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Abstract. In this paper, we establish the modularity of every elliptic curve

E/F , where F runs over infinitely many imaginary quadratic fields, including

Q(
√
−d) for d = 1, 2, 3, 5. More precisely, let F be imaginary quadratic and

assume that the modular curve X0(15), which is an elliptic curve of rank 0
over Q, also has rank 0 over F . Then we prove that all elliptic curves over F

are modular. More generally, when F/Q is an imaginary CM field that does

not contain a primitive 5th root of unity, we prove the modularity of elliptic
curves E/F under a technical assumption on the image of the representation

of Gal(F/F ) on E[3] or E[5].

The key new technical ingredient we use is a local-global compatibility

theorem for the p-adic Galois representations associated to torsion in the co-
homology of the relevant locally symmetric spaces. We establish this result in

the crystalline case, under some technical assumptions, but allowing arbitrary

dimension, arbitrarily large regular Hodge–Tate weights, and allowing p to be
small and highly ramified in the imaginary CM field F .
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1. Introduction

Let F be a number field. We say that an elliptic curve E/F is modular if either E
has complex multiplication or if there exists a cuspidal automorphic representation
π of GL2(AF ) of parallel weight 2 whose associated L-function is the same as the
L-function of E1.

In this paper, we establish the modularity of every elliptic curve E/F , where
F runs over infinitely many imaginary quadratic fields, including Q(

√
−d) for d =

1, 2, 3, 5.
Recall that the modular curve X0(15) is an elliptic curve of rank zero over Q –

it is the curve with Cremona label 15A1. We prove the following result.

Theorem 1.1 (Corollary 7.1.2). Let F be an imaginary quadratic field such that the
Mordell–Weil group X0(15)(F ) is finite. Then every elliptic curve E/F is modular.

We can compute the ranks of X0(15) over imaginary quadratic fields of small dis-
criminant using Sage [The22] or Magma [BCP97] and check that the theorem applies
to F = Q(

√
−d) for the above values of d. By [MN15, Theorem 3], the theorem

applies to an infinite class of imaginary quadratic fields. Moreover, a celebrated
conjecture of Goldfeld [Gol79], when coupled with the Birch–Swinnerton-Dyer con-
jecture, predicts that X0(15) should have rank 0 over 50% of quadratic fields, when
these are ordered by the absolute value of the discriminant. The conjecture predicts
rank 0 over slightly more than half of imaginary quadratic fields. More precisely,
X0(15) is predicted to have rank 0 over 100% of those imaginary quadratic fields
Q(
√
−d) with d positive square-free and d mod 15 ∈ {0, 1, 2, 3, 4, 5, 8, 12}. This con-

gruence condition corresponds to the global root number of X0(15) over Q(
√
−d)

being +1 (see for example [Dok05, Corollary 2]). Forthcoming work of Smith [Smi]
will verify this prediction (since X0(15) has a rational cyclic degree 4 isogeny, the
existing results of Smith [Smi22] exclude this case). In fact, Smith shows that
the 2∞-Selmer corank is 0 for 100% of discriminants satisfying these congruence
conditions, which implies that the rank is 0 with no dependence on BSD.

The modularity of an elliptic curve E over a number field F implies that the
associated L-function has analytic continuation to the entire complex plane. This
is needed in order to formulate the Birch and Swinnerton-Dyer conjecture for E un-
conditionally. Furthermore, modularity has historically played a key role in progress
on the BSD conjecture, going back to the use of Heegner points by Gross and Zagier
for (modular) elliptic curves over Q. Recently, Loeffler and Zerbes made significant

1The reason for the two cases is that if E has CM by a field which embeds in F , then it cannot
be associated to a cuspidal automorphic representation.
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progress on the BSD conjecture for modular elliptic curves defined over imaginary
quadratic fields [LZ21], making Theorem 1.1 particularly timely.

