, we split this short exact sequence over the twisted group ring
SA[Gal(K ′/K)], say via some element σ ∈ HomSA[Gal(K′/K)](M,E). This splitting
is well-defined up to the addition of an element α ∈ HomSA[Gal(K′/K)](M,N).

This splitting is a homomorphism in K(A) if and only if the element

ΦE ◦ ϕ∗σ − σ ◦ΦM ∈ HomSA[Gal(K′/K)](ϕ
∗M,N)

vanishes. If we replace σ by σ + α, then this element is replaced by

(ΦE ◦ ϕ∗σ − σ ◦ ΦM) + (ΦN ◦ ϕ∗α− α ◦ ΦM).

Thus the coset of ΦE ◦ ϕ∗σ − σ ◦ ΦM in H1
(
C•(N)

)
is well-defined, independent

of the choice of σ, and this coset is the image of the class of the extension E under
the embedding

(3.1.6) Ext1K(A)(M,N) →֒ H1
(
C•(N)

)

(up to a possible overall sign, which we ignore, since it doesn’t affect the claim of
the lemma).

Now, given any element ν ∈ HomSA[Gal(K′/K)](ϕ
∗M,N), we may give theSA[Gal(K ′/K)]-

module E := N ⊕M the structure of a SA[F,Gal(K ′/K)]-module as follows: we
need to define a ϕ-linear morphism E → E, or equivalently a linear morphism
ΦE : ϕ∗E→ E. We do this by setting

ΦE :=

(
ΦN ν
0 ΦM

)
.

Then E is an extension of M by N, and if we let σ denote the obvious embedding
of M into E, then one computes that

ν = ΦE ◦ ϕ∗σ − σ ◦ ΦM.

This shows that (3.1.6) is an isomorphism, as claimed. �

Another dimension shifting argument, taking into account the preceding lemma,
shows that Ext2K(A)(M, – ) embeds into H2

(
C•(–)

)
. Since the target of this embed-

ding vanishes, we find that the same is true of the source. This yields the following
corollary.

Corollary 3.1.7. If M is a Breuil–Kisin module with A-coefficients and descent
data, then Ext2K(A)(M, – ) = 0.

We summarise the above discussion in the following corollary.

Corollary 3.1.8. If M is a Breuil–Kisin module with A-coefficients and descent
data, and N is an object of K(A), then we have a natural short exact sequence

0→ HomK(A)(M,N)→ C0(N)→ C1(N)→ Ext1K(A)(M,N)→ 0.
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The following lemma records the behaviour of these complexes with respect to
base change.

Lemma 3.1.9. Suppose that M, N are Breuil–Kisin modules with descent data
and A-coefficients, that B is an A-algebra, and that Q is a B-module. Then the
complexes C•

M(N ⊗̂AQ) and C•
M ⊗̂AB

(N ⊗̂AQ) coincide, the former complex formed

with respect to K(A) and the latter with respect to K(B).

Proof. Indeed, there is a natural isomorphism

HomSA[Gal(K′/K)](M,N ⊗̂AQ) ∼= HomSB [Gal(K′/K)](M ⊗̂AB,N ⊗̂AQ),

and similarly with ϕ∗M in place of M. �

The following slightly technical lemma is crucial for establishing finiteness prop-
erties, and also base-change properties, of Exts of Breuil–Kisin modules.

Lemma 3.1.10. Let A be a O/̟a-algebra for some a ≥ 1, suppose that M is a
Breuil–Kisin module with descent data and A-coefficients, of height at most h, and
suppose that N is a u-adically complete, u-torsion free object of K(A).

Let C• be the complex defined in Definition 3.1.2, and write δ for its differential.
Suppose that Q is an A-module with the property that Ci⊗AQ is v-torsion free for
i = 0, 1 and v-adically separated for i = 0.

Then:

(1) For any integer M ≥ (eah+ 1)/(p− 1), ker(δ ⊗ idQ) ∩ vMC0 ⊗A Q = 0.

(2) For any integer N ≥ (peah+ 1)/(p− 1), δ ⊗ idQ induces an isomorphism

(Φ∗
M)−1(vNC1 ⊗A Q)

∼−→ vN (C1 ⊗A Q).

Consequently, for N as in (2) the natural morphism of complexes of A-modules

[C0⊗AQ
δ⊗idQ−→ C1⊗AQ]→ [C0⊗AQ/

(
(Φ∗

M)−1(vNC1⊗AQ)
) δ⊗idQ−→ C1⊗AQ/vNC1⊗AQ]

is a quasi-isomorphism.

Since we are assuming that the Ci ⊗A Q are v-torsion free, the expression
vrCi(N)⊗AQmay be interpreted as denoting either vr

(
Ci(N)⊗AQ

)
or
(
vrCi(N)

)
⊗A

Q, the two being naturally isomorphic.

Remark 3.1.11. Before giving the proof of Lemma 3.1.10, we observe that the hy-
potheses on the Ci ⊗A Q are satisfied if either Q = A, or else N is a projective
SA-module and Q is a finitely generated B-module for some finitely generated
A-algebra B. (Indeed C1 ⊗A Q is v-adically separated as well in these cases.)

(1) Since M is projective of finite rank over A[[u]], and since N is u-adically
complete and u-torsion free, each Ci is v-adically separated and v-torsion free. In
particular the hypothesis on Q is always satisfied by Q = A. (In fact since N is
u-adically complete it also follows that the Ci are v-adically complete. Here we
use that Gal(K ′/K) has order prime to p to see that C0 is an S0

A-module direct
summand of HomSA

(M,N), and similarly for C1.)
(2) Suppose N is a projective SA-module. Then the Ci are projective S0

A-
modules, again using that Gal(K ′/K) has order prime to p. Since eachCi(N)/vCi(N)
is A-flat, it follows that Ci(N)⊗AQ is v-torsion free. If furthermore B is a finitely
generated A-algebra, and Q is a finitely generated B-module, then the Ci(N)⊗AQ
are v-adically separated (being finitely generated modules over the ring A[[v]]⊗AB,
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which is a finitely generated algebra over the Noetherian ring A[[v]], and hence is
itself Noetherian).

Proof of Lemma 3.1.10. Since pa = 0 in A, there exists H(u) ∈ SA with ue
′ah =

E(u)hH(u) in SA. Thus the image of ΦM contains ue
′ahM = veahM, and there

exists a map Υ : M→ ϕ∗M such that ΦM ◦Υ is multiplication by veah.
We begin with (1). Suppose that f ∈ ker(δ⊗ idQ)∩ vMC0⊗AQ. Since C0⊗AQ

is v-adically separated, it is enough, applying induction on M , to show that f ∈
vM+1C0 ⊗A Q. Since f ∈ ker(δ ⊗ idQ), we have f ◦ ΦM = ΦN ◦ ϕ∗f . Since
f ∈ vMC0 ⊗A Q, we have f ◦ ΦM = ΦN ◦ ϕ∗f ∈ vpMC1 ⊗A Q. Precomposing
with Υ gives veahf ∈ vpMC0 ⊗AQ. Since C0 ⊗A Q is v-torsion free, it follows that
f ∈ vpM−eahC0 ⊗A Q ⊆ uM+1C0 ⊗A Q, as required.

We now move on to (2). Set M = N − eah. By precomposing with Υ we see
that α ◦ ΦM ∈ vNC1 ⊗A Q implies α ∈ vMC0 ⊗A Q; from this, together with the
inequality pM ≥ N , it is straightforward to check that

(Φ∗
M)−1(vNC1 ⊗A Q) = (δ ⊗ idQ)

−1(vNC1 ⊗A Q) ∩ vMC0 ⊗A Q.
Note thatM satisfies the condition in (1). To complete the proof we will show that
for any M as in (1) and any N ≥M + eah the map δ induces an isomorphism

(δ ⊗ idQ)
−1(vNC1 ⊗A Q) ∩ vMC0 ⊗A Q ∼−→ vNC1 ⊗A Q.

By (1), δ ⊗ idQ induces an injection (δ ⊗ idQ)
−1(vNC1 ⊗A Q) ∩ vMC0 ⊗A Q →֒

vNC1 ⊗A Q, so it is enough to show that (δ ⊗ idQ)(v
MC0 ⊗A Q) ⊇ vNC1 ⊗A Q.

Equivalently, we need to show that

vNC1 ⊗A Q→ (C1 ⊗A Q)/(δ ⊗ idQ)
(
vMC0 ⊗A Q)

is identically zero. Since the formation of cokernels is compatible with tensor prod-
ucts, we see that this morphism is obtained by tensoring the corresponding mor-
phism

vNC1 → C1/δ
(
vMC0

)

with Q over A, so we are reduced to the case Q = A. (Recall from Remark 3.1.11(1)
that the hypotheses of the Lemma are satisfied in this case, and that C1 is v-adically
separated.)

We claim that for any g ∈ vNC1, we can find an f ∈ vN−eahC0 such that
δ(f) − g ∈ vp(N−eah)C1. Admitting the claim, given any g ∈ vNC1, we may find
h ∈ vMC0 with δ(h) = g by successive approximation in the following way: Set
h0 = f for f as in the claim; then h0 ∈ vN−eahC0 ⊆ vMC0, and δ(h0) − g ∈
vp(N−eah)C1 ⊆ vN+1C1. Applying the claim again with N replaced by N + 1, and
g replaced by g−δ(h0), we find f ∈ vN+1−eahC0 ⊆ vM+1C0 with δ(f)−g+δ(h0) ∈
vp(N+1−eah)C1 ⊆ vN+1C1. Setting h1 = h0 + f , and proceeding inductively, we
obtain a Cauchy sequence converging (in the v-adically complete A[[v]]-module C0)
to the required element h.

It remains to prove the claim. Since δ(f) = ΦN ◦ ϕ∗f − f ◦ ΦM, and since if
f ∈ vN−eahC0 then ΦN ◦ϕ∗f ∈ vp(N−eah)C1, it is enough to show that we can find
an f ∈ vN−eahC0 with f ◦ΦM = −g. Since ΦM is injective, the map Υ◦ΦM is also
multiplication by veah, and so it suffices to take f with veahf = −g◦Υ ∈ vNC0. �

Corollary 3.1.12. Let A be a Noetherian O/̟a-algebra, and let M, N be Breuil–
Kisin modules with descent data and A-coefficients. If B is a finitely generated
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A-algebra, and Q is a finitely generated B-module, then the natural morphism of
complexes of B-modules

[C0(N)⊗A Q
δ⊗idQ−→ C1(N)⊗A Q]→ [C0(N ⊗̂AQ)

δ−→ C1(N ⊗̂AQ)]

is a quasi-isomorphism.

Proof. By Remarks 3.1.11 and 2.1.6(2) we can apply Lemma 3.1.10 to both Ci(N ⊗̂AQ)
and Ci(N)⊗A Q, and we see that it is enough to show that the natural morphism
of complexes

[
(
C0(N)⊗A Q

)
/(Φ∗

M ⊗ idQ)
−1
(
vNC1(N)⊗A Q

) δ−→
(
C1(N)⊗A Q

)
/
(
vNC1(N)⊗A Q

)
]

[C0(N ⊗̂AQ)/
(
Φ∗

M)−1(vNC1(N ⊗̂AQ)
) δ→ C1(N ⊗̂AQ)/vNC1(N ⊗̂AQ)]

is a quasi-isomorphism. In fact, it is even an isomorphism. �

Proposition 3.1.13. Let A be a O/̟a-algebra for some a ≥ 1, and let M, N be
Breuil–Kisin modules with descent data and A-coefficients. Then Ext1K(A)(M,N)

and Ext1K(A)(M,N/uiN) for i ≥ 1 are finitely presented A-modules.

If furthermore A is Noetherian, then HomK(A)(M,N) and HomK(A)(M,N/uiN)
for i ≥ 1 are also finitely presented (equivalently, finitely generated) A-modules.

Proof. The statements for N/uiN follow easily from those for N, by considering
the short exact sequence 0 → uiN → N → N/uiN → 0 in K(A) and applying
Corollary 3.1.7. By Corollary 3.1.8, it is enough to consider the cohomology of the
complex C•. By Lemma 3.1.10 with Q = A, the cohomology of C• agrees with the
cohomology of the induced complex

C0/
(
(Φ∗

M)−1(vNC1))→ C1/vNC1,

for an appropriately chosen value of N . It follows that for an appropriately cho-
sen value of N , Ext1K(A)(M,N) can be computed as the cokernel of the induced

morphism C0/vNC0 → C1/vNC1.
Under our hypothesis on N, C0/vNC0 and C1/vNC1 are finitely generated pro-

jective A-modules, and thus finitely presented. It follows that Ext1K(A)(M,N) is
finitely presented.

In the case that A is furthermore assumed to be Noetherian, it is enough to note
that since vNC0 ⊆ (Φ∗

M)−1(vNC1), the quotient C0/
(
(Φ∗

M)−1(vNC1)
)
is a finitely

generated A-module. �

Proposition 3.1.14. Let A be a O/̟a-algebra for some a ≥ 1, and let M and N be
Breuil–Kisin modules with descent data and A-coefficients. Let B be an A-algebra,
and let fB : M ⊗̂AB → N ⊗̂AB be a morphism of Breuil–Kisin modules with B-
coefficients.

Then there is a finite type A-subalgebra B′ of B and a morphism of Breuil–Kisin
modules fB′ : M ⊗̂AB′ → N ⊗̂AB′ such that fB is the base change of fB′ .

Proof. By Lemmas 3.1.3 and 3.1.9 (the latter applied with Q = B) we can and do
think of fB as being an element of the kernel of δ : C0(N ⊗̂AB) → C1(N ⊗̂AB),
the complex C• here and throughout this proof denoting C•

M as usual.
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Fix N as in Lemma 3.1.10, and write fB for the corresponding element of
C0(N ⊗̂AB)/vN = (C0(N)/vN ) ⊗A B (this equality following easily from the as-
sumption thatM andN are projectiveSA-modules of finite rank). Since C0(N)/vN

is a projective A-module of finite rank, it follows that for some finite type A-
subalgebraB′ ofB, there is an element fB′ ∈ (C0(N)/vN )⊗AB′ = C0(N ⊗̂AB′)/vN

such that fB′ ⊗B′ B = fB . Denote also by fB′ the induced element of

C0(N ⊗̂AB′)/
(
Φ∗

M)−1(vNC1(N ⊗̂AB′)).

By Lemma 3.1.10 (and Lemma 3.1.3) we have a commutative diagram with exact
rows

0 // H0(C•(N ⊗̂AB′))

��

// C0(N ⊗̂AB′)/
(
(Φ∗

M)−1(vNC1(N ⊗̂AB′))
) δ

//

��

C1(N ⊗̂AB′)/vN

��

0 // H0(C•(N ⊗̂AB)) // C0(N ⊗̂AB)/
(
(Φ∗

M)−1(vNC1(N ⊗̂AB))
) δ

// C1(N ⊗̂AB)/vN

in which the vertical arrows are induced by ⊗̂B′B. By a diagram chase we only
need to show that δ(fB′) = 0. Since δ(fB) = 0, it is enough to show that the
right hand vertical arrow is an injection. This arrow can be rewritten as the tensor
product of the injection of A-algebras B′ →֒ B with the flat (even projective of
finite rank) A-module C1(N)/vN , so the result follows. �

We have the following key base-change result for Ext1’s of Breuil–Kisin modules
with descent data.

Proposition 3.1.15. Suppose that M and N are Breuil–Kisin modules with de-
scent data and coefficients in a O/̟a-algebra A. Then for any A-algebra B, and

for any B-module Q, there are natural isomorphisms Ext1K(A)(M,N) ⊗A Q
∼−→

Ext1K(B)(M ⊗̂AB,N ⊗̂AB)⊗B Q ∼−→ Ext1K(B)(M ⊗̂AB,N ⊗̂AQ).

Proof. We first prove the lemma in the case of an A-module Q. It follows from
Lemmas 3.1.5 and 3.1.10 that we may compute Ext1K(A)(M,N) as the cokernel of
the morphism

C0(N)/vNC0(N)
δ−→ C1(N)/vNC1(N),

for some sufficiently large value of N (not depending on N), and hence that we may
compute Ext1K(A)(M,N)⊗A Q as the cokernel of the morphism

(
C0(N)/vNC0(N)

)
⊗A Q δ−→

(
C1(N)/vNC1(N)

)
⊗A Q.

We may similarly compute Ext1K(A)(M,N ⊗̂AQ) as the cokernel of the morphism

C0(N ⊗̂AQ)/vNC0(N ⊗̂AQ)
δ−→ C1(N ⊗̂AQ)/vNC1(N ⊗̂AQ).

(Remark 2.1.6 (2) shows thatN ⊗̂AQ satisfies the necessary hypotheses for Lemma 3.1.10
to apply.) Once we note that the natural morphism

(
Ci(N)/vNCi(N)

)
⊗A Q→ Ci(N ⊗̂AQ)/vNCi(N ⊗̂AQ)

is an isomorphism for i = 0 and 1 (because M is a finitely generated projective
SA-module), we obtain the desired isomorphism

Ext1K(A)(M,N)⊗A Q ∼−→ Ext1K(A)(M,N ⊗̂AQ).
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If B is an A-algebra, and Q is a B-module, then by Lemma 3.1.9 there is a
natural isomorphism

Ext1K(A)(M,N ⊗̂AQ)
∼−→ Ext1K(B)(M ⊗̂AB,N ⊗̂AQ);

combined with the preceding base-change result, this yields one of our claimed
isomorphisms, namely

Ext1K(A)(M,N)⊗A Q ∼−→ Ext1K(B)(M ⊗̂AB,N ⊗̂AQ).

Taking Q to be B itself, we then obtain an isomorphism

Ext1K(A)(M,N)⊗A B ∼−→ Ext1K(B)(M ⊗̂AB,N ⊗̂AB).

This allows us to identify Ext1K(A)(M,N) ⊗A Q, which is naturally isomorphic to(
Ext1K(A)(M,N) ⊗A B

)
⊗B Q, with Ext1K(B)(M ⊗̂AB,N ⊗̂AB) ⊗B Q, yielding the

second claimed isomorphism. �

In contrast to the situation for extensions (cf. Proposition 3.1.15), the formation
of homomorphisms between Breuil–Kisin modules is in general not compatible with
arbitrary base-change, as the following example shows.

Example 3.1.16. Take A = (Z/pZ)[x±1, y±1], and let Mx be the free Breuil–
Kisin module of rank one and A-coefficients with ϕ(e) = xe for some genera-
tor e of Mx. Similarly define My with ϕ(e′) = ye′ for some generator e′ of
My. Then HomK(A)(Mx,My) = 0. On the other hand, if B = A/(x − y)

then Mx ⊗̂AB and My ⊗̂AB are isomorphic, so that HomK(B)(Mx ⊗̂B,My ⊗̂B) 6∼=
HomK(A)(Mx,My)⊗A B.

However, it is possible to establish such a compatibility in some settings. Corol-
lary 3.1.18, which gives a criterion for the vanishing of HomK(B)(M ⊗̂AB,N ⊗̂AB)
for any A-algebra B, is a first example of a result in this direction. Lemma 3.1.20
deals with flat base change, and Lemma 3.1.21, which will be important in Sec-
tion 3.3, proves that formation of homomorphisms is compatible with base-change
over a dense open subscheme of SpecA.

Proposition 3.1.17. Suppose that A is a Noetherian O/̟a-algebra, and that M
and N are objects of K(A) that are finitely generated over SA (or, equivalently,
over A[[u]]). Suppose also that N is a flat SA-module. Consider the following
conditions:

(1) HomK(B)(M ⊗̂AB,N ⊗̂AB) = 0 for any finite type A-algebra B.

(2) HomK(κ(m))

(
M⊗A κ(m),N⊗A κ(m)

)
= 0 for each maximal ideal m of A.

(3) HomK(A)(M,N⊗A Q) = 0 for any finitely generated A-module Q.

Then we have (1) =⇒ (2) ⇐⇒ (3). If A is furthermore Jacobson, then all three
conditions are equivalent.

Proof. If m is a maximal ideal of A, then κ(m) is certainly a finite type A-algebra,
and so evidently (1) implies (2). It is even a finitely generated A-module, and so
also (2) follows from (3).

We next prove that (2) implies (3). To this end, recall that if A is any ring,
and M is any A-module, then M injects into the product of its localizations at all
maximal ideals. If A is Noetherian, andM is finitely generated, then, by combining
this fact with the Artin–Rees Lemma, we see that M embeds into the product of
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its completions at all maximal ideals. Another way to express this is that, if I runs
over all cofinite length ideals in A (i.e. all ideals for which A/I is finite length),
then M embeds into the projective limit of the quotients M/IM (the point being
that this projective limit is the same as the product over all m-adic completions).
We are going to apply this observation with A replaced by SA, and with M taken
to be N⊗A Q for some finitely generated A-module Q.

In A[[u]], one sees that u lies in the Jacobson radical (because 1+fu is invertible
in A[[u]] for every f ∈ A[[u]]), and thus in every maximal ideal, and so the maximal
ideals of A[[u]] are of the form (m, u), where m runs over the maximal ideals of A.
Thus the ideals of the form (I, un), where I is a cofinite length ideal in A, are cofinal
in all cofinite length ideals in A[[u]]. Since SA is finite over A[[u]], we see that the
ideals (I, un) in SA are also cofinal in all cofinite length ideals in A[[u]]. Since A[[u]],
and hence SA, is furthermore Noetherian when A is, we see that if Q is a finitely
generated A-module, and N is a finitely generated SA-module, then N⊗A (Q/IQ)
is u-adically complete, for any cofinite length ideal I in A, and hence equal to the
limit over n of N⊗A Q/(I, un). Putting this together with the observation of the
preceding paragraph, we see that the natural morphism

N⊗A Q→ lim←−
I

N⊗A (Q/IQ)

(where I runs over all cofinite length ideals of A) is an embedding. The induced
morphism

HomK(A)(M,N⊗A Q)→ lim←−
I

HomK(A)(M,N⊗A (Q/IQ))

is then evidently also an embedding.
Thus, to conclude that HomK(A)(M,N ⊗A Q) vanishes, it suffices to show that

HomK(A)(M,N⊗A (Q/IQ)) vanishes for each cofinite length ideal I in A. An easy
induction (using the flatness ofN) on the length of A/I reduces this to showing that
HomK(A)

(
M,N ⊗A κ(m)

)
, or, equivalently, HomK(κ(m))

(
M ⊗A κ(m),N ⊗A κ(m)

)
,

vanishes for each maximal ideal m. Since this is the hypothesis of (2), we see that
indeed (2) implies (3).