More generally, when F/Q is an imaginary CM field that does not contain a
primitive fifth root of unity, we prove the modularity of elliptic curves E/F under
a technical assumption on the image of the representation of Gal(F/F ) on E[3] or
E[5]. As a consequence, we obtain the following result.

Theorem 1.2 (Corollary 6.1.2). Let F be an imaginary CM field that is Galois
over Q and such that ζ5 /∈ F . Then 100% of Weierstrass equations over F , ordered
by their height, define a modular elliptic curve.

The modularity of elliptic curves E/Q was pioneered by Wiles and Taylor–Wiles
in [Wil95, TW95] and completed by Breuil–Conrad–Diamond–Taylor in [BCDT01].
The modularity of elliptic curves defined over real quadratic fields was established,
more recently, in [FLHS15]. Compared to the rational case, the real quadratic case
relies on the improvements to the Taylor–Wiles method due to Kisin [Kis09], on
supplementing the traditional 3-5 prime switch with an ingenious 3-7 switch, and on
a sophisticated analysis of quadratic points on several modular curves of small level.
Further results have been obtained for more general totally real fields, including
cubic and quartic fields [DNS20, Box22]. As another example, Thorne [Tho19]
has proved the modularity of every elliptic curve defined over the cyclotomic Zp-
extension of Q for any prime p.

The modularity of elliptic curves defined over imaginary CM fields has histori-
cally been more difficult to establish. This is because the systems of Hecke eigen-
values that conjecturally match such elliptic curves contribute to the cohomology
of locally symmetric spaces such as Bianchi 3-manifolds, which are not directly
related to Shimura varieties. The situation has been extensively investigated nu-
merically (for example, [Cre84, Cre92, LMF22]), and modularity of specific elliptic
curves can be verified using the Faltings–Serre method [DGP10]. Inspired by a pro-
gram outlined by Calegari–Geraghty in [CG18], the potential modularity of such
elliptic curves was established independently in [ACC+18] and in [BCGP21]. Since
then, Allen–Khare–Thorne proved many instances of actual modularity in [AKT19].
More precisely, they established the modularity of a positive proportion of elliptic
curves over imaginary CM fields together with strong residual modularity results
modulo 3 and modulo 5.

Remark 1.2.1. In fact, [BCGP21] establish the potential modularity of elliptic
curves defined over a general quadratic extension of a totally real field. A recent
preprint [Whi22] by Whitmore builds on their method and on the results of [AKT19]
to prove actual modularity for a positive proportion of such elliptic curves.

To prove Theorem 1.2, we combine the residual modularity results of [AKT19]
with a modularity lifting theorem in the Barsotti–Tate case in the style of Kisin
[Kis09]. The crucial ingredient needed to prove our Barsotti–Tate modularity lift-
ing theorem is a local-global compatibility result for the Galois representations con-
structed by Scholze in [Sch15]. This is a result of independent interest, which we
now discuss.

Let K ⊂ GLn(AF,f ) be a neat compact open subgroup and let XK be the
corresponding locally symmetric space for GLn /F . A highest weight vector λ for
ResF/Q GLn determines a Zp-local system Vλ on XK and we are interested in under-
standing the systems of Hecke eigenvalues occurring in H∗(XK ,Vλ). Let T be the
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usual abstract spherical Hecke algebra acting on H∗(XK ,Vλ) by correspondences,
let T(K,λ) be the maximal quotient of T through which this action is faithful, and
let m ⊂ T(K,λ) be a maximal ideal. When m is non-Eisenstein, Scholze constructed
a continuous Galois representation

ρm : Gal(F/F )→ GLn(T(K,λ)m/I),

where I ⊂ T(K,λ)m is an ideal satisfying I4 = 0, cf. [NT16]. This p-adically
interpolates the Galois representations attached to torsion classes occurring in
H∗(XK ,Vλ)m as well as those attached to characteristic 0 automorphic forms, first
constructed by [HLTT16]. We let ρ̄m denote the absolutely irreducible residual
representation obtained by reducing ρm modulo m.

For applications to modularity, it is extremely important to understand the prop-
erties of ρm, cf. [CG18, Conjecture B]. One needs to know whether ρm satisfies some
form of local-global compatibility: if v | ` is a prime of F and GFv := Gal(F v/Fv),
how does the level Kv at which m occurs (together with the weights λv if ` = p)
determine the ramification of ρm|GFv ? The case when ` = p is particularly subtle
because it is not (a priori) clear how to formulate integral p-adic Hodge theory
conditions which should be satisfied by the Galois representations ρm, and because
the ρm are constructed in [Sch15] via a p-adic interpolation argument that loses
track of the weight λ and of the level Kv for v | p.

In [ACC+18], we established such a local-global compatibility result at ` = p
in two restricted families of cases described by natural integral conditions: the
ordinary case and certain Fontaine–Laffaille cases. In the present paper, we go much
further than this and establish the desired result in the crystalline case, under some
technical assumptions, but allowing arbitrary n, arbitrary weight λ, and allowing
p to be small and highly ramified in F . In this generality, the formulation via
integral p-adic Hodge theory is still mysterious, but the local-global compatibility
conjecture can be formulated as in [GN22, Conjecture 5.1.12], using the crystalline
deformation rings first constructed by Kisin [Kis08]. More precisely, we have a
composition

(1.2.1) R�
ρ̄m|GFv

//

%% %%

R�
ρ̄m

// T(K,λ)m/I

R�,crys
ρ̄m|GFv

(λv)

88

where the first horizontal map is the usual map from the local deformation ring
of ρ̄m|GFv to the global deformation ring of ρ̄m and the second horizontal map is
induced by the existence of ρm. When Kv = GLn(OFv ) is a maximal compact
subgroup, the natural conjecture is that the composition (1.2.1) factors through

R�,crys
ρ̄m|GFv

(λv), the crystalline deformation ring with Hodge–Tate weights determined

by λv. We prove this conjecture in Theorem 4.2.15 under some technical assump-
tions - roughly, the statement is as follows.
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Theorem 1.3. Let F be an imaginary CM field that contains an imaginary qua-
dratic field F0 and with maximal totally real subfield F+2. Let p be a rational prime
that splits in F0, let v̄ | p be a prime of F+, and assume the following.

(1) Setting v̄ = v · vc, we have Kv = GLn(OFv ) and Kvc = GLn(OFvc ).
(2) There exists a prime v̄′ | p of F+ distinct from v̄ such that∑

[F+
v̄′′ : Qp] ≥

1

2
[F+ : Q],

where the sum runs over primes v̄′′ | p of F+ distinct from both v̄ and v̄′.
(3) m is a non-Eisenstein maximal ideal such that ρ̄m is decomposed generic,

cf. Definition 2.1.27.

Then, up to possibly enlarging the nilpotent ideal I, the composition (1.2.1) factors

through R�,crys
ρ̄m|GFv

(λv) as expected.

Remark 1.3.1.

(1) The method of proof is versatile enough that we expect the first assumption
can be removed. Bence Hevesi is working on generalising Theorem 1.3 to
the potentially semi-stable case as part of his PhD thesis. The second as-
sumption is more serious and excludes in particular the case where F = F0.
The third assumption is needed in order to appeal to the results of [CS19]
on unitary Shimura varieties, or alternatively to those of [Kos21].

(2) We also obtain in Theorem 4.3.1 a local-global compatibility result for the
characteristic 0 Galois representations attached to regular algebraic cusp-
idal automorphic representations of GLn(AF ). In this setting, the local-
global compatibility at ` 6= p is already known up to semi-simplification
by work of Varma [Var14]. More recently, A’Campo [A’C22] proved that
these automorphic Galois representations are also de Rham at all primes
above p. In fact, in the latest revision of this article, A’Campo is also
able to determine the Hodge–Tate weights of these representations, using
Wang-Erickson’s work on p-adic Hodge theoretic conditions for pseudorep-
resentations [WE18].