It remains to show that (3) implies (1) when A is Jacobson. Applying the result
“(2) implies (3)” (with A replaced by B, and taking Q in (3) to be B itself as a
B-module) to M ⊗̂AB and N ⊗̂AB, we see that it suffices to prove the vanishing of

HomK(B)

(
(M ⊗̂AB)⊗B κ(n), (N ⊗̂AB)⊗B κ(n)

)
= HomK(A)

(
M,N ⊗̂Aκ(n)

)

for each maximal ideal n of B. Since A is Jacobson, the field κ(n) is in fact a finitely
generated A-module, hence N ⊗̂κ(n) = N⊗A κ(n), and so the desired vanishing is
a special case of (3). �

Corollary 3.1.18. If A is a Noetherian and Jacobson O/̟a-algebra, and if M and
N are Breuil–Kisin modules with descent data and A-coefficients, then the following
three conditions are equivalent:

(1) HomK(B)(M ⊗̂AB,N ⊗̂AB) = 0 for any A-algebra B.

(2) HomK(κ(m))

(
M⊗A κ(m),N⊗A κ(m)

)
= 0 for each maximal ideal m of A.

(3) HomK(A)(M,N⊗A Q) = 0 for any finitely generated A-module Q.
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Proof. By Proposition 3.1.17, we need only prove that if HomK(B)(M ⊗̂AB,N ⊗̂AB)
vanishes for all finitely generated A-algebras B, then it vanishes for all A-algebrasB.
This is immediate from Proposition 3.1.14. �

Corollary 3.1.19. Suppose that M and N are Breuil–Kisin modules with de-
scent data and coefficients in a Noetherian O/̟a-algebra A, and that furthermore
HomK(A)

(
M ⊗A κ(m),N⊗A κ(m)

)
vanishes for each maximal ideal m of A. Then

the A-module Ext1K(A)(M,N) is projective of finite rank.

Proof. By Proposition 3.1.13, in order to prove that Ext1K(A)(M,N) is projective
of finite rank over A, it suffices to prove that it is flat over A. For this, it suffices
to show that Q 7→ Ext1K(A)(M,N)⊗AQ is exact when applied to finitely generated

A-modules Q. Proposition 3.1.15 (together with Remark 2.1.6 (1)) allows us to
identify this functor with the functor Q 7→ Ext1K(A)(M,N ⊗A Q). Note that the

functor Q 7→ N⊗AQ is an exact functor of Q, since SA is a flat A-module (as A is
Noetherian; see Remark 2.1.3(3)). Thus, taking into account Corollary 3.1.7, we see
that it suffices to show that HomK(A)(M,N⊗AQ) = 0 for each finitely generated A-

module Q, under the hypothesis that HomK(A)

(
M⊗Aκ(m),N⊗Aκ(m)

)
= 0 for each

maximal idealm ofA. This is the implication (2) =⇒ (3) of Proposition 3.1.17. �

Lemma 3.1.20. Suppose that M is a Breuil–Kisin modules with descent data and
coefficients in a Noetherian O/̟a-algebra A. Suppose that N is either a Breuil–
Kisin module with A-coefficients, or that N = N′/uNN′, where N′ a Breuil–Kisin
module with A-coefficients and N ≥ 1. Then, if B is a finitely generated flat A-
algebra, we have a natural isomorphism

HomK(B)(M ⊗̂AB,N ⊗̂AB)
∼−→ HomK(A)(M,N)⊗A B.

Proof. By Corollary 3.1.8 and the flatness of B, we have a left exact sequence

0→ HomK(A)(M,N)⊗A B → C0(N)⊗A B → C1(N)⊗A B
and therefore (applying Corollary 3.1.12 to treat the case that N is projective) a
left exact sequence

0→ HomK(A)(M,N) ⊗A B → C0(N ⊗̂AB)→ C1(N ⊗̂AB).

The result follows from Corollary 3.1.8 and Lemma 3.1.9. �

Lemma 3.1.21. Suppose that M is a Breuil–Kisin module with descent data and
coefficients in a Noetherian O/̟a-algebra A which is furthermore a domain. Sup-
pose also that N is either a Breuil–Kisin module with A-coefficients, or that N =
N′/uNN′, where N′ is a Breuil–Kisin module with A-coefficients and N ≥ 1. Then
there is some nonzero f ∈ A with the following property: writing MAf

= M ⊗̂AAf
and NAf

= N ⊗̂AAf , then for any finitely generated Af -algebra B, and any finitely
generated B-module Q, there are natural isomorphisms

HomK(Af )(MAf
,NAf

)⊗Af
Q

∼−→ HomK(B)(MAf
⊗̂Af

B,NAf
⊗̂Af

B)⊗B Q
∼−→ HomK(B)(MAf

⊗̂Af
B,NAf

⊗̂Af
Q).

Proof of Lemma 3.1.21. Note that since A is Noetherian, by Remark 2.1.3(3) we
see that N is A-flat. By Corollary 3.1.8 we have an exact sequence

0→ HomK(A)(M,N)→ C0(N)→ C1(N)→ Ext1K(A)(M,N)→ 0.
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Since by assumption M is a projective SA-module, and N is a flat A-module, the
Ci(N) are also flat A-modules.

By Proposition 3.1.13, Ext1K(A)(M,N) is a finitely generated A-module, so by

the generic freeness theorem [Sta13, Tag 051R] there is some nonzero f ∈ A such
that Ext1K(A)(M,N)f is free over Af .

Since localisation is exact, we obtain an exact sequence

0→ HomK(Af )(M,N)f → C0(N)f → C1(N)f → Ext1K(A)(M,N)f → 0

and therefore (applying Corollary 3.1.12 to treat the case that N is a Breuil–Kisin
module) an exact sequence

0→ HomK(Af )(MAf
,NAf

)→ C0(NAf
)→ C1(NAf

)→ Ext1K(A)(M,N)f → 0.

Since the last three terms are flat over Af , this sequence remains exact upon
tensoring over Af with Q. Applying Corollary 3.1.12 again to treat the case that
N is a Breuil–Kisin module, we see that in particular we have a left exact sequence

0→ HomK(Af )(MAf
,NAf

)⊗Af
Q→ C0(NAf

⊗̂Af
Q)→ C1(NAf

⊗̂Af
Q),

and Corollary 3.1.8 together with Lemma 3.1.9 yield one of the desired isomor-
phisms, namely

HomK(Af )(MAf
,NAf

)⊗Af
Q

∼−→ HomK(B)(MAf
⊗̂Af

B,NAf
⊗̂Af

Q).

If we consider the case when Q = B, we obtain an isomorphism

HomK(Af )(MAf
,NAf

)⊗Af
B

∼−→ HomK(B)(MAf
⊗̂Af

B,NAf
⊗̂Af

B).

Rewriting the tensor product –⊗Af
Q as –⊗Af

B ⊗B Q, we then find that

HomK(B)(MAf
⊗̂Af

B,NAf
⊗̂Af

B)⊗B Q ∼−→ HomK(B)(MAf
⊗̂Af

B,NAf
⊗̂Af

Q),

which gives the second desired isomorphism. �

Variants on the preceding result may be proved using other versions of the generic
freeness theorem.

Example 3.1.22. Returning to the setting of Example 3.1.16, one can check using
Corollary 3.1.18 that the conclusion of Lemma 3.1.21 (for M = Mx and N = My)
holds with f = x−y. In this case all of the resulting Hom groups vanish (cf. also the
proof of Lemma 3.3.7). It then follows from Corollary 3.1.19 that Ext1K(A)(M,N)f
is projective over Af , so that the proof of Lemma 3.1.21 even goes through with
this choice of f .

As well as considering homomorphisms and extensions of Breuil–Kisin modules,
we need to consider the homomorphisms and extensions of their associated étale ϕ-
modules; recall that the passage to associated étale ϕ-modules amounts to inverting
u, and so we briefly discuss this process in the general context of the category K(A).

We let K(A)[1/u] denote the full subcategory of K(A) consisting of objects on
which multiplication by u is invertible. We may equally well regard it as the cate-
gory of left SA[1/u][F,Gal(K ′/K)]-modules (this notation being interpreted in the
evident manner). There are natural isomorphisms (of bi-modules)

(3.1.23) SA[1/u]⊗SA
SA[F,Gal(K ′/K)]

∼−→ SA[1/u][F,Gal(K ′/K)]

and

(3.1.24) SA[F,Gal(K ′/K)]⊗SA
SA[1/u]

∼−→ SA[1/u][F,Gal(K ′/K)].

http://stacks.math.columbia.edu/tag/051R
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Thus (since SA → SA[1/u] is a flat morphism of commutative rings) the morphism
of rings SA[F,Gal(K ′/K)]→ SA[1/u][F,Gal(K ′/K)] is both left and right flat.

IfM is an object of K(A), then we see from (3.1.23) thatM[1/u] := SA[1/u]⊗SA

M
∼−→ SA[1/u][F,Gal(K ′/K)]⊗SA[F,Gal(K′/K)]M is naturally an object ofK(A)[1/u].

Our preceding remarks about flatness show that M 7→M[1/u] is an exact functor
K(A)→ K(A)[1/u].
Lemma 3.1.25. (1) If M and N are objects of K(A)[1/u], then there is a

natural isomorphism

ExtiK(A)[1/u](M,N)
∼−→ ExtiK(A)(M,N).

(2) If M is an object of K(A) and N is an object of K(A)[1/u], then there is a
natural isomorphism

ExtiK(A)(M, N)
∼−→ ExtiK(A)(M[1/u], N),

for all i ≥ 0.

Proof. The morphism of (1) can be understood in various ways; for example, by
thinking in terms of Yoneda Exts, and recalling that K(A)[1/u] is a full subcate-
gory of K(A). If instead we think in terms of projective resolutions, we can begin
with a projective resolution P• → M in K(A), and then consider the induced pro-

jective resolution P•[1/u] of M [1/u]. Noting that M [1/u]
∼−→ M for any object

M of K(A)[1/u], we then find (via tensor adjunction) that HomK(A)(P
•, N)

∼−→
HomK(A)[1/u](P

•[1/u], N), which induces the desired isomorphism of Ext’s by pass-
ing to cohomology.

Taking into account the isomorphism of (1), the claim of (2) is a general fact
about tensoring over a flat ring map (as can again be seen by considering projective
resolutions). �

Remark 3.1.26. The preceding lemma is fact an automatic consequence of the ab-
stract categorical properties of our situation: the functorM 7→M[1/u] is left adjoint
to the inclusion K(A)[1/u] ⊂ K(A), and restricts to (a functor naturally equivalent
to) the identity functor on K(A)[1/u].

The following lemma expresses the Hom between étale ϕ-modules arising from
Breuil–Kisin modules in terms of a certain direct limit.

Lemma 3.1.27. Suppose that M is a Breuil–Kisin module with descent data in
a Noetherian O/̟a-algebra A, and that N is an object of K(A) which is finitely
generated and u-torsion free as an SA-module. Then there is a natural isomorphism

lim−→
i

HomK(A)(u
iM,N)

∼−→ HomK(A)[1/u](M[1/u],N[1/u]),

where the transition maps are induced by the inclusions ui+1M ⊂ uiM.

Remark 3.1.28. Note that since N is u-torsion free, the transition maps in the
colimit are injections, so the colimit is just an increasing union.

Proof. There are compatible injections HomK(A)(u
iM,N)→ HomK(A)[1/u](M[1/u],N[1/u]),

taking f ′ ∈ HomK(A)(u
iM,N) to f ∈ HomK(A)(M,N[1/u]) where f(m) = u−if ′(uim).

Conversely, given f ∈ HomK(A)(M,N[1/u]), there is some i such that f(M) ⊂ u−iN,
as required. �
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We have the following analogue of Proposition 3.1.17.

Corollary 3.1.29. Suppose that M and N are Breuil–Kisin modules with descent
data in a Noetherian O/̟a-algebra A. Consider the following conditions:

(1) HomK(B)[1/u]

(
(M ⊗̂AB)[1/u], (N ⊗̂AB)[1/u]

)
= 0 for any finite type A-

algebra B.

(2) HomK(κ(m))[1/u]

(
(M⊗Aκ(m))[1/u], (N⊗Aκ(m))[1/u]

)
= 0 for each maximal

ideal m of A.

(3) HomK(A)[1/u]

(
M[1/u], (N ⊗A Q)[1/u]

)
= 0 for any finitely generated A-

module Q.

Then we have (1) =⇒ (2) ⇐⇒ (3). If A is furthermore Jacobson, then all three
conditions are equivalent.

Proof. By Lemma 3.1.27, the three conditions are respectively equivalent to the
following conditions.

(1′) HomK(B)

(
ui(M ⊗̂AB),N ⊗̂AB

)
= 0 for any finite type A-algebra B and all

i ≥ 0.

(2′) HomK(κ(m))

(
ui(M⊗A κ(m)),N ⊗A κ(m)

)
= 0 for each maximal ideal m of

A and all i ≥ 0.

(3′) HomK(A)

(
uiM,N⊗AQ

)
= 0 for any finitely generated A-module Q and all

i ≥ 0.

Since M is projective, the first two conditions are in turn equivalent to

(1′′) HomK(B)

(
(uiM) ⊗̂AB,N ⊗̂AB

)
= 0 for any finite type A-algebra B and all

i ≥ 0.

(2′′) HomK(κ(m))

(
(uiM) ⊗A κ(m),N⊗A κ(m)

)
= 0 for each maximal ideal m of

A and all i ≥ 0.

The result then follows from Proposition 3.1.17. �

Definition 3.1.30. If M and N are objects of K(A), then we define

ker-Ext1K(A)(M,N) := ker
(
Ext1K(A)(M,N)→ Ext1K(A)(M[1/u],N[1/u])

)
.

The point of this definition is to capture, in the setting of Lemma 2.2.4, the non-split
extensions of Breuil–Kisin modules whose underlying extension of Galois represen-
tations is split.

Suppose now that M is a Breuil–Kisin module. The exact sequence in K(A)
0→ N→ N[1/u]→ N[1/u]/N→ 0

gives an exact sequence of complexes

0 // C0(N)

��

// C0(N[1/u])

��

// C0(N[1/u]/N)

��

// 0

0 // C1(N) // C1(N[1/u]) // C1(N[1/u]/N) // 0.

It follows from Corollary 3.1.8, Lemma 3.1.25(2), and the snake lemma that we
have an exact sequence

0→ HomK(A)(M,N)→ HomK(A)(M,N[1/u])

→ HomK(A)(M,N[1/u]/N)→ ker-Ext1K(A)(M,N)→ 0.
(3.1.31)
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Lemma 3.1.32. If M, N are Breuil–Kisin modules with descent data and coeffi-
cients in a Noetherian O/̟a-algebra A, and N has height at most h, then f(M) is
killed by ui for any f ∈ HomK(A)(M,N[1/u]/N) and any i ≥ ⌊e′ah/(p− 1)⌋.
Proof. Suppose that f is an element of HomK(A)(M,N[1/u]/N). Then f(M) is a

finitely generated submodule of N[1/u]/N, and it therefore killed by ui for some
i ≥ 0. Choosing i to be the exponent of f(M) (that is, choosing i to be minimal),
it follows that (ϕ∗f)(ϕ∗M) has exponent precisely ip. (From the choice of i, we see
that ui−1f(M) is nonzero but killed by u, i.e., it is just a W (k′) ⊗A-module, and
so its pullback by ϕ : SA → SA has exponent precisely p. Then by the flatness
of ϕ : SA → SA we have uip−1(ϕ∗f)(ϕ∗M) = up−1ϕ∗(ui−1f(M)) 6= 0.)

We claim that ui+e
′ah(ϕ∗f)(ϕ∗M) = 0; admitting this, we deduce that i+e′ah ≥

ip, as required. To see the claim, take x ∈ ϕ∗M, so that ΦN((uiϕ∗f)(x)) =
uif(ΦM(x)) = 0. It is therefore enough to show that the kernel of

ΦN : ϕ∗N[1/u]/ϕ∗N→ N[1/u]/N

is killed by ue
′ah; but this follows immediately from an application of the snake

lemma to the commutative diagram

0 // ϕ∗N //

ΦN

��

ϕ∗N[1/u] //

ΦN

��

ϕ∗N[1/u]/ϕ∗N //

ΦN

��

0

0 // N // N[1/u] // N[1/u]/N // 0

together with the assumption that N has height at most h and an argument as in
the first line of the proof of Lemma 3.1.10. �

Lemma 3.1.33. If M, N are Breuil–Kisin modules with descent data and coeffi-
cients in a Noetherian O/̟a-algebra A, and N has height at most h, then for any
i ≥ ⌊e′ah/(p− 1)⌋ we have an exact sequence

0→ HomK(A)(u
iM, uiN)→ HomK(A)(u

iM,N)

→ HomK(A)(u
iM,N/uiN)→ ker-Ext1K(A)(M,N)→ 0.

Proof. Comparing Lemma 3.1.32 with the proof of Lemma 3.1.27, we see that
the direct limit in that proof has stabilised at i, and we obtain an isomorphism
HomK(A)(M,N[1/u])

∼→ HomK(A)(u
iM,N) sending a map f to f ′ : uim 7→ uif(m).

The same formula evidently identifies HomK(A)(M,N) with HomK(A)(u
iM, uiN)

and HomK(A)(M,N[1/u]/N) with HomK(A)(u
iM,N[1/u]/uiN). But any map in

the latter group has image contained in N/uiN (by Lemma 3.1.32 applied to
HomK(A)(M,N[1/u]/N), together with the identification in the previous sentence),

so that HomK(A)(u
iM,N[1/u]/uiN) = HomK(A)(u

iM,N/uiN). �

Proposition 3.1.34. Let M and N be Breuil–Kisin modules with descent data and
coefficients in a Noetherian O/̟a-domain A. Then there is some nonzero f ∈ A
with the following property: if we write MAf

= M ⊗̂AAf and NAf
= N ⊗̂AAf ,

then if B is any finitely generated Af -algebra, and if Q is any finitely generated
B-module, we have natural isomorphisms

ker-Ext1K(Af )
(M,N)⊗Af

Q
∼−→ ker-Ext1K(Af )

(MAf
⊗̂Af

B,N ⊗̂Af
B)⊗B Q

∼−→ ker-Ext1K(Af )
(MAf

⊗̂Af
B,N ⊗̂Af

Q).
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Proof. In view of Lemma 3.1.33, this follows from Lemma 3.1.21, with M there
being our uiM, and N being each of N, N/uiN in turn. �

The following result will be crucial in our investigation of the decomposition of
Cdd,1 and Rdd,1 into irreducible components.

Proposition 3.1.35. Suppose that M and N are Breuil–Kisin modules with de-
scent data and coefficients in a Noetherian O/̟a-algebra A which is furthermore a
domain, and suppose that HomK(A)

(
M⊗Aκ(m),N⊗Aκ(m)

)
vanishes for each max-

imal ideal m of A. Then there is some nonzero f ∈ A with the following property: if
we write MAf

= M ⊗̂AAf and NAf
= N ⊗̂AAf , then for any finitely generated Af -

algebra B, each of ker-Ext1K(B)(MAf
⊗̂Af

B,NAf
⊗̂Af

B), Ext1K(B)(MAf
⊗̂Af

B,NAf
⊗̂Af

B),
and

Ext1K(B)(MAf
⊗̂Af

B,NAf
⊗̂Af

B)/ ker-Ext1K(Af )
(MAf

⊗̂Af
B,NAf

⊗̂Af
B)

is a finitely generated projective B-module.

Proof. Choose f as in Proposition 3.1.34, let B be a finitely generated Af -algebra,
and let Q be a finitely generated B-module. By Propositions 3.1.15 and 3.1.34, the
morphism

ker-Ext1K(B)(MAf
⊗̂Af

B,NAf
⊗̂Af

B)⊗BQ→ Ext1K(B)(MAf
⊗̂Af

B,NAf
⊗̂Af

B)⊗BQ
is naturally identified with the morphism

ker-Ext1K(B)(MAf
⊗̂Af

B,NAf
⊗̂Af

Q)→ Ext1K(B)(MAf
⊗̂Af

B,NAf
⊗̂Af

Q);

in particular, it is injective. By Proposition 3.1.15 and Corollary 3.1.19 we see
that Ext1K(B)(MAf

⊗̂Af
B,NAf

⊗̂Af
B) is a finitely generated projective B-module;

hence it is also flat. Combining this with the injectivity just proved, we find that

Tor1B
(
Q,Ext1K(B)(M ⊗̂Af

B,NAf
⊗̂Af

B)/ ker-Ext1K(B)(MAf
⊗̂Af

B,NAf
⊗̂Af

B)
)
= 0

for every finitely generated B-module Q, and thus that

Ext1K(B)(MAf
⊗̂Af

B,NAf
⊗̂Af

B)/ ker-Ext1K(B)(MAf
⊗̂Af

B,NAf
⊗̂Af

B)

is a finitely generated flat, and therefore finitely generated projective, B-module.
Thus ker-Ext1K(B)(MAf

⊗̂Af
B,NAf

⊗̂Af
B) is a direct summand of the finitely gen-

erated projective B-module Ext1K(B)(MAf
⊗̂Af

B,NAf
⊗̂Af

B), and so is itself a
finitely generated projective B-module. �

3.2. Families of extensions. Let M and N be Breuil–Kisin modules with descent
data and A-coefficients, so that Ext1K(A)(M,N) is an A-module. Suppose that ψ :

V → Ext1K(A)(M,N) is a homomorphism of A-modules whose source is a projective
A-module of finite rank. Then we may regard ψ as an element of

Ext1K(A)(M,N)⊗A V ∨ = Ext1K(A)(M,N⊗A V ∨),

and in this way ψ corresponds to an extension

(3.2.1) 0→ N⊗A V ∨ → E→M→ 0,

which we refer to as the family of extensions of M by N parametrised by V (or
by ψ, if we want to emphasise our choice of homomorphism). We let Ev denote
the pushforward of E under the morphism N ⊗A V ∨ → N given by evaluation on
v ∈ V . In the special case that Ext1K(A)(M,N) itself is a projective A-module of

finite rank, we can let V be Ext1K(A)(M,N) and take ψ be the identity map; in this
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case we refer to (3.2.1) as the universal extension of M by N. The reason for this
terminology is as follows: if v ∈ Ext1K(A)(M,N), then Ev is the extension of M by
N corresponding to the element v.

Let B := A[V ∨] denote the symmetric algebra over A generated by V ∨. The
short exact sequence (3.2.1) is a short exact sequence of Breuil–Kisin modules with
descent data, and so forming its u-adically completed tensor product with B over
A, we obtain a short exact sequence

0→ N⊗A V ∨ ⊗̂AB → E ⊗̂AB →M ⊗̂AB → 0

of Breuil–Kisin modules with descent data over B (see Lemma 2.1.5). Pushing this
short exact sequence forward under the natural map

V ∨ ⊗̂AB = V ∨ ⊗A B → B

induced by the inclusion of V ∨ in B and the multiplication map B ⊗A B → B, we
obtain a short exact sequence

(3.2.2) 0→ N ⊗̂AB → Ẽ→M ⊗̂AB → 0

of Breuil–Kisin modules with descent data over B, which we call the family of
extensions of M by N parametrised by SpecB (which we note is (the total space
of) the vector bundle over SpecA corresponding to the projective A-module V ).

If αv : B → A is the morphism induced by the evaluation map V ∨ → A given by
some element v ∈ V , then base-changing (3.2.2) by αv, we recover the short exact
sequence

0→ N→ Ev →M→ 0.

More generally, suppose that A is a O/̟a-algebra for some a ≥ 1, and let C
be any A-algebra. Suppose that αṽ : B → C is the morphism induced by the
evaluation map V ∨ → C corresponding to some element ṽ ∈ C ⊗A V . Then base-
changing (3.2.2) by αṽ yields a short exact sequence

0→ N ⊗̂AC → Ẽ ⊗̂BC →M ⊗̂AC → 0,

whose associated extension class corresponds to the image of ṽ under the natu-
ral morphism C ⊗A V → C ⊗A Ext1K(A)(M,N) ∼= Ext1K(C)(M ⊗̂AC,N ⊗A C), the
first arrow being induced by ψ and the second arrow being the isomorphism of
Proposition 3.1.15.

3.2.3. The functor represented by a universal family. We now suppose that the
ring A and the Breuil–Kisin modules M and N have the following properties:

Assumption 3.2.4. Let A be a Noetherian and Jacobson O/̟a-algebra for some
a ≥ 1, and assume that for each maximal ideal m of A, we have that

HomK(κ(m))

(
M⊗A κ(m),N⊗A κ(m)

)
= HomK(κ(m))

(
N⊗A κ(m),M⊗A κ(m)

)
= 0.

By Corollary 3.1.19, this assumption implies in particular that V := Ext1K(A)(M,N)

is projective of finite rank, and so we may form SpecB := SpecA[V ∨], which
parametrised the universal family of extensions. We are then able to give the fol-
lowing precise description of the functor represented by SpecB.

Proposition 3.2.5. The scheme SpecB represents the functor which, to any O/̟a-
algebra C, associates the set of isomorphism classes of tuples (α,E, ι, π), where α is
a morphism α : SpecC → SpecA, E is a Breuil–Kisin module with descent data and
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coefficients in C, and ι and π are morphisms α∗N→ E and E→ α∗M respectively,

with the property that 0→ α∗N
ι→ E

π→ α∗M→ 0 is short exact.

Proof. We have already seen that giving a morphism SpecC → SpecB is equivalent
to giving the composite morphism α : SpecC → SpecB → SpecA, together with
an extension class [E] ∈ Ext1K(C)(α

∗M, α∗N). Thus to prove the proposition, we
just have to show that any automorphism of E which restricts to the identity on
α∗N and induces the identity on α∗M is itself the identity on E. This follows from
Corollary 3.1.18, together with Assumption 3.2.4. �

Fix an integer h ≥ 0 so that E(u)h ∈ AnnSA
(cokerΦM)AnnSA

(cokerΦN), so
that by Lemma 3.1.1, every Breuil–Kisin module parametrised by SpecB has height
at most h. There is a natural action ofGm×OGm on SpecB, given by rescaling each
of ι and π. There is also an evident forgetful morphism SpecB → SpecA×O Cdd,a,
given by forgetting ι and π, which is evidently invariant under the Gm ×O Gm-
action. (Here and below, Cdd,a denotes the moduli stack defined in Subsection 2.3
for our fixed choice of h and for d equal to the sum of the ranks of M and N.) We
thus obtain a morphism

(3.2.6) SpecB ×O Gm ×O Gm → SpecB ×SpecA×OCdd,a SpecB.

Corollary 3.2.7. Suppose that AutK(C)(α
∗M) = AutK(C)(α

∗N) = C× for any
morphism α : SpecC → SpecA. Then the morphism (3.2.6) is an isomorphism,
and consequently the induced morphism

[SpecB/Gm ×O Gm]→ SpecA×O Cdd,a

is a finite type monomorphism.

Proof. By Proposition 3.2.5, a morphism

SpecC → SpecB ×SpecA×OCdd,a SpecB

corresponds to an isomorphism class of tuples (α, β : E→ E′, ι, ι′, π, π′), where

— α is a morphism α : SpecC → SpecA,

— β : E → E′ is an isomorphism of Breuil–Kisin modules with descent data
and coefficients in C,

— ι : α∗N→ E and π : E→ α∗M are morphisms with the property that

0→ α∗N
ι→ E

π→ α∗M→ 0

is short exact,

— ι′ : α∗N→ E′ and π′ : E′ → α∗M are morphisms with the property that

0→ α∗N
ι′→ E′ π

′

→ α∗M→ 0

is short exact.

Assumption 3.2.4 and Corollary 3.1.18 together show that HomK(C)(α
∗N, α∗M) = 0.

It follows that the composite α∗N
ι→ E

β→ E′ factors through ι′, and the induced
endomorphism of α∗N is injective. Reversing the roles of E and E′, we see that it is
in fact an automorphism of α∗N, and it follows easily that β also induces an auto-
morphism of α∗M. Again, Assumption 3.2.4 and Proposition 3.1.18 together show
that HomK(C)(α

∗M, α∗N) = 0, from which it follows easily that β is determined
by the automorphisms of α∗M and α∗N that it induces.
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Since AutK(C)(α
∗M) = AutK(C)(α

∗N) = C× by assumption, we see that β ◦ ι, ι′
and π, π′◦β differ only by the action ofGm×OGm, so the first claim of the corollary
follows. The claim regarding the monomorphism is immediate from Lemma 3.2.8
below. Finally, note that [SpecB/Gm ×O Gm] is of finite type over SpecA, while
Cdd,a has finite type diagonal. It follows that the morphism [SpecB/Gm×OGm]→
SpecA×O Cdd,a is of finite type, as required. �

Lemma 3.2.8. Let X be a scheme over a base scheme S, let G be a smooth affine
group scheme over S, and let ρ : X ×S G→ X be a (right) action of G on X. Let
X → Y be a G-equivariant morphism, whose target is an algebraic stack over S on
which G acts trivially. Then the induced morphism

[X/G]→ Y
is a monomorphism if and only if the natural morphism

X ×S G→ X ×Y X

(induced by the morphisms pr1, ρ : X ×S G→ X) is an isomorphism.

Proof. We have a Cartesian diagram as follows.

X ×S G //

��

X ×Y X

��

[X/G] // [X/G]×Y [X/G]

The morphism [X/G]→ Y is a monomorphism if and only if the bottom horizontal
morphism of this square is an isomorphism; since the right hand vertical arrow is
a smooth surjection, this is the case if and only if the top horizontal morphism is
an isomorphism, as required. �

3.3. Families of extensions of rank one Breuil–Kisin modules. In this sec-
tion we construct universal families of extensions of rank one Breuil–Kisin modules.
We will use these rank two families to study our moduli spaces of Breuil–Kisin
modules, and the corresponding spaces of étale ϕ-modules. We show how to com-
pute the dimensions of these universal families; in the subsequent sections, we will
combine these results with explicit calculations to determine the irreducible com-
ponents of our moduli spaces. In particular, we will show that each irreducible
component has a dense open substack given by a family of extensions.

3.3.1. Universal unramified twists. Fix a free Breuil–Kisin module with descent
data M over F, and write Φi for ΦM,i : ϕ∗(Mi−1) → Mi. (Here we are using
the notation of Section 2.1, so that Mi = eiM is cut out by the idempotent ei of
Section 1.4.) We will construct the “universal unramified twist” of M.

Definition 3.3.2. If Λ is an F-algebra, and if λ ∈ Λ×, then we define MΛ,λ

to be the free Breuil–Kisin module with descent data and Λ-coefficients whose
underlying SΛ[Gal(K ′/K)]-module is equal to M ⊗̂FΛ (so the usual base change
of M to Λ), and for which ΦMΛ,λ

: ϕ∗MΛ,λ → MΛ,λ is defined via the f ′-tuple
(λΦ0,Φ1, . . . ,Φf ′−1). We refer to MΛ,λ as the unramified twist of M by λ over Λ.

If M is a free étale ϕ-module with descent data, then we define MΛ,λ in the
analogous fashion. If we write X = SpecΛ, then we will sometimes write MX,λ

(resp. MX,λ) for MΛ,λ (resp. MΛ,λ).
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As usual, we write Gm := SpecF[x, x−1]. We may then form the rank one
Breuil–Kisin module with descent dataMGm,x, which is the universal instance of an
unramified twist: given λ ∈ Λ×, there is a corresponding morphism SpecΛ→ Gm

determined by the requirement that x ∈ Γ(Gm,O×
Gm

) pulls-back to λ, and MX,λ

is obtained by pulling back MGm,x under this morphism (that is, by base changing
under the corresponding ring homomorphism F[x, x−1]→ Λ).

Lemma 3.3.3. If MΛ is a Breuil–Kisin module of rank one with Λ-coefficients,
then EndK(Λ)(M) = Λ. Similarly, if MΛ is a étale ϕ-module of rank one with Λ-
coefficients, then EndK(Λ)(MΛ) = Λ.

Proof. We give the proof for MΛ, the argument for MΛ being essentially identical.
One reduces easily to the case whereMΛ is free. Since an endomorphism ψ ofMΛ is
in particular an endomorphism of the underlyingSΛ[1/u]-module, we see that there
is some λ ∈ SΛ[1/u] such that ψ is given by multiplication by λ. The commutation
relation with ΦMΛ means that we must have ϕ(λ) = λ, so that certainly (considering
the powers of u in λ of lowest negative and positive degrees) λ ∈W (k′)⊗Zp

Λ, and
in fact λ ∈ Λ. Conversely, multiplication by any element of Λ is evidently an
endomorphism of MΛ, as required. �

Lemma 3.3.4. Let κ be a field of characteristic p, and let Mκ, Nκ be étale ϕ-
modules of rank one with κ-coefficients and descent data. Then any nonzero element
of HomK(κ)(Mκ, Nκ) is an isomorphism.

Proof. Since κ((u)) is a field, it is enough to show that if one of the induced maps
Mκ,i → Nκ,i is nonzero, then they all are; but this follows from the commutation
relation with ϕ. �

Lemma 3.3.5. If λ, λ′ ∈ Λ× and MΛ,λ
∼= MΛ,λ′ (as Breuil–Kisin modules with

descent data over Λ), then λ = λ′. Similarly, if MΛ,λ
∼=MΛ,λ′ , then λ = λ′.

Proof. Again, we give the proof for M , the argument for M being essentially iden-
tical. Write Mi = F((u))mi, and write Φi(1 ⊗mi−1) = θimi, where θi 6= 0. There
are µi ∈ Λ[[u]][1/u] such that the given isomorphism MΛ,λ

∼= MΛ,λ′ takes mi to
µimi. The commutation relation between the given isomorphism and ΦM imposes
the condition

λiµiθimi = λ′iϕ(µi−1)θimi

where λi (resp. λ
′
i) equals 1 unless i = 0, when it equals λ (resp. λ′).

Thus we have µi = (λ′i/λi)ϕ(µi−1), so that in particular µ0 = (λ′/λ)ϕf
′

(µ0).
Considering the powers of u in µ0 of lowest negative and positive degrees we con-
clude that µ0 ∈W (k′)⊗Λ; but then µ0 = ϕf

′

(µ0), so that λ′ = λ, as required. �

Remark 3.3.6. IfM has height at most h, and we let C (temporarily) denote the mod-
uli stack of rank one Breuil–Kisin modules of height at most h with F-coefficients
and descent data then Lemma 3.3.5 can be interpreted as saying that the morphism
Gm → C that classifies MGm,x is a monomorphism, i.e. the diagonal morphism
Gm → Gm ×C Gm is an isomorphism. Similarly, the morphism Gm → R (where
we temporarily let R denote the moduli stack of rank one étale ϕ-modules with
F-coefficients and descent data) that classifies MGm,x is a monomorphism.

Now choose another rank one Breuil–Kisin module with descent data N over F.
Let (x, y) denote the standard coordinates on Gm ×F Gm, and consider the rank
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one Breuil–Kisin modules with descent data MGm×FGm,x and NGm×FGm,y over
Gm ×F Gm.

Lemma 3.3.7. There is a non-empty irreducible affine open subset SpecAdist of
Gm×FGm whose finite type points are exactly the maximal ideals m of Gm×FGm

such that

HomK(κ(m))

(
Mκ(m),x̄[1/u],Nκ(m),ȳ[1/u]

)
= 0

(where we have written x̄ and ȳ to denote the images of x and y in κ(m)×).
Furthermore, if R is any finite-type Adist-algebra, and if m is any maximal ideal

of R, then

HomK(κ(m))

(
Mκ(m),x̄,Nκ(m),ȳ

)
= HomK(κ(m))

(
Mκ(m),x̄[1/u],Nκ(m),ȳ[1/u]

)
= 0,

and also

HomK(κ(m))

(
Nκ(m),ȳ,Mκ(m),x̄

)
= HomK(κ(m))

(
Nκ(m),ȳ[1/u],Mκ(m),x̄[1/u]

)
= 0.

In particular, Assumption 3.2.4 is satisfied by MAdist,x and NAdist,y.

Proof. If Hom
(
Mκ(m),x̄[1/u],Nκ(m),ȳ[1/u]) = 0 for all maximal idealsm of F[x, y, x−1, y−1],

then we are done: SpecAdist = Gm ×Gm. Otherwise, we see that for some finite
extension F′/F and some a, a′ ∈ F′, we have a non-zero morphism MF′,a[1/u] →
NF′,a′ [1/u]. By Lemma 3.3.4, this morphism must in fact be an isomorphism. Since
M and N are both defined over F, we furthermore see that the ratio a′/a lies in F.
We then let SpecAdist be the affine open subset of Gm×FGm where a′x 6= ay; the
claimed property of SpecAdist then follows easily from Lemma 3.3.5.

For the remaining statements of the lemma, note that if m is a maximal ideal in
a finite type Adist-algebra, then its pull-back to Adist is again a maximal ideal m′

of Adist (since Adist is Jacobson), and the vanishing of

HomK(κ(m))

(
Mκ(m),x̄[1/u],Nκ(m),ȳ[1/u]

)

follows from the corresponding statement for κ(m′), together with Lemma 3.1.20.
Inverting u induces an embedding

HomK(κ(m))

(
Mκ(m),x̄,Nκ(m),ȳ

)
→֒ HomK(κ(m))

(
Mκ(m),x̄[1/u],Nκ(m),ȳ[1/u]

)
,

and so certainly the vanishing of the target implies the vanishing of the source.
The statements in which the roles ofM andN are reversed follow from Lemma 3.3.4.

�

Define T := Ext1K(Gm×FGm)

(
MGm×FGm,x,MGm×FGm,y); it follows from Propo-

sition 3.1.13 that T is finitely generated overF[x, x−1, y, y−1], while Proposition 3.1.15
shows that TAdist := T⊗F[x±1,y±1]A

dist is naturally isomorphic to Ext1K(Adist)

(
MAdist,x,NAdist,y

)
.

(Here and elsewhere we abuse notation by writing x, y for x|Adist , y|Adist .) Corol-
lary 3.1.19 and Lemma 3.3.7 show that TAdist is in fact a finitely generated projec-
tive Adist-module. If, for any Adist-algebra B, we write TB := TAdist ⊗Adist B

∼−→
T⊗F[x±1,y±1]B, then Proposition 3.1.15 again shows that TB

∼−→ Ext1K(B)

(
MB,x,NB,y

)
.

By Propositions 3.1.34 and 3.1.35, together with Lemma 3.3.7, there is a nonempty
(so dense) affine open subset SpecAk-free of SpecAdist with the properties that

UAk-free := ker-Ext1K(Ak-free)(MAk-free,x,NAk-free,y)
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and

TAk-free/UAk-free

∼−→ Ext1K(Ak-free)(MAk-free,x,NAk-free,y)/ ker-Ext
1
K(Ak-free)(MAk-free,x,NAk-free,y)

are finitely generated and projective over Ak-free, and furthermore so that for all
finitely generatedAk-free-algebrasB, the formation of ker-Ext1K(B)(MB,x,NB,y) and

Ext1K(B)(MB,x,NB,y)/ ker-Ext
1
K(B)(MB,x,NB,y) is compatible with base change

from UAk-free and TAk-free/UAk-free respectively.
We choose a finite rank projective module V over F[x, x−1, y, y−1] admitting a

surjection V → T . Thus, if we write VAdist := V ⊗F[x±1,y±1]A
dist, then the induced

morphism VAdist → TAdist is a (split) surjection of Adist-modules.
Following the prescription of Subsection 3.2, we form the symmetric algebra

Btwist := F[x±1, y±1][V ∨], and construct the family of extensions Ẽ over SpecBtwist.
We may similarly form the symmetric algebras Bdist := Adist[T∨

Adist ] and B
k-free :=

Ak-free[T∨
Ak-free ], and construct the families of extensions Ẽdist and Ẽk-free over SpecBdist

and SpecBk-free respectively. Since TAk-free/UAk-free is projective, the natural mor-
phism T∨

Ak-free → U∨
Ak-free is surjective, and hence Ck-free := A[U∨

Ak-free ] is a quotient

ofBk-free; geometrically, SpecCk-free is a subbundle of the vector bundle SpecBk-free

over SpecA.
We write X := SpecBk-free \ SpecCk-free; it is an open subscheme of the vector

bundle SpecBk-free. The restriction of Ẽ′ to X is the universal family of extensions
over A which do not split after inverting u.

Remark 3.3.8. Since SpecAdist and SpecAk-free are irreducible, each of the vector
bundles SpecBdist and SpecBk-free is also irreducible. In particular, SpecBk-free is
Zariski dense in SpecBdist, and if X is non-empty, then it is Zariski dense in each
of SpecBk-free and SpecBdist. Similarly, SpecBtwist×Gm×FGm

SpecAdist is Zariski
dense in SpecBtwist.

The surjection VAdist → TAdist induces a surjection of vector bundles π : SpecBtwist×Gm×FGm

SpecAdist → SpecBdist over SpecAdist, and there is a natural isomorphism

(3.3.9) π∗Ẽdist ∼−→ Ẽ ⊗̂F[x±1,y±1]A
dist.

The rank two Breuil–Kisin module with descent data Ẽ is classified by a mor-
phism ξ : SpecBtwist → Cdd,1; similarly, the rank two Breuil–Kisin module with

descent data Ẽdist is classified by a morphism ξdist : SpecBdist → Cdd,1. If we write
ξAdist for the restriction of ξ to the open subset SpecBtwist ×Gm×FGm

SpecAdist

of SpecBtwist, then the isomorphism (3.3.9) shows that ξdist ◦ π = ξAdist . We also
write ξk-free for the restriction of ξdist to SpecBk-free, and ξX for the restriction of
ξk-free to X .

Lemma 3.3.10. The scheme-theoretic images (in the sense of [EG21, Def. 3.1.4])
of ξ : SpecBtwist → Cdd,1, ξdist : SpecBdist → Cdd,1, and ξk-free : SpecBk-free →
Cdd,1 all coincide; in particular, the scheme-theoretic image of ξ is independent
of the choice of surjection V → T , and the scheme-theoretic image of ξk-free is
independent of the choice of Ak-free. If X is non-empty, then the scheme-theoretic
image of ξX : X → Cdd,1 also coincides with these other scheme-theoretic images,
and is independent of the choice of Ak-free.
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Proof. This follows from the various observations about Zariski density made in
Remark 3.3.8. �

Definition 3.3.11. We let C(M,N) denote the scheme-theoretic image of ξdist :
SpecBdist → Cdd,1, and we let Z(M,N) denote the scheme-theoretic image of the
composite ξdist : SpecBdist → Cdd,1 → Zdd,1. Equivalently, Z(M,N) is the scheme-
theoretic image of the composite SpecBdist → Cdd,1 → Rdd,1 (cf. [EG21, Prop.
3.2.31]), and the scheme-theoretic image of C(M,N) under the morphism Cdd,1 →
Zdd,1. (Note that Lemma 3.3.10 provides various other alternative descriptions of
C(M,N) (and therefore also Z(M,N)) as a scheme-theoretic image.)

Remark 3.3.12. Note that C(M,N) and Z(M,N) are both reduced (because they
are each defined as a scheme-theoretic image of SpecBdist, which is reduced by
definition).

As well as scheme-theoretic images, as in the preceding Lemma and Definition,
we will need to consider images of underlying topological spaces. If X is an algebraic
stack we let |X | be its underlying topological space, as defined in [Sta13, Tag 04Y8].

Lemma 3.3.13. The image of the morphism on underlying topological spaces
| SpecBtwist| → |Cdd,1| induced by ξ is a constructible subset of |Cdd,1|, and is
independent of the choice of V .

Proof. The fact that the image of | SpecBtwist| is a constructible subset of |Cdd,1|
follows from the fact that ξ is a morphism of finite presentation between Noetherian
stacks; see [Ryd11, App. D]. Suppose now that V ′ is another choice of finite rank
projective F[x, x−1, y, y−1]-module surjecting onto T . Since it is possible to choose
a finite rank projective module surjecting onto the pullback of V, V ′ with respect to
their maps to T , we see that it suffices to prove the independence claim of the lemma
in the case when V ′ admits a surjection onto V (compatible with the maps of each of
V and V ′ onto T ). If we write B′ := F[x±1, y±1][(V ′)∨], then the natural morphism
SpecB′ → SpecBtwist is a surjection, and the morphism ξ′ : SpecB′ → Cdd,1 is
the composite of this surjection with the morphism ξ. Thus indeed the images of
| SpecB′| and of | SpecBtwist| coincide as subsets of |Cdd,1|. �

Definition 3.3.14. We write |C(M,N)| to denote the constructible subset of |Cdd,1|
described in Lemma 3.3.13.

Remark 3.3.15. We caution the reader that we don’t define a substack C(M,N)
of Cdd,1. Rather, we have defined a closed substack C(M,N) of Cdd,1, and a
constructible subset |C(M,N)| of |Cdd,1|. It follows from the constructions that
|C(M,N)| is the closure in |Cdd,1| of |C(M,N)|.

As in Subsection 3.2, there is a natural action of Gm×FGm on T , and hence on
each of SpecBdist, SpecBk-free and X , given by the action ofGm as automorphisms
on each of MGm×FGm,x and NGm×FGm,y (which induces a corresponding action on
T , hence on TAdist and TAk-free , and hence on SpecBdist and SpecBk-free). Thus we
may form the corresponding quotient stacks [SpecBdist/Gm×FGm] and [X/Gm×F

Gm], each of which admits a natural morphism to Cdd,1.
Remark 3.3.16. Note that we are making use of two independent copies of Gm ×F

Gm; one parameterises the different unramified twists of M and N, and the other
the automorphisms of (the pullbacks of) M and N.

https://stacks.math.columbia.edu/tag/04Y8
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Definition 3.3.17. We say that the pair (M,N) is strict if SpecAdist = Gm×FGm.

Before stating and proving the main result of this subsection, we prove some
lemmas (the first two of which amount to recollections of standard — and simple
— facts).

Lemma 3.3.18. If X → Y is a morphism of stacks over S, with X algebraic and of
finite type over S, and Y having diagonal which is representable by algebraic spaces
and of finite type, then X ×Y X is an algebraic stack of finite type over S.

Proof. The fact that X ×Y X is an algebraic stack follows from [Sta13, Tag 04TF].
Since composites of morphisms of finite type are of finite type, in order to show
that X ×Y X is of finite type over S, it suffices to show that the natural morphism
X ×Y X → X ×S X is of finite type. Since this morphism is the base-change of the
diagonal morphism Y → Y ×S Y, this follows by assumption. �

Lemma 3.3.19. The following conditions are equivalent:
(1) ker-Ext1K(κ(m))

(
Mκ(m),x̄,Nκ(m),ȳ

)
= 0 for all maximal ideals m of Ak-free.

(2) UAk-free = 0.
(3) SpecCk-free is the trivial vector bundle over SpecAk-free.

Proof. Conditions (2) and (3) are equivalent by definition. Since the formation

of ker-Ext1K(Ak-free)(MAk-free,x,NAk-free,y) is compatible with base change, and since

Ak-free is Jacobson, (1) is equivalent to the assumption that

ker-Ext1K(Ak-free)(MAk-free,x,NAk-free,y) = 0,

i.e. that UAk-free = 0, as required. �

Lemma 3.3.20. If the equivalent conditions of Lemma 3.3.19 hold, then the natural
morphism

SpecBk-free ×SpecAk-free×FCdd,1 SpecBk-free

→ SpecBk-free ×SpecAk-free×FRdd,1 SpecBk-free

is an isomorphism.

Proof. Since Cdd,1 → Rdd,1 is separated (being proper) and representable, the
diagonal morphism Cdd,1 → Cdd,1×Rdd,1 Cdd,1 is a closed immersion, and hence the
morphism in the statement of the lemma is a closed immersion. Thus, in order to
show that it is an isomorphism, it suffices to show that it induces a surjection on
R-valued points, for any F-algebra R. Since the source and target are of finite type
over F, by Lemma 3.3.18, we may in fact restrict attention to finite type R-algebras.

A morphism SpecR → SpecBk-free ×SpecAk-free×FCdd,1 SpecBk-free corresponds
to an isomorphism class of tuples (α, β : E→ E′, ι, ι′, π, π′), where

— α is a morphism α : SpecR→ SpecAk-free,

— β : E → E′ is an isomorphism of Breuil–Kisin modules with descent data
and coefficients in R,

— ι : α∗N → E, ι′ : α∗N → E′, π : E → α∗M and π′ : E′ → α∗M are

morphisms with the properties that 0 → α∗N
ι→ E

π→ α∗M → 0 and

0→ α∗N
ι′→ E′ π

′

→ α∗M→ 0 are both short exact.

Similarly, a morphism SpecR→ SpecBk-free ×SpecAk-free×FRdd,1 SpecBk-free cor-
responds to an isomorphism class of tuples (α,E,E′, β, ι, ι′, π, π′), where

http://stacks.math.columbia.edu/tag/04TF
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— α is a morphism α : SpecR→ SpecAk-free,

— E and E′ are Breuil–Kisin modules with descent data and coefficients in
R, and β is an isomorphism β : E[1/u] → E′[1/u] of etale ϕ-modules with
descent data and coefficients in R,

— ι : α∗N → E, ι′ : α∗N → E′, π : E → α∗M and π′ : E′ → α∗M are

morphisms with the properties that 0 → α∗N
ι→ E

π→ α∗M → 0 and

0→ α∗N
ι′→ E′ π

′

→ α∗M→ 0 are both short exact.

Thus to prove the claimed surjectivity, we have to show that, given a tuple
(α,E,E′, β, ι, ι′, π, π′) associated to a morphism SpecR→ SpecBk-free×SpecAk-free×FRdd,1

SpecBk-free, the isomorphism β restricts to an isomorphism E→ E′.
By Lemma 3.3.19, the natural map Ext1(α∗M, α∗N)→ Ext1K(R)(α

∗M[1/u], α∗N[1/u])

is injective; so the Breuil–Kisin modules E and E′ are isomorphic. Arguing as in
the proof of Corollary 3.2.7, we see that β is equivalent to the data of an R-point
of Gm ×O Gm, corresponding to the automorphisms of α∗M[1/u] and α∗N[1/u]
that it induces. These restrict to automorphisms of α∗M and α∗N, so that (again
by the proof of Corollary 3.2.7) β indeed restricts to an isomorphism E → E′, as
required. �

We now present the main result of this subsection.

Proposition 3.3.21. (1) The morphism ξdist induces a morphism

(3.3.22) [SpecBdist/Gm ×F Gm]→ Cdd,1,
which is representable by algebraic spaces, of finite type, and unramified, whose
fibres over finite type points are of degree ≤ 2. In the strict case, this induced
morphism is in fact a monomorphism, while in general, the restriction ξX of ξdist

induces a finite type monomorphism

(3.3.23) [X/Gm ×F Gm] →֒ Cdd,1.

(2) If ker-Ext1K(κ(m))

(
Mκ(m),x̄,Nκ(m),ȳ

)
= 0 for all maximal ideals m of Ak-free,

then the composite morphism

(3.3.24) [SpecBk-free/Gm ×F Gm]→ Cdd,1 →Rdd,1

is a representable by algebraic spaces, of finite type, and unramified, with fibres of
degree ≤ 2. In the strict case, this induced morphism is in fact a monomorphism,
while in general, the composite morphism

(3.3.25) [X/Gm ×F Gm] →֒ Cdd,1 →Rdd,1

is a finite type monomorphism.

Remark 3.3.26. The failure of (3.3.22) to be a monomorphism in general is due,
effectively, to the possibility that an extension E of some MR,x by NR,y and an
extension E′ of some MR,x′ by NR,y′ might be isomorphic as Breuil–Kisin modules
while nevertheless (x, y) 6= (x′, y′). As we will see in the proof, whenever this
happens the map NΛ,y → E→ E′ →MΛ,x′ is nonzero, and then E′⊗R κ(m)[1/u] is
split for some maximal ideal m of R. This explains why, to obtain a monomorphism,
we can restrict either to the strict case or to the substack of extensions that are
non-split after inverting u.
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Remark 3.3.27. We have stated this proposition in the strongest form that we
are able to prove, but in fact its full strength is not required in the subsequent
applications. In particular, we don’t need the precise bounds on the degrees of the
fibres.

Proof of Proposition 3.3.21. By Corollary 3.2.7 (which we can apply because As-
sumption 3.2.4 is satisfied, by Lemma 3.3.7) the natural morphism [SpecBdist/Gm×F

Gm] → SpecAdist ×F Cdd,1 is a finite type monomorphism, and hence so is its re-
striction to the open substack [X/Gm ×F Gm] of its source.

Let us momentarily write X to denote either [SpecBdist/Gm×FGm] or [X/Gm×F

Gm]. To show that the finite type morphism X → Cdd,1 is representable by alge-
braic spaces, resp. unramified, resp. a monomorphism, it suffices to show that the
corresponding diagonal morphism X → X ×Cdd,1 X is a monomorphism, resp. étale,
resp. an isomorphism.

Now since X → SpecAdist×F Cdd,1 is a monomorphism, the diagonal morphism
X → X ×SpecAdist×FCdd,1 X is an isomorphism, and so it is equivalent to show that
the morphism of products

X ×SpecAdist×FCdd,1 X → X ×Cdd,1 X
is a monomorphism, resp. étale, resp. an isomorphism. This is in turn equivalent
to showing the corresponding properties for the morphisms

(3.3.28) SpecBdist ×SpecAdist×Cdd,1 SpecBdist → SpecBdist ×Cdd,1 SpecBdist

or

(3.3.29) X ×SpecAdist×Cdd,1 X → X ×Cdd,1 X.

Now each of these morphisms is a base-change of the diagonal SpecAdist → SpecAdist×F

SpecAdist, which is a closed immersion (affine schemes being separated), and so is
itself a closed immersion. In particular, it is a monomorphism, and so we have
proved the representability by algebraic spaces of each of (3.3.22) and (3.3.23).
Since the source and target of each of these monomorphisms is of finite type over F,
by Lemma 3.3.18, in order to show that either of these monomorphisms is an
isomorphism, it suffices to show that it induces a surjection on R-valued points,
for arbitrary finite type F-algebras R. Similarly, to check that the closed immer-
sion (3.3.28) is étale, it suffices to verify that it is formally smooth, and for this it
suffices to verify that it satisfies the infinitesimal lifting property with respect to
square zero thickenings of finite type F-algebras.

A morphism SpecR → SpecBdist ×Cdd,1 SpecBdist corresponds to an isomor-
phism class of tuples (α, α′, β : E→ E′, ι, ι′, π, π′), where

— α, α′ are morphisms α, α′ : SpecR→ SpecAdist,

— β : E → E′ is an isomorphism of Breuil–Kisin modules with descent data
and coefficients in R,

— ι : α∗N → E, ι′ : (α′)∗N → E′, π : E → α∗M and π′ : E′ → (α′)∗M

are morphisms with the properties that 0 → α∗N
ι→ E

π→ α∗M → 0 and

0→ (α′)∗N
ι′→ E′ π

′

→ (α′)∗M→ 0 are both short exact.

We begin by proving that (3.3.28) satisfies the infinitesimal lifting criterion (when
R is a finite type F-algebra). Thus we assume given a square-zero ideal I ⊂ R, such
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that the induced morphism

SpecR/I → SpecBdist ×Cdd,1 SpecBdist

factors through SpecBdist×SpecAdist×FCdd,1SpecBdist. In terms of the data (α, α′, β :
E→ E′, ι, ι′, π, π′), we are assuming that α and α′ coincide when restricted to SpecR/I,
and we must show that α and α′ themselves coincide.

To this end, we consider the composite

(3.3.30) α∗N
ι→ E

β→ E′ π
′

→ (α′)∗M.

If we can show the vanishing of this morphism, then by reversing the roles of E and
E′, we will similarly deduce the vanishing of π◦β−1 ◦ι′, from which we can conclude
that β induces an isomorphism between α∗N and (α′)∗N. Consequently, it also
induces an isomorphism between α∗M and (α′)∗M, so it follows from Lemma 3.3.5
that α = α′, as required.

We show the vanishing of (3.3.30). Suppose to the contrary that it doesn’t
vanish, so that we have a non-zero morphism α∗N → (α′)∗M. It follows from
Proposition 3.1.17 that, for some maximal ideal m of R, there exists a non-zero
morphism

α∗(N)⊗R κ(m)→(α′)∗(M) ⊗R κ(m).

By assumption α and α′ coincide modulo I. Since I2 = 0, there is an inclusion
I ⊂ m, and so in particular we find that

(α′)∗(M)⊗R κ(m)
∼−→ α∗(M)⊗R κ(m).

Thus there exists a non-zero morphism

α∗(N)⊗R κ(m)→α∗(M)⊗R κ(m).

Then, by Lemma 3.3.4, after inverting u we obtain an isomorphism

α∗(N)⊗R κ(m)[1/u]
∼−→α∗(M)⊗R κ(m)[1/u],

contradicting the assumption that α maps SpecR into SpecAdist. This completes
the proof that (3.3.28) is formally smooth, and hence that (3.3.22) is unramified.

We next show that, in the strict case, the closed immersion (3.3.28) is an iso-
morphism, and thus that (3.3.22) is actually a monomorphism. As noted above, it
suffices to show that (3.3.28) induces a surjection on R-valued points for finite type
F-algebras R, which in terms of the data (α, α′, β : E→ E′, ι, ι′, π, π′), amounts to
showing that necessarily α = α′. Arguing just as we did above, it suffices show the
vanishing of (3.3.30).

Again, we suppose for the sake of contradiction that (3.3.30) does not vanish.
It then follows from Proposition 3.1.17 that for some maximal ideal m of R there
exists a non-zero morphism

α∗(N)⊗R κ(m)→(α′)∗(M) ⊗R κ(m).

Then, by Lemma 3.3.4, after inverting u we obtain an isomorphism

(3.3.31) α∗(N)⊗R κ(m)[1/u]
∼−→ (α′)∗(M)⊗R κ(m)[1/u].

In the strict case, such an isomorphism cannot exist by assumption, and thus (3.3.30)
must vanish.

We now turn to proving that (3.3.29) is an isomorphism. Just as in the preceding
arguments, it suffices to show that (3.3.30) vanishes, and if not then we obtain an
isomorphism (3.3.31). Since we are considering points of X × X , we are given
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that the induced extension E′ ⊗R κ(m)[1/u] is non-split, so that the base change
of the morphism (3.3.30) from R[[u]] to κ(m)((u)) must vanish. Consequently the
composite β ◦ ι induces a non-zero morphism α∗(N)⊗R κ(m)[1/u]→ (α′)∗(N)⊗R
κ(m)[1/u], which, by Lemma 3.3.4, must in fact be an isomorphism. Comparing this
isomorphism with the isomorphism (3.3.31), we find that (α′)∗(N)⊗Rκ(m)[1/u] and
(α′)∗(M)⊗Rκ(m)[1/u] are isomorphic, contradicting the fact that α′ maps SpecR to
SpecAdist. Thus in fact the composite (3.3.30) must vanish, and we have completed
the proof that (3.3.23) is a monomorphism.

To complete the proof of part (1) of the proposition, we have to show that
the fibres of (3.3.22) are of degree at most 2. We have already observed that
[SpecBdist/Gm×F Gm]→ SpecAdist×F Cdd,1 is a monomorphism, so it is enough
to check that given a finite extension F′/F and an isomorphism class of tuples
(α, α′, β : E→ E′, ι, ι′, π, π′), where

— α, α′ are distinct morphisms α, α′ : SpecF′ → SpecAdist,

— β : E → E′ is an isomorphism of Breuil–Kisin modules with descent data
and coefficients in F′,

— ι : α∗N → E, ι′ : (α′)∗N → E′, π : E → α∗M and π′ : E′ → (α′)∗M

are morphisms with the properties that 0 → α∗N
ι→ E

π→ α∗M → 0 and

0→ (α′)∗N
ι′→ E′ π

′

→ (α′)∗M→ 0 are both short exact.

then α′ is determined by the data of α and E. To see this, note that since we are
assuming that α′ 6= α, the arguments above show that (3.3.30) does not vanish, so

that (since F′ is a field), we have an isomorphism α∗N[1/u]
∼−→ (α′)∗M[1/u]. Since

we are over Adist, it follows that E[1/u] ∼= E′[1/u] is split, and that we also have

an isomorphism α∗M[1/u]
∼−→ (α′)∗N[1/u]. Thus if α′′ is another possible choice

for α′, we have (α′′)∗M[1/u]
∼−→ (α′)∗M[1/u] and (α′′)∗N[1/u]

∼−→ (α′)∗N[1/u],
whence α′′ = α′ by Lemma 3.3.5, as required.

We turn to proving (2), and thus assume that

ker-Ext1K(κ(m))

(
Mκ(m),x̄,Nκ(m),ȳ

)
= 0

for all maximal ideals m of Ak-free.
Lemma 3.3.20 shows that

SpecBk-free×SpecAk-free×FCdd,1SpecBk-free → SpecBk-free×SpecAk-free×FRdd,1SpecBk-free

is an isomorphism, from which we deduce that

[SpecBk-free/Gm ×F Gm]→ SpecAk-free ×F Rdd,1

is a monomorphism. Using this as input, the claims of (2) may be proved in an
essentially identical fashion to those of (1). �

Corollary 3.3.32. The dimension of C(M,N) is equal to the rank of TAdist as a
projective Adist-module. If

ker-Ext1K(κ(m))

(
Mκ(m),x̄,Nκ(m),ȳ

)
= 0

for all maximal ideals m of Ak-free, then the dimension of Z(M,N) is also equal to
this rank, while if

ker-Ext1K(κ(m))

(
Mκ(m),x̄,Nκ(m),ȳ

)
6= 0

for all maximal ideals m of Ak-free, then the dimension of Z(M,N) is strictly less
than this rank.
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Proof. The dimension of [SpecBdist/Gm×FGm] is equal to the rank of TAdist (it is
the quotient by a two-dimensional group of a vector bundle over a two-dimensional
base of rank equal to the rank of TAdist). By Lemma 3.3.10, C(M,N) is the scheme-
theoretic image of the morphism [SpecBdist/Gm ×F Gm] → Cdd,1 provided by
Proposition 3.3.21(1), which (by that proposition) is representable by algebraic
spaces and unramified. Since such a morphism is locally quasi-finite (in fact, in
this particular case, we have shown that the fibres of this morphism have degree at
most 2), [Sta13, Tag 0DS6] ensures that C(M,N) has the claimed dimension.

If ker-Ext1K(κ(m))

(
Mκ(m),x̄,Nκ(m),ȳ

)
= 0 for all maximal ideals m of Ak-free, then

an identical argument using Proposition 3.3.21(2) implies the claim regarding the
dimension of Z(M,N).

Finally, suppose that

ker-Ext1K(κ(m))

(
Mκ(m),x̄,Nκ(m),ȳ

)
6= 0

for all maximal ideals m of Ak-free. Then the composite [SpecBk-free/Gm×FGm]→
Cdd,1 → Rdd,1 has the property that for every point t in the source, the fibre over
the image of t has a positive dimensional fibre. [Sta13, Tag 0DS6] then implies the
remaining claim of the present lemma. �

4. Extensions of rank one Breuil–Kisin modules

4.1. Rank one modules over finite fields, and their extensions. We now
wish to apply the results of the previous section to study the geometry of our
various moduli stacks. In order to do this, it will be convenient for us to have an
explicit description of the rank one Breuil–Kisin modules of height at most one with
descent data over a finite field of characteristic p, and of their possible extensions.
Many of the results in this section are proved (for p > 2) in [DS15, §1] in the context
of Breuil modules, and in those cases it is possible simply to translate the relevant
statements to the Breuil–Kisin module context.

Assume from now on that e(K ′/K) is divisible by pf − 1, so that we are in
the setting of [DS15, Remark 1.7]. (Note that the parallel in [DS15] of our field
extension K ′/K, with ramification and inertial indices e′, f ′ and e, f respectively,
is the extension K/L with indices e, f and e′, f ′ respectively.)

Let F be a finite subfield of Fp containing the image of some (so all) embedding(s)

k′ →֒ Fp. Recall that for each g ∈ Gal(K ′/K) we write g(π′)/π′ = h(g) with
h(g) ∈ µe(K′/K)(K

′) ⊂W (k′). We abuse notation and denote the image of h(g) in

k′ again by h(g), so that we obtain a map h : Gal(K ′/K) → (k′)×. Note that h
restricts to a character on the inertia subgroup I(K ′/K), and is itself a character
when e(K ′/K) = pf − 1.

Lemma 4.1.1. Every rank one Breuil–Kisin module of height at most one with
descent data and F-coefficients is isomorphic to one of the modules M(r, a, c) defined
by:

— M(r, a, c)i = F[[u]] ·mi,

— ΦM(r,a,c),i(1⊗mi−1) = aiu
rimi,

— ĝ(
∑

imi) =
∑
i h(g)

cimi for all g ∈ Gal(K ′/K),

where ai ∈ F×, ri ∈ {0, . . . , e′} and ci ∈ Z/e(K ′/K) are sequences satisfying
pci−1 ≡ ci + ri (mod e(K ′/K)), the sums in the third bullet point run from 0 to
f ′ − 1, and the ri, ci, ai are periodic with period dividing f .

https://stacks.math.columbia.edu/tag/0DS6
https://stacks.math.columbia.edu/tag/0DS6
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Furthermore, two such modules M(r, a, c) and M(s, b, d) are isomorphic if and

only if ri = si and ci = di for all i, and
∏f−1
i=0 ai =

∏f−1
i=0 bi.

Proof. The proof is elementary; see e.g. [Sav08, Thm. 2.1, Thm. 3.5] for proofs of
analogous results. �

We will sometimes refer to the element m =
∑

imi ∈M(r, a, c) as the standard
generator of M(r, a, c).

Remark 4.1.2. When p > 2 many of the results in this section (such as the above)
can be obtained by translating [DS15, Lem. 1.3, Cor. 1.8] from the Breuil module
context to the Breuil–Kisin module context. We briefly recall the dictionary be-
tween these two categories (cf. [Kis09, §1.1.10]). If A is a finite local Zp-algebra,
write SA = S ⊗Zp

A, where S is Breuil’s ring. We regard SA as a SA-algebra via
u 7→ u, and we let ϕ : SA → SA be the composite of this map with ϕ on SA.
Then given a Breuil–Kisin module of height at most 1 with descent data M, we set
M := SA ⊗ϕ,SA

M. We have a map 1⊗ ϕM : SA ⊗ϕ,SA
M→ SA ⊗SA

M, and we
set

Fil1M := {x ∈ M : (1⊗ ϕM)(x) ∈ Fil1 SA ⊗SA
M ⊂ SA ⊗SA

M}
and define ϕ1 : Fil1M→M as the composite

Fil1M 1⊗ϕM−→ Fil1 SA ⊗SA
M

ϕ1⊗1−→ SA ⊗ϕ,SA
M =M.

Finally, we define ĝ onM via ĝ(s⊗m) = g(s)⊗ ĝ(m). One checks without difficulty
that this makes M a strongly divisible module with descent data (cf. the proofs
of [Kis09, Proposition 1.1.11, Lemma 1.2.4]).

In the correspondence described above, the Breuil–Kisin moduleM((ri), (ai), (ci))
corresponds to the Breuil moduleM((e′ − ri), (ai), (pci−1)) of [DS15, Lem. 1.3].

Definition 4.1.3. IfM = M(r, a, c) is a rank one Breuil–Kisin module as described

in the preceding lemma, we set αi(M) := (pf
′−1ri−f ′+1 + · · ·+ ri)/(p

f ′ − 1) (equiv-
alently, (pf−1ri−f+1 + · · ·+ ri)/(p

f − 1)). We may abbreviate αi(M) simply as αi
when M is clear from the context.

It follows easily from the congruence ri ≡ pci−1 − ci (mod e(K ′/K)) together
with the hypothesis that pf − 1 | e(K ′/K) that αi ∈ Z for all i. Note that the αi’s
are the unique solution to the system of equations pαi−1 − αi = ri for all i. Note
also that (pf − 1)(ci − αi) ≡ 0 (mod e(K ′/K)), so that hci−αi is a character with
image in k×.

Lemma 4.1.4. We have T (M(r, a, c)) =
(
σi ◦ hci−αi · ur∏f−1

i=0 ai

)
|GK∞

, where urλ

is the unramified character of GK sending geometric Frobenius to λ.

Proof. Set N = M(0, (ai), 0), so that N is effectively a Breuil–Kisin module without
descent data. Then for N this result follows from the second paragraph of the proof
[GLS14, Lem. 6.3]. (Note that the functor TS of loc. cit. is dual to our functor
T ; cf. [Fon90, A 1.2.7]. Note also that the fact that the base field is unramified in
loc. cit. does not change the calculation.) If n =

∑
ni is the standard generator

of N as in Lemma 4.1.1, let γ ∈ Zun
p ⊗Zp

(k′ ⊗Fp
F) be an element so that γn ∈

(O
Ênr ⊗S[1/u] N[1/u])ϕ=1.
Now for M as in the statement of the lemma it is straightforward to verify that

γ

f ′−1∑

i=0

[π′]−αi ⊗mi ∈ (O
Ênr ⊗S[1/u] M[1/u])ϕ=1,
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and the result follows. �

One immediately deduces the following.

Corollary 4.1.5. Let M = M(r, a, c) and N = M(s, b, d) be rank one Breuil–
Kisin modules with descent data as above. We have T (M) = T (N) if and only if

ci−αi(M) ≡ di−αi(N) (mod e(K ′/K)) for some i (hence for all i) and
∏f−1
i=0 ai =∏f−1

i=0 bi.

Lemma 4.1.6. In the notation of the previous Corollary, there is a nonzero map
M→ N (equivalently, dimF HomK(F)(M,N) = 1) if and only if T (M) = T (N) and
αi(M) ≥ αi(N) for each i.

Proof. The proof is essentially the same as that of [DS15, Lem. 1.6]. (Indeed, when
p > 2 this lemma can once again be proved by translating directly from [DS15] to
the Breuil–Kisin module context.) �

Using the material of Section 3.1, one can compute Ext1(M,N) for any pair of
rank one Breuil–Kisin modules M,N of height at most one. We begin with the
following explicit description of the complex C•(N) of Section 3.1.

Definition 4.1.7. We write C
0
u = C

0
u(M,N) ⊂ F((u))Z/fZ for the space of f -

tuples (µi) such that each nonzero term of µi has degree congruent to ci − di
(mod e(K ′/K)), and set C0 = C

0
u ∩ F[[u]]Z/fZ.

We further define C
1
u = C

1
u(M,N) ⊂ F((u))Z/fZ to be the space of f -tuples (hi)

such that each nonzero term of hi has degree congruent to ri+ci−di (mod e(K ′/K)),
and set C1 = C

1
u ∩ F[[u]]Z/fZ. There is a map ∂ : C0

u → C
1
u defined by

∂(µi) = (−aiuriµi + biϕ(µi−1)u
si)

Evidently this restricts to a map ∂ : C0 → C
1.

Lemma 4.1.8. There is an isomorphism of complexes

[C0 ∂−→ C
1]

∼→ C•(N)

in which (µi) ∈ C
0 is sent to the map mi 7→ µini in C0(N), and (hi) ∈ C

1 is sent
to the map (1 ⊗mi−1) 7→ hini in C

1(N).

Proof. Each element of HomSF
(M,N) has the form mi 7→ µini for some f ′-tuple

(µi)i∈Z/f ′Z of elements of F[[u]]. The condition that this map is Gal(K ′/K)-
equivariant is easily seen to be equivalent to the conditions that (µi) is periodic with
period dividing f , and that each nonzero term of µi has degree congruent to ci−di
(mod e(K ′/K)). (For the former consider the action of a lift to g ∈ Gal(K ′/K) sat-
isfying h(g) = 1 of a generator of Gal(k′/k), and for the latter consider the action of
I(K ′/K); cf. the proof of [DS15, Lem. 1.5].) It follows that the map C

0 → C0(N) in
the statement of the Lemma is an isomorphism. An essentially identical argument
shows that the given map C

1 → C1(N) is an isomorphism.
To conclude, it suffices to observe that if α ∈ C0(N) is given by mi 7→ µini with

(µi)i ∈ C
0 then δ(α) ∈ C1(N) is the map given by

(1 ⊗mi−1) 7→ (−aiuriµi + biϕ(µi−1)u
si)ni,

which follows by a direct calculation. �
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It follows from Corollary 3.1.8 that Ext1K(F)(M,N) ∼= coker ∂. If h ∈ C
1, we write

P(h) for the element of Ext1K(F)(M,N) represented by h under this isomorphism.

Remark 4.1.9. Let M = M(r, a, c) and N = M(s, b, d) be rank one Breuil–Kisin
modules with descent data as in Lemma 4.1.1. It follows from the proof of Lemma 3.1.5,
and in particular the description of the map (3.1.6) found there, that the extension
P(h) is given by the formulas

— Pi = F[[u]] ·mi + F[[u]] · ni,
— ΦP,i(1⊗ ni−1) = biu

sini, ΦP,i(1 ⊗mi−1) = aiu
rimi + hini.

— ĝ(
∑

imi) =
∑
i h(g)

cimi, ĝ(
∑

i ni) = h(g)di
∑
i ni for all g ∈ Gal(K ′/K).

From this description it is easy to see that the extension P(h) has height at most

1 if and only if each hi is divisible by uri+si−e
′

.

Theorem 4.1.10. The dimension of Ext1K(F)(M,N) is given by the formula

∆+

f−1∑

i=0

#

{
j ∈ [0, ri) : j ≡ ri + ci − di (mod e(K ′/K))

}

where ∆ = dimF HomK(F)(M,N) is 1 if there is a nonzero map M → N and
0 otherwise, while the subspace consisting of extensions of height at most 1 has
dimension

∆+

f−1∑

i=0

#

{
j ∈ [max(0, ri + si − e′), ri) : j ≡ ri + ci − di (mod e(K ′/K))

}
.

Proof. When p > 2, this result (for extensions of height at most 1) can be obtained
by translating [DS15, Thm. 1.11] from Breuil modules to Breuil–Kisin modules. We
argue in the same spirit as [DS15] using the generalities of Section 3.1.

Choose N as in Lemma 3.1.10(2). For brevity we write C• in lieu of C•(N).
We now use the description of C• provided by Lemma 4.1.8. As we have noted,
C0 consists of the maps mi 7→ µini with (µi) ∈ C

0. Since (ϕ∗
M)−1(vNC1) con-

tains precisely the maps mi 7→ µini in C
0 such that vN | uriµi, we compute that

dimF C
0/
(
(ϕ∗

M)−1(vNC1)
)
is the quantity

Nf −
f−1∑

i=0

#

{
j ∈ [e(K ′/K)N − ri, e(K ′/K)N) : j ≡ ci − di (mod e(K ′/K))

}
.

We have dimF C
1/vNC1 = Nf , so our formula for the dimension of Ext1K(F)(M,N)

now follows from Lemma 3.1.10. �

Remark 4.1.11. One can show exactly as in [DS15] that each element of Ext1K(F)(M,N)

can be written uniquely in the form P(h) for h ∈ C
1 with deg(hi) < ri, except that

when there exists a nonzero morphism M → N, the polynomials hi for f | i may
also have a term of degree α0(M)−α0(N) + r0 in common. Since we will not need
this fact we omit the proof.

4.2. Extensions of shape J . We now begin the work of showing, for each non-
scalar tame type τ , that Cτ,BT,1 has 2f irreducible components, indexed by the
subsets J of {0, 1, . . . , f − 1}. We will also describe the irreducible components
of Zτ,1. The proof of this hinges on examining the extensions considered in Theo-
rem 4.1.10, and then applying the results of Subsection 3.3. We will show that most
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of these families of extensions have positive codimension in Cτ,BT,1, and are thus
negligible from the point of view of determining irreducible components. By a base
change argument, we will also be able to show that we can neglect the irreducible
Breuil–Kisin modules. The rest of Section 3 is devoted to establishing the necessary
bounds on the dimension of the various families of extensions, and to studying the
map from Cτ,BT,1 to Rdd,1.

We now introduce notation that we will use for the remainder of the paper. We
fix a tame inertial type τ = η ⊕ η′ with coefficients in Qp. We allow the case of

scalar types (that is, the case η = η′). Assume that the subfield F of Fp is large
enough so that the reductions modulo mZp

of η and η′ (which by abuse of notation
we continue to denote η, η′) have image in F. We also fix a uniformiser π of K.

Remark 4.2.1. We stress that when we write τ = η ⊕ η′, we are implicitly ordering
η, η′. Much of the notation in this section depends on distinguishing η, η′, as do
some of the constructions later in paper (in particular, those using the map to the
Dieudonné stack of Section 2.4).

As in Subsection 2.4, we make the following “standard choice” for the exten-

sion K ′/K: if τ is a tame principal series type, we take K ′ = K(π1/(pf−1)), while
if τ is a tame cuspidal type, we let L be an unramified quadratic extension of K,

and set K ′ = L(π1/(p2f−1)). In either case K ′/K is a Galois extension and η, η′

both factor through I(K ′/K). In the principal series case, we have e′ = (pf − 1)e,
f ′ = f , and in the cuspidal case we have e′ = (p2f − 1)e, f ′ = 2f . Either way, we

have e(K ′/K) = pf
′ − 1.

In either case, it follows from Lemma 4.1.1 that a Breuil–Kisin module of rank
one with descent data from K ′ to K is described by the data of the quantities
ri, ai, ci for 0 ≤ i ≤ f − 1, and similarly from Lemma 4.1.8 that extensions between
two such Breuil–Kisin modules are described by the hi for 0 ≤ i ≤ f − 1. This
common description will enable us to treat the principal series and cuspidal cases
largely in parallel.

The character h|IK of Section 4.1 is identified via the Artin map O×
L → IabL = IabK

with the reduction map O×
L → (k′)×. Thus for each σ ∈ Hom(k′,Fp) the map

σ ◦ h|IL is the fundamental character ωσ defined in Section 1.4. Define ki, k
′
i ∈

Z/(pf
′ − 1)Z for all i by the formulas η = σi ◦ hki |I(K′/K) and η

′ = σi ◦ hk
′
i |I(K′/K).

In particular we have ki = pik0, k
′
i = pik′0 for all i.

Definition 4.2.2. Let M = M(r, a, c) and N = M(s, b, d) be Breuil–Kisin modules
of rank one with descent data. We say that the pair (M,N) has type τ provided
that for all i:

— the multisets {ci, di} and {ki, k′i} are equal, and

— ri + si = e′.

Lemma 4.2.3. The following are equivalent.

(1) The pair (M,N) has type τ .

(2) Some element of Ext1K(F)(M,N) of height at most one satisfies the strong
determinant condition and is of type τ .

(3) Every element of Ext1K(F)(M,N) has height at most one, satisfies the strong
determinant condition, and is of type τ .
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(Accordingly, we will sometimes refer to the condition that ri + si = e′ for all i as
the determinant condition.)

Proof. Suppose first that the pair (M,N) has type τ . The last sentence of Re-
mark 4.1.9 shows that every element of Ext1K(F)(M,N) has height at most one. Let

P be such an element. The condition on the multisets {ci, di} guarantees thatP has
unmixed type τ . By [CEGS20b, Prop. 4.2.12] we see that dimF(imP,i /E(u)Pi)η̃
is independent of η̃. From the condition that ri + si = e′ we know that the sum
over all η̃ of these dimensions is equal to e′; since they are all equal, each is equal
to e, and [CEGS20b, Lem. 4.2.11] tells us that P satisfies the strong determinant
condition. This proves that (1) implies (3).

Certainly (3) implies (2), so it remains to check that (2) implies (1). Suppose
that P ∈ Ext1K(F)(M,N) has height at most one, satisfies the strong determinant

condition, and has type τ . The condition that {ci, di} = {ki, k′i} follows from P

having type τ , and the condition that ri + si = e′ follows from the last part of
[CEGS20b, Lem. 4.2.11]. �

Definition 4.2.4. If (M,N) is a pair of type τ (resp. P is an extension of type τ),
we define the shape of (M,N) (resp. of P) to be the subset J := {i | ci = ki} ⊆
Z/f ′Z, unless τ is scalar, in which case we define the shape to be the subset ∅.
(Equivalently, J is in all cases the complement in Z/f ′Z of the set {i | ci = k′i}.)

Observe that in the cuspidal case the equality ci = ci+f means that i ∈ J if and
only if i + f 6∈ J , so that the set J is determined by its intersection with any f
consecutive integers modulo f ′ = 2f .

In the cuspidal case we will say that a subset J ⊆ Z/f ′Z is a shape if it satisfies
i ∈ J if and only if i+f 6∈ J ; in the principal series case, we may refer to any subset
J ⊆ Z/f ′Z as a shape.

We define the refined shape of the pair (M,N) (resp. of P) to consist of its shape

J , together with the f -tuple of invariants r := (ri)
f−1
i=0 . If (J, r) is a refined shape

that arises from some pair (or extension) of type τ , then we refer to (J, r) as a
refined shape for τ .

We say the pair (i − 1, i) is a transition for J if i − 1 ∈ J , i 6∈ J or vice-versa.
(In the first case we sometimes say that the pair (i − 1, i) is a transition out of J ,
and in the latter case a transition into J .) Implicit in many of our arguments below
is the observation that in the cuspidal case (i − 1, i) is a transition if and only if
(i+ f − 1, i+ f) is a transition.

4.2.5. An explicit description of refined shapes. The refined shapes for τ admit an
explicit description. If P is of shape J , for some fixed J ⊆ Z/f ′Z then, since
ci, di are fixed, we see that the ri and si appearing in P are determined modulo
e(K ′/K) = pf

′ − 1. Furthermore, we see that ri + si ≡ 0 (mod pf
′ − 1), so that

these values are consistent with the determinant condition; conversely, if we make
any choice of the ri in the given residue class modulo (pf

′ − 1), then the si are
determined by the determinant condition, and the imposed values are consistent
with the descent data. There are of course only finitely many choices for the ri,
and so there are only finitely many possible refined shapes for τ .

To make this precise, recall that we have the congruence

ri ≡ pci−1 − ci (mod pf
′ − 1).
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We will write [n] for the least non-negative residue class of n modulo e(K ′/K) =

pf
′ − 1.
If both i − 1 and i lie in J , then we have ci−1 = ki−1 and ci = ki. The first

of these implies that pci−1 = ki, and therefore ri ≡ 0 (mod pf
′ − 1). The same

conclusion holds if neither i−1 and i lie in J . Therefore if (i−1, i) is not a transition
we may write

ri = (pf
′ − 1)yi and si = (pf

′ − 1)(e− yi).
with 0 ≤ yi ≤ e.

Now suppose instead that (i − 1, i) is a transition. (In particular the type τ is
not scalar.) This time pci−1 = di (instead of pci−1 = ci), so that ri ≡ di − ci
(mod pf

′ − 1). In this case we write

ri = (pf
′ − 1)yi − [ci − di] and si = (pf

′ − 1)(e+ 1− yi)− [di − ci]
with 1 ≤ yi ≤ e.

Conversely, for fixed shape J one checks that each choice of integers yi in the
ranges described above gives rise to a refined shape for τ .

If (i − 1, i) is not a transition and (hi) ∈ C
1
u(M,N) then non-zero terms of hi

have degree congruent to ri + ci − di ≡ ci− di (mod pf
′ − 1). If instead (i− 1, i) is

a transition and (hi) ∈ C
1
u(M,N) then non-zero terms of hi have degree congruent

to ri + ci − di ≡ 0 (mod pf
′ − 1). In either case, comparing with the preceding

paragraphs we see that #{j ∈ [0, ri) : j ≡ ri+ci−di (mod e(K ′/K))} is exactly yi.
By Theorem 4.1.10, we conclude that for a fixed choice of the ri the dimension

of the corresponding Ext1 is ∆ +
∑f−1

i=0 yi (with ∆ as in the statement of loc. cit.).

We say that the refined shape
(
J, (ri)

f−1
i=0

)
is maximal if the ri are chosen to be

maximal subject to the above conditions, or equivalently if the yi are all chosen to
be e; for each shape J , there is a unique maximal refined shape (J, r).

4.2.6. The sets Pτ . To each tame type τ we now associate a set Pτ , which will
be a subset of the set of shapes in Z/f ′Z. (In Appendix A we will recall, fol-
lowing [Dia07], that the set Pτ parameterises the Jordan–Hölder factors of the
reduction mod p of σ(τ).)

We write η(η′)−1 =
∏f ′−1
j=0 (σj ◦ h)γj for uniquely defined integers 0 ≤ γj ≤ p− 1

not all equal to p− 1, so that

(4.2.6) [ki − k′i] =
f ′−1∑

j=0

pjγi−j

with subscripts taken modulo f ′.
If τ is scalar then we set Pτ = {∅}. Otherwise we let Pτ be the collection of

shapes J ⊆ Z/f ′Z satisfying the conditions:

— if i− 1 ∈ J and i /∈ J then γi 6= p− 1, and

— if i− 1 /∈ J and i ∈ J then γi 6= 0.

When τ is a cuspidal type, so that η′ = ηq, the integers γj satisfy γi+f = p− 1− γi
for all i; thus the condition that if (i− 1, i) is a transition out of J then γi 6= p− 1
translates exactly into the condition that if (i + f − 1, i+ f) is a transition into J
then γi+f 6= 0.
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4.2.7. Moduli stacks of extensions. We now apply the constructions of stacks and
topological spaces of Definitions 3.3.11 and 3.3.14 to the families of extensions
considered in Section 4.2.

Definition 4.2.8. If (J, r) is a refined shape for τ , then we let M(J, r) := M(r, 1, c)
and let N(J, r) := M(s, 1, d), where c, d, and s are determined from J , r, and τ
according to the discussion of (4.2.5); for instance we take ci = ki when i ∈ J and
ci = k′i when i 6∈ J . For the unique maximal shape (J, r) refining J , we write simply
M(J) and N(J).

Definition 4.2.9. If (J, r) is a refined shape for τ , then following Definition 3.3.11,
we may construct the reduced closed substack C

(
M(J, r),N(J, r)

)
of Cτ,BT,1, as

well as the reduced closed substack Z
(
M(J, r),N(J, r)

)
of Zτ,1. We introduce the

notation C(J, r) and Z(J, r) for these two stacks, and note that (by definition)
Z(J, r) is the scheme-theoretic image of C(J, r) under the morphism Cτ,BT,1 → Zτ,1.
Remark 4.2.10. As noted in the final sentence of Definition 3.3.11, Lemma 3.3.10
shows that C(J, r) contains all extensions of refined shape (J, r) over extensions
of F, and not only those corresponding to a maximal ideal of Adist.

Theorem 4.2.11. If (J, r) is any refined shape for τ , then dim C(J, r) ≤ [K : Qp],
with equality if and only if (J, r) is maximal.

Proof. This follows from Corollary 3.3.32, Theorem 4.1.10, and Proposition 3.1.15.
(See also the discussion following Definition 4.2.4, and note that over SpecAdist, we
have ∆ = 0 by definition.) �

Definition 4.2.12. If J ⊆ Z/f ′Z is a shape, and if r is chosen so that (J, r) is
a maximal refined shape for τ , then we write C(J) to denote the closed substack
C(J, r) of Cτ,BT,1, and Z(J) to denote the closed substack Z(J, r) of Zτ,1. Again,
we note that by definition Z(J) is the scheme-theoretic image of C(J) in Zτ,1.

We will see later that the C(J) are precisely the irreducible components of Cτ,BT,1;
in particular, their finite type points can correspond to irreducible Galois represen-
tations. While we do not need it in the sequel, we note the following definition
and result, describing the underlying topological spaces of the loci of reducible
Breuil–Kisin modules of fixed refined shape.

Definition 4.2.13. For each refined type (J, r), we write |C(J, r)τ | for the con-
structible subset |C(M(J, r),N(J, r))| of |Cτ,BT,1| of Definition 3.3.14 (whereM(J, r),
N(J, r) are the Breuil–Kisin modules of Definition 4.2.8). We write |Z(J, r)τ | for
the image of |C(J, r)τ | in |Zτ,1| (which is again a constructible subset).

Lemma 4.2.14. The Fp-points of |C(J, r)τ | are precisely the reducible Breuil–Kisin

modules with Fp-coefficients of type τ and refined shape (J, r).

Proof. This is immediate from the definition. �

5. Components of Breuil–Kisin and Galois moduli stacks

Now that we have constructed the morphisms C(J) → Z(J) for each J , we can
begin our study of the components of the stacks Cτ,BT,1 and Zτ,1. The first step
in Subsection 5.1 is to determine precisely for which J the scheme-theoretic image
Z(J) has dimension smaller than [K : Qp], and hence is not a component of Zτ,1.
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In Section 5.2 we study the irreducible locus in Cτ,BT,1 and prove that it lies in a
closed substack of positive codimension. We are then ready to establish our main
results in Subsections 5.3 and 5.4.

5.1. ker-Ext1 and vertical components. In this section we will establish some
basic facts about ker-Ext1K(F)(M,N), and use these results to study the images of

our irreducible components in Zτ,1. Let M = M(r, a, c) and N = M(s, b, c) be
Breuil–Kisin modules as in Section 4.1.

Recall from (3.1.31) that the dimension of ker-ExtK(F)(M,N) is bounded above
by the dimension of HomK(F)(M,N[1/u]/N); more precisely, by Lemma 2.2.4 we
find in this setting that

dimF ker-Ext1K(F)(M,N) = dimF HomK(A)(M,N[1/u]/N)

−(dimF HomF[GK ](T (M), T (N))− dimF HomK(A)(M,N)).
(5.1.1)

A map f : M → N[1/u]/N has the form f(mi) = µini for some f ′-tuple of
elements µi ∈ F((u))/F[[u]]. By the same argument as in the first paragraph of the
proof of Lemma 4.1.8, such a map belongs to C0(N[1/u]/N) (i.e., it is Gal(K ′/K)-
equivariant) if and only if the µi are periodic with period dividing f , and each
nonzero term of µi has degree congruent to ci− di (mod e(K ′/K)). One computes
that δ(f)(1 ⊗ mi−1) = (usiϕ(µi−1) − uriµi)ni and so f ∈ C0(N[1/u]/N) lies in
HomK(F)(M,N[1/u]/N) precisely when

(5.1.2) aiu
riµi = biϕ(µi−1)u

si

for all i.

Remark 5.1.3. Let f ∈ HomK(F)(M,N[1/u]/N) be given as above. Choose any
lifting µ̃i of µi to F((u)). Then (with notation as in Definition 4.1.7) the tuple (µ̃i)
is an element of C0

u, and we define hi = ∂(µ̃i). Then hi lies in F[[u]] for all i, so that
(hi) ∈ C

1, and a comparison with Lemma 4.1.8 shows that f maps to the extension

class in ker-Ext1K(F)(M,N) represented by P(h).

Recall that Lemma 3.1.32 implies that nonzero terms appearing in µi have degree
at least −⌊e′/(p− 1)⌋. From this we obtain the following trivial bound on ker-Ext.

Lemma 5.1.4. We have dimF ker-Ext1K(F)(M,N) ≤ ⌈e/(p− 1)⌉f .

Proof. The degrees of nonzero terms of µi all lie in a single congruence class modulo
e(K ′/K), and are bounded below by −e′/(p − 1). Therefore there are at most
⌈e/(p− 1)⌉ nonzero terms, and since the µi are periodic with period dividing f the
lemma follows. �

Remark 5.1.5. It follows directly from Corollary 5.1.4 that if p > 3 and e 6= 1
then we have dimF ker-Ext1K(F)(M,N) ≤ [K : Qp]/2, for then ⌈e/(p − 1)⌉ ≤ e/2.
Moreover these inequalities are strict if e > 2.

We will require a more precise computation of ker-Ext1K(F)(M,N) in the setting

of Section 4.2 where the pair (M,N) has maximal refined shape (J, r). We now
return to that setting and its notation.

Let τ be a tame type. We will find the following notation to be helpful. We let
γ∗i = γi if i− 1 6∈ J , and γ∗i = p− 1− γi if i− 1 ∈ J . (Here the integers γi are as in
Section 4.2.6. In the case of scalar types this means that we have γ∗i = 0 for all i.)
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Since p[ki−1 − k′i−1]− [ki − k′i] = (pf
′ − 1)γi, an elementary but useful calculation

shows that

(5.1.6) p[di−1 − ci−1]− [ci − di] = γ∗i (p
f ′ − 1),

when (i−1, i) is a transition, and that in this case γ∗i = 0 if and only if [di−1−ci−1] <

pf
′−1. Similarly, if τ is not a scalar type and (i− 1, i) is not a transition then

(5.1.7) p[di−1 − ci−1] + [ci − di] = (γ∗i + 1)(pf
′ − 1).

The main computational result of this section is the following.

Proposition 5.1.8. Let (J, r) be any maximal refined shape for τ , and suppose that

the pair (M,N) has refined shape (J, r). Then dimF ker-Ext1K(F)(M,N) is equal to

#{0 ≤ i < f : the pair (i− 1, i) is a transition and γ∗i = 0},
except that when e = 1,

∏
i ai =

∏
i bi, and the quantity displayed above is f , then

the dimension of ker-Ext1K(F)(M,N) is equal to f − 1.

Proof. The argument has two parts. First we show that dimF HomK(F)(M,N[1/u]/N)
is precisely the displayed quantity in the statement of the Proposition; then we
check that dimF HomF[GK ](T (M), T (N)) − dimF HomK(F)(M,N) is equal to 1 in
the exceptional case of the statement, and 0 otherwise. The result then follows
from (5.1.1).

Let f : mi 7→ µini be an element of C0(N[1/u]/N). Since ue
′

kills µi, and all

nonzero terms of µi have degree congruent to ci − di (mod pf
′ − 1), certainly all

nonzero terms of µi have degree at least −e′ + [ci − di]. On the other hand since
the shape (J, r) is maximal we have ri = e′− [ci − di] when (i− 1, i) is a transition
and ri = e′ otherwise. In either case uri kills µi, so that (5.1.2) becomes simply
the condition that usi kills ϕ(µi−1).

If (i − 1, i) is not a transition then si = 0, and we conclude that µi−1 = 0.
Suppose instead that (i − 1, i) is a transition, so that si = [ci − di]. Then all

nonzero terms of µi−1 have degree at least −si/p > −pf
′−1 > −e(K ′/K). Since

those terms must have degree congruent to ci−1 − di−1 (mod pf
′ − 1), it follows

that µi−1 has at most one nonzero term (of degree −[di−1 − ci−1]), and this only if

[di−1− ci−1] < pf
′−1, or equivalently γ∗i = 0 (as noted above). Conversely if γ∗i = 0

then

usiϕ(u−[di−1−ci−1]) = u[ci−di]−p[di−1−ci−1] = u−γ
∗
i (p

f′
−1)

vanishes in F((u))/F[[u]]. We conclude that µi−1 may have a single nonzero term
if and only if (i− 1, i) is a transition and γ∗i = 0, and this completes the first part
of the argument.

Turn now to the second part. Looking at Corollary 4.1.5 and Lemma 4.1.6,
to compare HomF[GK ](T (M), T (N)) and HomK(F)(M,N) we need to compute the
quantities αi(M)− αi(N). By definition this quantity is equal to

(5.1.9)
1

pf ′ − 1

f ′∑

j=1

pf
′−j (ri+j − si+j) .

Suppose first that τ is non-scalar. When (i + j − 1, i + j) is a transition, we

have ri+j − si+j = (e − 1)(pf
′ − 1) + [di+j − ci+j ] − [ci+j − di+j ], and otherwise

we have ri+j − si+j = e(pf
′ − 1) = (e − 1)(pf

′ − 1) + [di+j − ci+j ] + [ci+j − di+j ].
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Substituting these expressions into (5.1.9), adding and subtracting 1
pf′−1

pf
′

[di−ci],
and regrouping gives

−[di− ci]+ (e− 1) · p
f ′ − 1

p− 1
+

1

pf ′ − 1

f ′∑

j=1

pf
′−j (p[di+j−1 − ci+j−1]∓ [ci+j − di+j ]) ,

where the sign is − if (i + j − 1, i + j) is a transition and + if not. Applying the
formulas (5.1.6) and (5.1.7) we conclude that

(5.1.10) αi(M)−αi(N) = −[di− ci]+ (e− 1) · p
f ′ − 1

p− 1
+

f ′∑

j=1

pf
′−jγ∗i+j +

∑

j∈Si

pf
′−j

where the set Si consists of 1 ≤ j ≤ f such that (i+ j − 1, i+ j) is not a transition.
Finally, a moment’s inspection shows that the same formula still holds if τ is scalar
(recalling that J = ∅ in that case).

Suppose that we are in the exceptional case of the proposition, so that e = 1, γ∗i =
0 for all i, and every pair (i−1, i) is a transition. The formula (5.1.10) gives αi(M)−
αi(N) = −[di − ci]. Since also

∏
i ai =

∏
i bi the conditions of Corollary 4.1.5 are

satisfied, so that T (M) = T (N); but on the other hand αi(M) < αi(N), so that by
Lemma 4.1.6 there are no nonzero mapsM→ N, and dimF HomF[GK ](T (M), T (N))−
dimF HomK(F)(M,N) = 1.

If instead we are not in the exceptional case of the proposition, then either∏
i ai 6=

∏
i bi, or else (5.1.10) gives αi(M) − αi(N) > −[di − ci] for all i. Sup-

pose that T (M) ∼= T (N). It follows from Corollary 4.1.5 that αi(M) − αi(N) ≡
−[di− ci] (mod e(K ′/K)). Combined with the previous inequality we deduce that
αi(M) − αi(N) > 0, and Lemma 4.1.6 guarantees the existence of a nonzero
map M → N. We deduce that in any event dimF HomF[GK ](T (M), T (N)) =
dimF HomK(F)(M,N), completing the proof. �

Corollary 5.1.11. Let (J, r) be any maximal refined shape for τ , and suppose that

the pair (M,N) has refined shape (J, r). If J ∈ Pτ then dimF ker-Ext1K(F)(M,N) =
0. Indeed this is an if and only if except possibly when K = Qp, the type τ is
cuspidal, and T (M(J, r)) ∼= T (N(J, r)).

Proof. The first statement is immediate from Proposition 5.1.8, comparing the
definition of γ∗i with the defining condition on elements of Pτ ; in fact this gives an
if and only if unless we are in the exceptional case in Proposition 5.1.8 and f−1 = 0.
In that case e = f = 1, so K = Qp. In the principal series case for K = Qp there
can be no transitions, so the type is cuspidal. Then γ∗i = 0 for i = 0, 1 and an
elementary analysis of (5.1.6) shows that there exists x ∈ Z/(p − 1)Z such that
ci = 1+ x(p+ 1), di = p+ x(p+ 1) for i = 0, 1. Then ri = p− 1 and si = p(p− 1),
and Lemma 4.1.4 gives T (M(J, r)) ∼= T (N(J, r)). �

Recall that Z(J) is by definition the scheme-theoretic image of C(J) in Zτ,1. In
the remainder of this section, we show that the Z(J) with J ∈ Pτ are pairwise
distinct irreducible components of Zτ,1. In Section 5.3 below we will show that
they in fact exhaust the irreducible components of Zτ,1.
Theorem 5.1.12. Z(J) has dimension at most [K : Qp], with equality occurring if

and only if J ∈ Pτ . Consequently, the Z(J) with J ∈ Pτ are irreducible components
of Zτ,1.
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Proof. The first part is immediate from Corollary 3.3.32, Proposition 3.1.15, Corol-
lary 5.1.11 and Theorem 4.2.11 (noting that the exceptional case of Corollary 5.1.11
occurs away from max-SpecAdist). Since Zτ,1 is equidimensional of dimension [K :
Qp] by Theorem 2.3.10, and the Z(J) are closed and irreducible by construction,
the second part follows from the first together with [Sta13, Tag 0DS2]. �

We also note the following result.

Proposition 5.1.13. If J ∈ Pτ , then there is a dense open substack U of C(J)
such that the canonical morphism C(J)→ Z(J) restricts to an open immersion on
U .

Proof. This follows from Proposition 3.3.21 and Corollary 5.1.11. �

For later use, we note the following computation. Recall that we write N(J) =
N(J, r) for the maximal shape (J, r) refining J , and that τ = η ⊕ η′.

Proposition 5.1.14. For each shape J we have

T (N(J)) ∼= η ·



f ′−1∏

i=0

(σi ◦ h)ti



−1

|GK∞

where

ti =

{
γi + δJc(i) if i− 1 ∈ J
0 if i− 1 6∈ J.

Here δJc is the characteristic function of the complement of J in Z/f ′Z, and we
are abusing notation by writing η for the function σi ◦ hki , which agrees with η on
IK .

In particular the map J 7→ T (N(J)) is injective on Pτ .

Remark 5.1.15. In the cuspidal case it is not a priori clear that the formula in
Proposition 5.1.14 gives a character of GK∞ (rather than a character only when
restricted to GL∞), but this is an elementary (if somewhat painful) calculation
using the definition of the γi’s and the relation γi + γi+f = p− 1.

Proof. We begin by explaining how the final statement follows from the rest of the
Proposition. First observe that if J ∈ Pτ then 0 ≤ ti ≤ p− 1 for all i. Indeed the
only possibility for a contradiction would be if γi = p− 1 and i 6∈ J , but then the
definition of Pτ requires that we cannot have i − 1 ∈ J . Next, note that we never
have ti = p− 1 for all i. Indeed, this would require J = Z/f ′Z and γi = p− 1 for
all i, but by definition the γi are not all equal to p− 1.

The observations in the previous paragraph imply that (for J ∈ Pτ ) the character
T (N(J)) uniquely determines the integers ti, and so it remains to show that the
integers ti determine the set J . If ti = 0 for all i, then either J = ∅ or J = Z/f ′Z

(for otherwise there is a transition out of J , and δJc(i) 6= 0 for some i − 1 ∈ J).
But if J = Z/f ′Z then γi = 0 for all i and τ is scalar; but for scalar types we have
Z/f ′Z 6∈ Pτ , a contradiction. Thus ti = 0 for all i implies J = ∅.

For the rest of this part of the argument, we may therefore suppose ti 6= 0 for
some i, which forces i−1 ∈ J . The entire set J will then be determined by recursion
if we can show that knowledge of ti along with whether or not i ∈ J , determines
whether or not i − 1 ∈ J . Given the defining formula for ti, the only possible

https://stacks.math.columbia.edu/tag/0DS2
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ambiguity is if ti = 0 and γi + δJc(i) = 0, so that γi = 0 and i ∈ J . But the
definition of Pτ requires i− 1 ∈ J in this case. This completes the proof.

We now turn to proving the formula for T (N(J)). We will use Lemma 4.1.4
applied at i = 0, for which we have to compute α0 − d0 writing α0 = α0(N).
Recall that we have already computed α0(M(J))−α0(N(J)) in the proof of Propo-

sition 5.1.8. Since α0(M(J)) +α0(N(J)) = e(pf
′ − 1)/(p− 1), taking the difference

between these formulas gives

2α0 = [d0 − c0]−
f ′∑

j=1

pf
′−jγ∗j +

∑

j∈Sc
0

pf
′−j

where Sc0 consists of those 1 ≤ j ≤ f such that (j − 1, j) is a transition. Subtract

2[d0] from both sides, and add the expression −[k0 − k′0] +
∑f ′

j=1 p
f ′−jγj (which

vanishes by definition) to the right-hand side. Note that [d0− c0]− [k0− k′0]− 2[d0]
is equal to −2[k0] if 0 6∈ J , and to e(K ′/K) − 2[k0 − k′0] − 2[k′0] if 0 ∈ J . Since
γj − γ∗j = 2γj − (p − 1) if j − 1 ∈ J and is 0 otherwise, the preceding expression
rearranges to give (after dividing by 2)

α0 − [d0] = −κ0 +
∑

j−1∈J

pf
′−jγj +

∑

j−1∈J,j 6∈J

pf
′−j = −κ0 +

f ′∑

j=1

pf
′−jtj

where κ0 = [k0] if 0 6∈ J and κ0 = [k0 − k′0] + [k′0] if 0 ∈ J . Since in either case
κ0 ≡ k0 (mod e(K ′/K)) the result now follows from Lemma 4.1.4. �

Definition 5.1.16. Let r : GK → GL2(F
′) be representation. Then we say that a

Breuil–Kisin module M with F′-coefficients is a Breuil–Kisin model of r of type τ
if M is an F′-point of Cτ,BT,1, and TF′(M) ∼= r|GK∞

.

Recall that for each continuous representation r : GK → GL2(Fp), there is an
associated (nonempty) set of Serre weightsW (r) whose precise definition is recalled
in Appendix A.

Theorem 5.1.17. The Z(J), with J ∈ Pτ , are pairwise distinct closed substacks
of Zτ,1. For each J ∈ Pτ , there is a dense set of finite type points of Z(J) with
the property that the corresponding Galois representations have σ(τ)J as a Serre
weight, and which furthermore admit a unique Breuil–Kisin model of type τ .

Proof. Recall from Definition 3.3.11 that Z(J) is defined to be the scheme-theoretic
image of a morphism SpecBdist → Zdd,1. As in the proof of Lemma 3.3.13, since
the source and target of this morphism are of finite presentation over F, its image is
a dense constructible subset of its scheme-theoretic image, and so contains a dense
open subset, which we may interpret as a dense open substack U of Z(J). From
the definition of Bdist, the finite type points of U correspond to reducible Galois
representations admitting a model of type τ and refined shape (J, r), for which (J, r)
is maximal.

That the Z(J) are pairwise distinct is immediate from the above and Proposi-
tion 5.1.14. Combining this observation with Theorem 4.2.11, we see that by delet-
ing the intersections of Z(J) with the Z(J ′, r′) for all refined shapes (J ′, r′) 6= (J, r),
we obtain a dense open substack U ′ whose finite type points have the property that
every Breuil–Kisin model of type τ of the corresponding Galois representation has
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shape (J, r). The unicity of such a Breuil–Kisin model then follows from Corol-
lary 5.1.11.

It remains to show that every such Galois representation r has σ(τ)J as a Serre
weight. Suppose first that τ is a principal series type. We claim that (writing
σ(τ)J = σ~t,~s ⊗ (η′ ◦ det) as in Appendix A) we have

T (N(J))|IK = η′|IK
f−1∏

i=0

ωsi+tiσi
.

To see this, note that by Proposition 5.1.14 it is enough to show that η|IK =

η′|IK
∏f−1
i=0 ω

si+2ti
σi

, which follows by comparing the central characters of σ(τ)J and
σ(τ) (or from a direct computation with the quantities si, ti).

Since det r|IK = ηη′ε−1, we have

r|IK ∼= η′|IK ⊗
(∏f−1

i=0 ω
si+ti
σi

∗
0 ε−1

∏f−1
i=0 ω

ti
σi

)
.

The result then follows from Lemma A.6, using Lemma A.5(2) and the fact that
the fibre of the morphism Cτ,BT,1 →Rdd,1 above r is nonempty to see that r is not
très ramifiée.

The argument in the cuspidal case proceeds analogously, noting that if the charac-

ter θ (as in Appendix A) corresponds to θ̃ under local class field theory then θ̃|IK =

η′
∏f ′−1
i=0 ωtiσ′

i
, and that from central characters we have ηη′ = (θ̃|IK )2

∏f−1
i=0 ω

si
σi
. �

Remark 5.1.18. With more work, we could use the results of [GLS15] and our
results on dimensions of families of extensions to strengthen Theorem 5.1.17, show-
ing that there is a dense set of finite type points of Z(J) with the property that
the corresponding Galois representations have σ(τ)J as their unique non-Steinberg
Serre weight. In fact, we will prove this as part of our work on the geometric
Breuil–Mézard conjecture in [CEGS20a] (which uses Theorem 5.1.17 as an input).

5.2. Irreducible Galois representations. We now show that the points of Cτ,BT,1

which are irreducible (that is, cannot be written as an extension of rank one Breuil–
Kisin modules) lie in a closed substack of positive codimension. We begin with the
following useful observation.

Lemma 5.2.1. The rank two Breuil–Kisin modules with descent data and Fp-
coefficients which are irreducible (that is, which cannot be written as an extension
of rank 1 Breuil–Kisin modules with descent data) are precisely those whose corre-
sponding étale ϕ-modules are irreducible, or equivalently whose corresponding GK -
representations are irreducible.

Proof. Let M be a Breuil–Kisin module with descent data corresponding to a finite

type point of Cτ,BT,1
dd , let M = M[1/u], and let ρ be the GK -representation corre-

sponding to M . As noted in the proof of Lemma 2.2.6, ρ is reducible if and only
if ρ|GK∞

is reducible, and by Lemma 2.2.4, this is equivalent to M being reducible.
That this is in turn equivalent to M being reducible may be proved in the same
way as [GLS14, Lem. 5.5]. �

Recall that L/K denotes the unramified quadratic extension; then the irreducible
representations ρ : GK → GL2(Fp) are all induced from characters of GL. Bearing
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in mind Lemma 5.2.1, this means that we can study irreducible Breuil–Kisin mod-
ules via a consideration of base-change of Breuil–Kisin modules from K to L, and
our previous study of reducible Breuil–Kisin modules. Since this will require us to
consider Breuil–Kisin modules (and moduli stacks thereof) over both K and L, we
will have to introduce additional notation in order to indicate over which of the two
fields we might be working. We do this simply by adding a subscript ‘K’ or ‘L’ to
our current notation. We will also omit other decorations which are being held fixed
throughout the present discussion. Thus we write CτK to denote the moduli stack

that was previously denoted Cτ,BT,1, and Cτ|LL to denote the corresponding moduli
stack for Breuil–Kisin modules over L, with the type taken to be the restriction
τ|L of τ from K to L. (Note that whether τ is principal series or cuspidal, the
restriction τ|L is principal series.)

As usual we fix a uniformiser π of K, which we also take to be our fixed uni-

formiser of L. Also, throughout this section we take K ′ = L(π1/(p2f−1)), so that
K ′/L is the standard choice of extension for τ and π regarded as a type and uni-
formiser for L.

If P is a Breuil–Kisin module with descent data from K ′ to L, then we let P(f)

be the Breuil–Kisin module W (k′)[[u]] ⊗Gal(k′/k),W (k′)[[u]] P, where the pullback

is given by the non-trivial automorphism of k′/k, and the descent data on P(f) is

given by ĝ(s⊗m) = ĝ(s)⊗ ĝpf (m) for s ∈ W (k′)[[u]] and m ∈ P. In particular, we
have M(r, a, c)(f) = M(r′, a′, c′) where r′i = ri+f , a

′
i = ai+f , and c

′
i = ci+f .

We let σ denote the non-trivial automorphism of L over K, and write G :=
Gal(L/K) = 〈σ〉, a cyclic group of order two. There is an action α of G on CL
defined via ασ : P 7→ P(f). More precisely, this induces an action of G := 〈σ〉 on
Cτ|LL in the strict 2 sense that

ασ ◦ ασ = id
C
τ|L
L

.

We now define the fixed point stack for this action.

Definition 5.2.2. We let the fixed point stack (Cτ|LL )G denote the stack whose A-

valued points consist of an A-valued point M of Cτ|LL , together with an isomorphism

ı : M
∼−→M(f) which satisfies the cocycle condition that the composite

M
ı−→M(f) ı(f)

−→ (M(f))(f) = M

is equal to the identity morphism idM.

We now give another description of (Cτ|LL )G, in terms of various fibre products,
which is technically useful. This alternate description involves two steps. In the
first step, we define fixed points of the automorphism ασ, without imposing the ad-
ditional condition that the fixed point data be compatible with the relation σ2 = 1
in G. Namely, we define

(Cτ|LL )ασ := Cτ|LL ×
C
τ|L
L

×C
τ|L
L

Cτ|LL

2. From a 2-categorical perspective, it is natural to relax the notion of group action on a stack
so as to allow natural transformations, rather than literal equalities, when relating multiplication

in the group to the compositions of the corresponding equivalences of categories arising in the
definition of an action. An action in which actual equalities hold is then called strict. Since our
action is strict, we are spared from having to consider the various 2-categorical aspects of the
situation that would otherwise arise.
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where the first morphism Cτ|LL → Cτ|LL ×C
τ|L
L is the diagonal, and the second is id×ασ.

Working through the definitions, one finds that an A-valued point of (Cτ|LL )ασ con-

sists of a pair (M,M′) of objects of Cτ|LL over A, equipped with isomorphisms

α : M
∼−→M′ and β : M

∼−→ (M′)(f). The morphism

(M,M′, α, β) 7→ (M, ı),

where ı := (α−1)(f) ◦β : M→M(f), induces an isomorphism between (Cτ|LL )ασ and

the stack classifying points M of Cτ|LL equipped with an isomorphism ı : M→M(f).
(However, no cocycle condition has been imposed on ı.)

Let I
C
τ|L
L

denote the inertia stack of Cτ|LL . We define a morphism

(Cτ|LL )ασ → I
C
τ|L
L

via

(M, ı) 7→ (M, ı(f) ◦ ı),
where, as in Definition 5.2.2, we regard the composite ı(f) ◦ ı as an automorphism
of M via the identity (M(f))(f) = M. Of course, we also have the identity section

e : Cτ|LL → I
C
τ|L
L

. We now define

(Cτ|LL )G := (Cτ|LL )ασ ×
I
C
τ|L
L

Cτ|LL .

If we use the description of (Cτ |LL )ασ as classifying pairs (M, ı), then (just unwinding
definitions) this fibre product classifies tuples (M, ı,M′, α), where α is an isomor-

phism M
∼−→ M′ which furthermore identifies ı(f) ◦ ı with idM′ . Forgetting M′

and α then induces an isomorphism between (Cτ |LL )G, as defined via the above fibre
product, and the stack defined in Definition 5.2.2.

To compare this fixed point stack to CτK , we make the following observations.
Given a Breuil–Kisin module with descent data from K ′ to K, we obtain a Breuil–
Kisin module with descent data from K ′ to L via the obvious forgetful map. Con-
versely, given a Breuil–Kisin module P with descent data from K ′ to L, the ad-
ditional data required to enrich this to a Breuil–Kisin module with descent data
from K ′ to K can be described as follows as follows: let θ ∈ Gal(K ′/K) denote the

unique element which fixes π1/(p2f−1) and acts nontrivially on L. Then to enrich
the descent data on P to descent data from K ′ to K, it is necessary and sufficient

to give an additive map θ̂ : P→ P satisfying θ̂(sm) = θ(s)θ̂(m) for all s ∈ SF and

m ∈ P, and such that θ̂ĝθ̂ = ĝp
f

for all g ∈ Gal(K ′/L).

In turn, the data of the additive map θ̂ : P→ P is equivalent to giving the data

of the map θ(θ̂) : P → P(f) obtained by composing θ̂ with the Frobenius on L/K.

The defining properties of θ̂ are equivalent to asking that this map is an isomor-
phism of Breuil–Kisin modules with descent data satisfying the cocycle condition
of Definition 5.2.2; accordingly, we have a natural morphism CτK → (Cτ|LL )G, and a
restriction morphism

(5.2.3) CτK → C
τ|L
L .

The following simple lemma summarises the basic facts about base-change in the
situation we are considering.

Lemma 5.2.4. There is an isomorphism CτK
∼−→ (Cτ|LL )G.
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Proof. This follows immediately from the preceding discussion. �

Remark 5.2.5. In the proof of Theorem 5.2.9 we will make use of the following
analogue of Lemma 5.2.4 for étale ϕ-modules. Write RK , RL for the moduli stacks
of Definition 2.3.7, i.e. for the moduli stacks of rank 2 étale ϕ-modules with descent
data respectively toK or to L. Then we have an action ofG onRL defined viaM 7→
M (f) :=W (k′)⊗Gal(k′/k),W (k′)M , and we define the fixed point stack (RL)G exactly

as in Definition 5.2.2: namely an A-valued point of (RL)G consists of an A-valued

pointM ofRL, together with an isomorphism ι :M
∼−→M (f) satisfying the cocycle

condition. The preceding discussion goes through in this setting, and shows that
there is an isomorphism RK ∼−→ (RL)G.

We also note that the morphisms CτK → C
τ|L
L and CτK →RK induce a monomor-

phism

(5.2.6) CτK →֒ C
τ|L
L ×RL

RK
One way to see this is to rewrite this morphism (using the previous discussion) as
a morphism

(Cτ|LL )G → Cτ|LL ×RL
(RL)G,

and note that the descent data via G on an object classified by the source of this
morphism is determined by the induced descent data on its image in (RL)G.

We now use the Lemma 5.2.4 to study the locus of finite type points of CτK
which correspond to irreducible Breuil–Kisin modules. Any irreducible Breuil–Kisin
module over K becomes reducible when restricted to L, and so may be described
as an extension

0→ N→ P→M→ 0,

where M and N are Breuil–Kisin modules of rank one with descent data from K ′

to L, and P is additionally equipped with an isomorphism P ∼= P(f), satisfying the
cocycle condition of Definition 5.2.2.

Note that the characters T (M), T (N) of GL∞ are distinct and cannot be ex-
tended to characters of GK . Indeed, this condition is plainly necessary for an
extension P to arise as the base change of an irreducible Breuil–Kisin module (see
the proof of Lemma 2.2.6). Conversely, if T (M), T (N) of GL∞ are distinct and
cannot be extended to characters of GK , then for any P ∈ Ext1K(F)(M,N) whose

descent data can be enriched to give descent data from K ′ to K, this enrichment
is necessarily irreducible. In particular, the existence of such a P implies that the
descent data on M and N cannot be enriched to give descent data from K ′ to K.

We additionally have the following observation.

Lemma 5.2.7. If M,N are such that there is an extension

0→ N→ P→M→ 0

whose descent data can be enriched to give an irreducible Breuil–Kisin module
over K, then there exists a nonzero map N→M(f).

Proof. The composition N→ P
θ̂−→ P→M, in which first and last arrows are the

natural inclusions and projections, must be nonzero (or else θ̂ would give descent
data on N from K ′ to K). It is not itself a map of Breuil–Kisin modules, because

θ̂ is semilinear, but is a map of Breuil–Kisin modules when viewed as a map N→
M(f). �



COMPONENTS OF MODULI STACKS 61

We now consider (for our fixed M, N, and working over L rather than over K)
the scheme SpecBdist as in Subsection 3.3. Following Lemma 5.2.7, we assume that
there exists a nonzero map N→M(f). The observations made above show that we
are in the strict case, and thus that SpecAdist = Gm ×Gm and that furthermore
we may (and do) set V = T . We consider the fibre product with the restriction
morphism (5.2.3)

Y (M,N) := SpecBdist ×
C
τ|L
L

CτK .

Let Gm →֒ Gm×Gm be the diagonal closed immersion, and let (SpecBdist)|Gm

denote the pull-back of SpecBdist along this closed immersion. By Lemma 5.2.7, the
projection Y (M,N) → SpecBdist factors through (SpecBdist)|Gm

, and combining
this with Lemma 5.2.4 we see that Y (M,N) may also be described as the fibre
product

(SpecBdist)|Gm
×

C
τ|L
L

(Cτ|LL )G.

Recalling the warning of Remark 3.3.16, Proposition 3.3.21 now shows that there
is a monomorphism

[(SpecBdist)|Gm
/Gm ×Gm] →֒ Cτ|LL ,

and thus, by Lemma 3.2.8, that there is an isomorphism

(SpecBdist)|Gm
×

C
τ|L
L

(SpecBdist)|Gm

∼−→ (SpecBdist)|Gm
×Gm ×Gm.

(An inspection of the proof of Proposition 3.3.21 shows that in fact this result is
more-or-less proved directly, as the key step in proving the proposition.) An ele-
mentary manipulation with fibre products then shows that there is an isomorphism

Y (M,N)×
(C

τ|L
L

)G
Y (M,N)

∼−→ Y (M,N)×Gm ×Gm,

and thus, by another application of Lemma 3.2.8, we find that there is a monomor-
phism

(5.2.8) [Y (M,N)/Gm ×Gm] →֒ (Cτ|LL )G.

We define Cirred to be the union over all such pairs (M,N) of the scheme-theoretic

images of the various projections Y (M,N) → (Cτ|LL )G. Note that this image de-
pends on (M,N) up to simultaneous unramified twists of M and N, and there
are only finitely many such pairs (M,N) up to such unramified twist. By defini-
tion, Cirred is a closed substack of CτK which contains every finite type point of CτK
corresponding to an irreducible Breuil–Kisin module.

The following is the main result of this section.

Theorem 5.2.9. The closed substack Cirred of CτK = Cτ,BT,1, which contains every
finite type point of CτK corresponding to an irreducible Breuil–Kisin module, has
dimension strictly less than [K : Qp].

Proof. As noted above, there are only finitely many pairs (M,N) up to unramified
twist, so it is enough to show that for each of them, the scheme-theoretic image of
the monomorphism (5.2.8) has dimension less than [K : Qp].

By [Sta13, Tag 0DS6], to prove the present theorem, it then suffices to show that
dimY (M,N) ≤ [K : Qp]+1 (since dimGm×Gm = 2). To establish this, it suffices
to show, for each point x ∈ Gm(F′), where F′ is a finite extension of F, that the
dimension of the fibre Y (M,N)x is bounded by [K : Qp]. After relabelling, as we

https://stacks.math.columbia.edu/tag/0DS6


62 A. CARAIANI, M. EMERTON, T. GEE, AND D. SAVITT

may, the field F′ as F and the Breuil–Kisin modules Mx and Nx as M and N, we
may suppose that in fact F′ = F and x = 1.

Manipulating the fibre product appearing in the definition of Y (M,N), we find
that

(5.2.10) Y (M,N)1 = Ext1K(F)(M,N)×
C
τ|N
L

CτK ,

where the fibre product is taken with respect to the morphism Ext1K(F)(M,N)→ CτL
that associates the corresponding rank two extension to an extension of rank one
Breuil–Kisin modules, and the restriction morphism (5.2.3).

In order to bound the dimension of Y (M,N)1, it will be easier to first embed it
into another, larger, fibre product, which we now introduce. Namely, the monomor-
phism (5.2.6) induces a monomorphism

Y (M,N)1 →֒ Y ′(M,N)1 := Ext1K(F)(M,N)×RL
RK .

Any finite type point of this fibre product lies over a fixed isomorphism class of
finite type points of RK (corresponding to some fixed irreducible Galois represen-
tation); we let P be a choice of such a point. The restriction of P then lies in
a fixed isomorphism class of finite type points of RL (namely, the isomorphism
class of the direct sum M[1/u] ⊕ N[1/u] ∼= M[1/u] ⊕M(f)[1/u]). Thus the pro-
jection Y ′(M,N)1 → RK factors through the residual gerbe of P , while the mor-
phism Y ′(M,N)1 → RL factors through the residual gerbe of M[1/u]⊕N[1/u] ∼=
M[1/u]⊕M(f)[1/u]. Since P corresponds via Lemma 2.2.4 to an irreducible Galois
representation, we find that Aut(P ) = Gm. Since M[1/u]⊕N[1/u] corresponds via
Lemma 2.2.4 to the direct sum of two non-isomorphic Galois characters, we find
that Aut(M[1/u]⊕N[1/u]) = Gm ×Gm.

Thus we obtain monomorphisms

(5.2.11) Y (M,N)1 →֒ Y ′(M,N)1

→֒ Ext1K(F)(M,N)×[SpecF ′//Gm×Gm] [SpecF
′//Gm] ∼= Ext1K(F)(M,N)×Gm.

In Proposition 5.2.12 we obtain a description of the image of Y (M,N)1 under this
monomorphism which allows us to bound its dimension by [K : Qp], as required. �

We now prove the bound on the dimension of Y (M,N)1 that we used in the proof
of Theorem 5.2.9. Before establishing this bound, we make some further remarks.
To begin with, we remind the reader that we are working with Breuil–Kisin modules,
étale ϕ-modules, etc., over L rather than K, so that e.g. the structure parameters
of M,N are periodic modulo f ′ = 2f (not modulo f), and the pair (M,N) has
type τ |L. We will readily apply various pieces of notation that were introduced
above in the context of the field K, adapted in the obvious manner to the context
of the field L. (This applies in particular to the notation C

1
u, C

0
u, etc. introduced in

Definition 4.1.7.)
We write m,n for the standard generators of M and N. The existence of the

nonzero map N → M(f) implies that αi(N) ≥ αi+f (M) for all i, and also that∏
i ai =

∏
i bi. Thanks to the latter we will lose no generality by assuming that

ai = bi = 1 for all i. Let m̃ be the standard generator for M(f). The map
N→M(f) will (up to a scalar) have the form ni 7→ uxim̃i for integers xi satisfying
pxi−1 − xi = si − ri+f for all i; thus xi = αi(N) − αi+f (M) for all i. Since the

characters T (M) and T (N) are conjugate we must have xi ≡ di−ci+f (mod pf
′−1)
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for all i (cf. Lemma 4.1.4). Moreover, the strong determinant condition si+ ri = e′

for all i implies that xi = xi+f .
We stress that we make no claims about the optimality of the following result;

we merely prove “just what we need” for our applications. Indeed the estimates of
[Hel09, Car17] suggest that improvement should be possible.

Proposition 5.2.12. We have dimY (M,N)1 ≤ [K : Qp].

Remark 5.2.13. Since the image of Y (M,N)1 in Ext1K(F)(M,N) lies in ker-Ext1K(F)(M,N)
with fibres that can be seen to have dimension at most one, many cases of Propo-
sition 5.2.12 will already follow from Remark 5.1.5 (applied with L in place of K).

Proof of Proposition 5.2.12. Let P = P(h) be an element of Ext1K(F)(M,N) whose

descent data can be enriched to give descent data from K ′ to K, and let P̃ be
such an enrichment. By Lemma 5.2.7 (and the discussion preceding that lemma)
the étale ϕ-module P[ 1u ] is isomorphic to M[ 1u ] ⊕M(f)[ 1u ]. All extensions of the

GL∞-representation T (M[ 1u ]⊕M(f)[ 1u ]) to a representation of GK∞ are isomorphic

(and given by the induction of T (M[ 1u ]) to GK∞), so the same is true of the étale

ϕ-modules with descent data from K ′ to K that enrich the descent data on M[ 1u ]⊕
M(f)[ 1u ]. One such enrichment, which we denote P , has θ̂ that interchanges m and

m̃. Thus P̃[ 1u ] is isomorphic to P .
As in the proof of Lemma 5.2.7, the hypothesis that T (M) 6∼= T (N) implies that

any non-zero map (equivalently, isomorphism) of étale ϕ-modules with descent data

λ : P̃[ 1u ] → P takes the submodule N[ 1u ] to M(f)[ 1u ]. We may scale the map λ so
that it restricts to the map ni → uxim̃i on N. Then there is an element ξ ∈ F×

so that λ induces multiplication by ξ on the common quotients M[ 1u ]. That is, the
map λ may be assumed to have the form

(5.2.14)

(
ni
mi

)
7→
(
uxi 0
νi ξ

)(
m̃i

mi

)

for some (νi) ∈ F((u))f
′

. The condition that the map λ commutes with the descent
data from K ′ to L is seen to be equivalent to the condition that nonzero terms in
νi have degree congruent to ci − di + xi (mod pf

′ − 1); or equivalently, if we define
µi := νiu

−xi for all i, that the tuple µ = (µi) is an element of the set C0
u = C

0
u(M,N)

of Definition 4.1.7.
The condition that λ commutes with ϕ can be checked to give

ϕ

(
ni−1

mi−1

)
=

(
usi 0

ϕ(νi−1)u
ri+f−xi − νiuri−xi uri

)(
ni
mi

)
.

The extension P is of the form P(h), for some h ∈ C
1 as in Definition 4.1.7. The

lower-left entry of the first matrix on the right-hand side of the above equation must
then be hi. Since ri+f − xi = si − pxi−1, the resulting condition can be rewritten
as

hi = ϕ(µi−1)u
si − µiuri ,

or equivalently that h = ∂(µ). Comparing with Remark 5.1.3, we recover the fact

that the extension class of P is an element of ker-Ext1K(F)(M,N), and the tuple µ
determines an element of the space H defined as follows.
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Definition 5.2.15. The map ∂ : C0
u → C

1
u induces a map C

0
u/C

0 → C
1
u/∂(C

0), which
we also denote ∂. We let H ⊂ C

0
u/C

0 denote the subspace consisting of elements µ
such that ∂(µ) ∈ C

1/∂(C0).

By the discussion following Lemma 4.1.8, an element µ ∈ H determines an
extension P(∂(µ)). Indeed, Remark 5.1.3 and the proof of (3.1.31) taken together
show that there is a natural isomorphism, in the style of Lemma 4.1.8, between the
morphism ∂ : H → C

1/∂(C0) and the connection map HomK(F)(M,N[1/u]/N) →
Ext1K(F)(M,N), with im ∂ corresponding to ker-Ext1K(F)(M,N).

Conversely, let h be an element of ∂(C0
u)∩C1, and set νi = uxiµi. The condition

that there is a Breuil–Kisin module P̃ with descent data from K ′ to K and ξ ∈ F×

such that λ : P̃[ 1u ]→ P defined as above is an isomorphism is precisely the condition

that the map θ̂ on P pulls back via λ to a map that preserves P. One computes
that this pullback is

θ̂

(
ni
mi

)
= ξ−1

(
−νi+f uxi

(ξ2 − νiνi+f )u−xi νi

)(
ni+f
mi+f

)

recalling that xi = xi+f .

We deduce that θ̂ preserves P precisely when the νi are integral and νiνi+f ≡ ξ2
(mod uxi) for all i. For i with xi = 0 the latter condition is automatic given the
former, which is equivalent to the condition that µi and µi+f are both integral. If

instead xi > 0, then we have the nontrivial condition νi+f ≡ ξ2ν−1
i (mod uxi); in

other words that µi, µi+f have u-adic valuation exactly −xi, and their principal
parts determine one another via the equation µi+f ≡ ξ2(u2xiµi)

−1 (mod 1).
Let Gm,ξ be the multiplicative group with parameter ξ. We now (using the nota-

tion of Definition 5.2.15) define H′ ⊂ C
0
u/C

0×Gm,ξ to be the subvariety consisting
of the pairs (µ, ξ) with exactly the preceding properties; that is, we regard C

0
u/C

0 as
an Ind-affine space in the obvious way, and define H′ to be the pairs (µ, ξ) satisfying

— if xi = 0 then vali µ = vali+f µ =∞, and

— if xi > 0 then vali µ = vali+f µ = −xi and µi+f ≡ ξ2(u2xiµi)
−1 (mod u0)

where we write vali µ for the u-adic valuation of µi, putting vali µ =∞ when µi is
integral.

Putting all this together with (5.2.10), we find that the map

H
′ ∩ (H ×Gm,ξ)→ Y (M,N)1

sending (µ, ξ) to the pair (P, P̃) is a well-defined surjection, where P = P(∂(µ)),

P̃ is the enrichment of P to a Breuil–Kisin module with descent data from K ′ to

K in which θ̂ is pulled back to P from P via the map λ as in (5.2.14). (Note
that Y (M,N)1 is reduced and of finite type, for example by (5.2.11), so the surjec-
tivity can be checked on Fp-points.) In particular dimY (M,N)1 ≤ dimH

′.
Note that H

′ will be empty if for some i we have xi > 0 but xi + ci − di 6≡ 0
(mod pf

′ − 1) (so that νi cannot be a u-adic unit). Otherwise, the dimension

of H′ is easily computed to be D = 1 +
∑f−1

i=0 ⌈xi/(pf
′ − 1)⌉ (indeed if d is the

number of nonzero xi’s, then H
′ ∼= Gd+1

m ×GD−d−1
a ), and since xi ≤ e′/(p− 1) we

find that H
′ has dimension at most 1 + ⌈e/(p− 1)⌉f . This establishes the bound

dimY (M,N)1 ≤ 1 + ⌈e/(p− 1)⌉f .
Since p > 2 this bound already establishes the theorem when e > 1. If instead

e = 1 the above bound gives dimY (M,N) ≤ [K : Qp] + 1. Suppose for the sake
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of contradiction that equality holds. This is only possible if H′ ∼= Gf+1
m , H′ ⊂

H×Gm,ξ, and xi = [di − ci] > 0 for all i. Define µ(i) ∈ C
0
u to be the element such

that µi = u−[di−ci], and µj = 0 for j 6= i. Let F′′/F be any finite extension such that

#F′′ > 3. For each nonzero z ∈ F′′ define µz =
∑

j 6=i,i+f µ
(i) + zµ(i) + z−1µ(i+f),

so that (µz, 1) is an element of H′(F′′). Since H
′ ⊂ H × Gm,ξ and H is linear,

the differences between the µz for varying z lie in H(F′′), and (e.g. by considering
µ1 − µ−1 and µ1 − µz for any z ∈ F′′ with z 6= z−1) we deduce that each µ(i) lies
in H. In particular each ∂(µ(i)) lies in C

1.
If (i−1, i) were not a transition then (since e = 1) we would have either ri = 0 or

si = 0. The former would contradict ∂(µ(i)) ∈ C
1 (since the ith component of ∂(µ(i))

would be u−[di−ci], of negative degree), and similarly the latter would contradict
∂(µ(i−1)) ∈ C

1. Thus (i−1, i) is a transition for all i. In fact the same observations
show more precisely that ri ≥ xi = [di − ci] and si ≥ pxi−1 = p[di−1 − ci−1].
Summing these inequalities and subtracting e′ we obtain 0 ≥ p[di−1−ci−1]−[ci−di],
and comparing with (5.1.6) shows that we must also have γ∗i = 0 for all i. Since
e = 1 and (i − 1, i) is a transition for all i the refined shape of the pair (M,N) is
automatically maximal; but then we are in the exceptional case of Proposition 5.1.8,
which (recalling the proof of that Proposition) implies that T (M) ∼= T (N). This is
the desired contradiction. �

5.3. Irreducible components. We can now use our results on families of ex-
tensions of characters to classify the irreducible components of the stacks Cτ,BT,1

and Zτ,1. In the article [CEGS20a] we will combine these results with results
coming from Taylor–Wiles patching (in particular the results of [GK14, EG14]) to
describe the closed points of each irreducible component of Zτ,1 in terms of the
weight part of Serre’s conjecture.

Corollary 5.3.1. Each irreducible component of Cτ,BT,1 is of the form C(J) for
some J ; conversely, each C(J) is an irreducible component of Cτ,BT,1.

Remark 5.3.2. Note that at this point we have not established that different sets J
give distinct irreducible components C(J); we will prove this in Section 5.4 below
by a consideration of Dieudonné modules.

Proof of Corollary 5.3.1. By Theorem 2.3.6(2), Cτ,BT,1 is equidimensional of dimen-
sion [K : Qp]. By construction, the C(J) are irreducible substacks of Cτ,BT,1, and
by Theorem 4.2.11 they also have dimension [K : Qp], so they are in fact irreducible
components by [Sta13, Tag 0DS2].

By Theorem 5.2.9 and Theorem 4.2.11, we see that there is a closed substack
Csmall of Cτ,BT,1 of dimension strictly less than [K : Qp], with the property that

every finite type point of Cτ,BT,1 is a point of at least one of the C(J) or of Csmall

(or both). Indeed, every extension of refined shape (J, r) lies on C(J, r), by Re-
mark 4.2.10, so we can take Csmall to be the union of the stack Cirred of Theo-
rem 5.2.9 and the stacks C(J, r) for non-maximal shapes (J, r). Since Cτ,BT,1 is
equidimensional of dimension [K : Qp], it follows that the C(J) exhaust the irre-
ducible components of Cτ,BT,1, as required. �

We now deduce a classification of the irreducible components of Zτ,1. In the
paper [CEGS20a] we will give a considerable refinement of this, giving a precise
description of the finite type points of the irreducible components in terms of the
weight part of Serre’s conjecture.

https://stacks.math.columbia.edu/tag/0DS2
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Corollary 5.3.3. The irreducible components of Zτ,1 are precisely the Z(J) for J ∈
Pτ , and if J 6= J ′ then Z(J) 6= Z(J ′).

Proof. By Theorem 5.1.12, if J ∈ Pτ then Z(J) is an irreducible component of
Zτ,1. Furthermore, these Z(J) are pairwise distinct by Theorem 5.1.17.

Since the morphism Cτ,BT,1 → Zτ,1 is scheme-theoretically dominant, it fol-
lows from Corollary 5.3.1 that each irreducible component of Zτ,1 is dominated by
some C(J). Applying Theorem 5.1.12 again, we see that if J /∈ Pτ then C(J) does
not dominate an irreducible component, as required. �

5.4. Dieudonné modules and the morphism to the gauge stack. We now
study the images of the irreducible components C(J) in the gauge stack Gη; this
amounts to computing the Dieudonné modules and Galois representations associ-
ated to the extensions of Breuil–Kisin modules that we considered in Section 3.
Suppose throughout this subsection that τ is a non-scalar type, and that (J, r) is
a maximal refined shape. Recall that in the cuspidal case this entails that i ∈ J if
and only if i+ f 6∈ J .
Lemma 5.4.1. Let P ∈ Ext1K(F)(M,N) be an extension of type τ and refined shape

(J, r). Then for i ∈ Z/f ′Z we have F = 0 on D(P)η,i−1 if i ∈ J , while V = 0 on
D(P)η,i if i /∈ J .
Proof. Recall that D(P) = P/uP. Let wi be the image of mi in D(P) if i ∈ J ,
and let wi be the image of ni in D(P) if i 6∈ J . It follows easily from the definitions
that D(P)η,i is generated over F by wi.

Recall that the actions of F, V on D(P) are as specified in Definition 2.1.7. In
particular F is induced by ϕ, while V is c−1V mod u where V is the unique map
on P satisfying V ◦ ϕ = E(u), and c = E(0). For the Breuil–Kisin module P, we
have

ϕ(ni−1) = biu
sini, ϕ(mi−1) = aiu

rimi + hini,

and so one checks (using that E(u) = ue
′

in F) that

V(mi) = a−1
i usimi−1 − a−1

i b−1
i hini−1, V(ni) = b−1

i urini−1.

From Definition 4.2.4 and the discussion immediately following it, we recall that
if (i−1, i) is not a transition then ri = e′, si = 0, and hi is divisible by u (the latter

because nonzero terms of hi have degrees congruent to ri + ci − di (mod pf
′ − 1),

and ci 6≡ di since τ is non-scalar). On the other hand if (i − 1, i) is a transition,

then ri, si > 0, and nonzero terms of hi have degrees divisible by pf
′ − 1; in that

case we write h0i for the constant coefficient of hi, and we remark that h0i does not

vanish identically on Ext1K(F)(M,N).
Suppose, for instance, that i − 1 ∈ J and i ∈ J . Then wi−1 and wi are the

images in D(P) of mi−1 and mi. From the above formulas we see that uri = ue
′

and hi are both divisible by u, while on the other hand usi = 1. We deduce that
F (wi−1) = 0 and V (wi) = c−1a−1

i wi−1. Computing along similar lines, it is easy
to check the following four cases.

(1) i− 1 ∈ J, i ∈ J . Then F (wi−1) = 0 and V (wi) = c−1a−1
i wi−1.

(2) i− 1 /∈ J, i /∈ J . Then F (wi−1) = biwi, V (wi) = 0.

(3) i− 1 ∈ J , i /∈ J . Then F (wi−1) = h0iwi, V (wi) = 0.

(4) i− 1 /∈ J , i ∈ J . Then F (wi−1) = 0, V (wi) = −c−1a−1
i b−1

i h0iwi−1.
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In particular, if i ∈ J then F (wi) = 0, while if i /∈ J then V (wi+1) = 0. �

Since Cτ,BT is flat over O by Theorem 2.3.6, it follows from Lemma 2.4.9 that
the natural morphism Cτ,BT → Gη is determined by an f -tuple of effective Cartier
divisors {Dj}0≤j<f lying in the special fibre Cτ,BT,1. Concretely, Dj is the zero
locus of Xj , which is the zero locus of F : Dη,j → Dη,j+1. The zero locus of
Yj (which is the zero locus of V : Dη,j+1 → Dη,j) is another Cartier divisor D′

j .

Since Cτ,BT,1 is reduced, we conclude that each of Dj and D′
j is simply a union

of irreducible components of Cτ,BT,1, each component appearing precisely once in
precisely one of either Dj or D′

j .

Proposition 5.4.2. Dj is equal to the union of the irreducible components C(J)
of Cτ,BT,1 for those J that contain j + 1.

Proof. Lemma 5.4.1 shows that if j + 1 ∈ J , then Xj = 0, while if j + 1 /∈ J , then
Yj = 0. In the latter case, by an inspection of case (3) of the proof of Lemma 5.4.1,
we have Xj = 0 if and only if j ∈ J and h0j+1 = 0. Since h0j+1 does not vanish
identically on an irreducible component, we see that the irreducible components on
whichXj vanishes identically are precisely those for which j+1 ∈ J , as claimed. �

Theorem 5.4.3. The algebraic stack Cτ,BT,1 has precisely 2f irreducible compo-
nents, namely the irreducible substacks C(J).

Proof. By Corollary 5.3.1, we need only show that if J 6= J ′ then C(J) 6= C(J ′);
but this is immediate from Proposition 5.4.2. �

Appendix A. Serre weights and tame types

We begin by recalling some results from [Dia07] on the Jordan–Hölder factors of
the reductions modulo p of lattices in principal series and cuspidal representations
of GL2(k), following [EGS15, §3] (but with slightly different normalisations than
those of loc. cit.).

Let τ be a tame inertial type. Recall from Section 1.4 that we associate a
representation σ(τ) of GL2(OK) to τ as follows: if τ ≃ η ⊕ η′ is a tame principal

series type, then we set σ(τ) := Ind
GL2(OK)
I η′ ⊗ η, while if τ = η ⊕ ηq is a tame

cuspidal type, then σ(τ) is the inflation to GL2(OK) of the cuspidal representation
of GL2(k) denoted by Θ(η) in [Dia07]. (Here we have identified η, η′ with their
composites with ArtK .)

Write σ(τ) for the semisimplification of the reduction modulo p of (a GL2(OK)-
stable O-lattice in) σ(τ). The action of GL2(OK) on σ(τ) factors through GL2(k),
so the Jordan–Hölder factors JH(σ(τ)) of σ(τ) are Serre weights. By the results
of [Dia07], these Jordan–Hölder factors of σ(τ) are pairwise non-isomorphic, and
are parametrised by a certain set Pτ that we now recall.

Suppose first that τ = η ⊕ η′ is a tame principal series type. Set f ′ = f in this
case. We define 0 ≤ γi ≤ p − 1 (for i ∈ Z/fZ) to be the unique integers not all

equal to p−1 such that η(η′)−1 =
∏f−1
i=0 ω

γi
σi
. If instead τ = η⊕η′ is a cuspidal type,

set f ′ = 2f . We define 0 ≤ γi ≤ p − 1 (for i ∈ Z/f ′Z) to be the unique integers

such that η(η′)−1 =
∏f ′−1
i=0 ωγiσ′

i
. Here the σ′

i are the embeddings l → F, where l is

the quadratic extension of k, σ′
0 is a fixed choice of embedding extending σ0, and

(σ′
i+1)

p = σ′
i for all i.
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If τ is scalar then we set Pτ = {∅}. Otherwise we have η 6= η′, and we let Pτ
be the collection of subsets J ⊂ Z/f ′Z satisfying the conditions:

— if i− 1 ∈ J and i /∈ J then γi 6= p− 1, and

— if i− 1 /∈ J and i ∈ J then γi 6= 0

and, in the cuspidal case, satisfying the further condition that i ∈ J if and only if
i+ f 6∈ J .

The Jordan–Hölder factors of σ(τ) are by definition Serre weights, and are
parametrised by Pτ as follows (see [EGS15, §3.2, 3.3]). For any J ⊆ Z/f ′Z, we let
δJ denote the characteristic function of J , and if J ∈ Pτ we define sJ,i by

sJ,i =

{
p− 1− γi − δJc(i) if i− 1 ∈ J
γi − δJ(i) if i− 1 /∈ J,

and we set tJ,i = γi + δJc(i) if i− 1 ∈ J and 0 otherwise.
In the principal series case we let σ(τ)J := σ~t,~s⊗ η′ ◦det; the σ(τ)J are precisely

the Jordan–Hölder factors of σ(τ).
In the cuspidal case, one checks that sJ,i = sJ,i+f for all i, and also that the

character η′ ·
∏f ′−1
i=0 (σ′

i)
tJ,i : l× → F× factors as θ ◦ Nl/k where Nl/k is the norm

map. We let σ(τ)J := σ0,~s ⊗ θ ◦ det; the σ(τ)J are precisely the Jordan–Hölder
factors of σ(τ).

Remark A.1. The parameterisations above are easily deduced from those given in

[EGS15, §3.2, 3.3] for the Jordan–Hölder factors of the representations Ind
GL2(OK)
I η′⊗

η and Θ(η). (Note that there is a minor mistake in [EGS15, §3.1]: since the conven-
tions of [EGS15] regarding the inertial Langlands correspondence agree with those
of [GK14], the explicit identification of σ(τ) with a principal series or cuspidal type
in [EGS15, §3.1] is missing a dual. The explicit parameterisation we are using here
is of course independent of this issue.

This mistake has the unfortunate effect that various explicit formulae in [EGS15,
§7] need to be modified in a more or less obvious fashion; note that since σ(τ) is self
dual up to twist, all formulae can be fixed by making twists and/or exchanging η
and η′. In particular, the definition of the strongly divisible module before [EGS15,
Rem. 7.3.2] is incorrect as written, and can be fixed by either reversing the roles
of η, η′ or changing the definition of the quantity c(j) defined there.)

Remark A.2. In the cuspidal case, write η in the form (σ′
0)

(q+1)b+1+c where 0 ≤
b ≤ q − 2, 0 ≤ c ≤ q − 1. Set t′J,i = tJ,i+f for integers 1 ≤ i ≤ f . Then one can

check that σ(τ)J = σ~t′,~s ⊗ (σ
(q+1)b+δJ (0)
0 ◦ det).

We now recall some facts about the set of Serre weights W (r) associated to a
representation r : GK → GL2(Fp).

Definition A.3. We say that a crystalline representation r : GK → GL2(Qp)
has type σ~t,~s provided that for each embedding σj : k →֒ F there is an embedding

σ̃j : K →֒ Qp lifting σj such that the σ̃j-labeled Hodge–Tate weights of r are {−sj−
tj , 1−tj}, and the remaining (e−1)f pairs of Hodge–Tate weights of r are all {0, 1}.
(In particular the representations of type σ~0,~0 (the trivial weight) are the same as

those of Hodge type 0.)

Definition A.4. Given a representation r : GK → GL2(Fp) we define W (r) to be
the set of Serre weights σ such that r has a crystalline lift of type σ.
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There are several definitions of the set W (r) in the literature, which by the
papers [BLGG13, GK14, GLS15] are known to be equivalent (up to normalisation).
While the preceding definition is perhaps the most compact, it is the description of
W (r) via the Breuil–Mézard conjecture that appears to be the most amenable to
generalisation; see [GHS18] for much more discussion.

Recall that r is très ramifiée if it is a twist of an extension of the trivial character
by the mod p cyclotomic character, and if furthermore the splitting field of its

projective image is not of the form K(α
1/p
1 , . . . , α

1/p
s ) for some α1, . . . , αs ∈ O×

K .

Lemma A.5. (1) If τ is a tame type, then r has a potentially Barsotti–Tate
lift of type τ if and only if W (r) ∩ JH(σ(τ)) 6= 0.

(2) The following conditions are equivalent:

(a) r admits a potentially Barsotti–Tate lift of some tame type.

(b) W (r) contains a non-Steinberg Serre weight.

(c) r is not très ramifiée.

Proof. This is [CEGS20b, Lem. A.4]. �

Lemma A.6. Suppose that σ~t,~s is a non-Steinberg Serre weight. Suppose that r :

GK → GL2(Fp) is a reducible representation satisfying

r|IK ∼=
(∏f−1

i=0 ω
si+ti
σi

∗
0 ε−1

∏f−1
i=0 ω

ti
σi

)
,

and that r is not très ramifiée. Then σ~t,~s ∈W (r).

Proof. Write r as an extension of characters χ by χ′. It is straightforward from
the classification of crystalline characters as in [GHS18, Lem. 5.1.6] that there exist
crystalline lifts χ, χ′ of χ, χ′ so that χ, χ′ have Hodge–Tate weights 1 − tj and
−sj − tj respectively at one embedding lifting each σj and Hodge–Tate weights 1
and 0 respectively at the others. In the case that r is not the twist of an extension
of ε−1 by 1 the result follows because the corresponding H1

f (GK , χ
′ ⊗ χ−1) agrees

with the full H1(GK , χ
′ ⊗ χ−1) (as a consequence of the usual dimension formulas

for H1
f , [Nek93, Prop. 1.24]).

If r is twist of an extension of ε−1 by 1, the assumption that σ~t,~s is non-Steinberg
implies sj = 0 for all j. The hypothesis that r is not très ramifiée guarantees

that r ⊗
∏f−1
i=0 ω

−ti
σi

is finite flat, so has a Barsotti–Tate lift, and we deduce that
σ~t,~0 ∈ W (r). �
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1990–91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 127–202.

[Ryd11] David Rydh, The canonical embedding of an unramified morphism in an étale mor-

phism, Math. Z. 268 (2011), no. 3-4, 707–723.

[Sav08] David Savitt, Breuil modules for Raynaud schemes, J. Number Theory 128 (2008),
2939–2950.

[Sch08] Michael M. Schein, Weights in Serre’s conjecture for Hilbert modular forms: the

ramified case, Israel J. Math. 166 (2008), 369–391.

[Ser87] Jean-Pierre Serre, Sur les représentations modulaires de degré 2 de Gal(Q/Q), Duke
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