(3) Motivated by our applications to elliptic curves, we prove a slightly more
general result which includes semistable ordinary representations.

There are two key new ideas that allow us to prove much stronger local-global
compatibility results than in [ACC+18]. The first idea is to work with P -ordinary
parts at the prime v̄ | p of F+ where we want to prove local-global compatibility.
The second idea, which was suggested to us by Peter Scholze, is to increase the
level at the auxiliary primes v̄′′ | p of F+ in order to simplify the analysis of
the boundary of the Borel–Serre compactification in the relevant unitary Shimura
varieties. Fortunately, these can be implemented simultaneously.

To explain how the first new idea is useful, recall that the crystalline deformation

rings R�,crys
ρ̄m|GFv

(λv) were defined by Kisin first after inverting p, and then integrally

by taking Zariski closure from the generic fibre. On the other hand, the Galois
representations ρm could be torsion. They are constructed by congruences using a
subtle argument that involves 2n-dimensional Galois representations. If we had a
characteristic 0 lift of ρm|GFv , which we knew was crystalline at v with Hodge–Tate

2The field F has to satisfy some additional technical assumptions so that we can appeal to the
unconditional base change results of [Shi14].
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weights determined by λv, we would deduce that the diagram (1.2.1) factors as
desired. Conversely, if the diagram factored as desired, we would expect the crys-
talline lift to exist by results of Tong Liu [Liu15]. It seems hard to guarantee that
there is a characteristic 0 crystalline lift of the global representation ρm. However,
by working with P -ordinary parts at v̄ throughout, we construct for each m ∈ Z≥1

a 2n-dimensional characteristic 0 global representation ρm̃ such that

ρm̃|GFv ' ( ∗ ∗0 ∗ )

with n-dimensional diagonal blocks and such that one of these blocks is congruent
to the local representation ρm|GFv (mod pm). Moreover, we can ensure that each
of these characteristic 0 lifts is crystalline with the correct Hodge–Tate weights.
We expect the global representation ρm̃ to be irreducible, and we do not produce
characteristic 0 lifts of the global representation ρm (mod pm).

The second new idea is useful for the “degree-shifting” argument needed to re-
late the cohomology groups H∗(XK ,Vλ)m to a middle degree boundary cohomology

group Hd(∂X̃K̃ ,Vλ̃)m̃, of some unitary Shimura variety X̃K̃ . We can control the
latter using the main theorem of [CS19]. However, one only has a spectral sequence
of Leray–Serre type from the former cohomology groups to the latter – controlling
the behaviour of this spectral sequence seems to be a tricky problem in modular
representation theory. In [ACC+18], we showed that the spectral sequence degen-
erates if p is strictly greater than n2 and is unramified in F . In the present paper,
we increase the level at auxiliary primes v̄′′ | p and, through a delicate induction
argument, we keep track of the terms in the spectral sequence modulo powers of p
without imposing the additional assumptions that p > n2 and is unramified in F .

To prove a modularity lifting theorem in the Barsotti–Tate case and deduce
Theorem 1.2, we apply Theorem 1.3 in the case when n = 2 and λ is trivial. For
our applications, it is crucial to allow p to be small and highly ramified in F+.
(We can then ensure that the second condition of Theorem 1.3 is satisfied using
an appropriate solvable base change.) This is why the local-global compatibility
results of [ACC+18] in the Fontaine–Laffaille case were not strong enough and
why [AKT19] appealed instead to the results in the more restrictive ordinary case.
We expect Theorem 1.3 to have many more applications to modularity over CM
fields in the near future.

To deduce Theorem 1.1, we analyze the imaginary quadratic points on several
modular curves with small level at 3 and 5, classifying elliptic curves for which both
the 3-torsion and the 5-torsion are exceptional. For a prime p, we let bp ⊂ GL2(Fp)
denote the upper-triangular Borel subgroup, sp ⊂ GL2(Fp) denote the normalizer
of the standard split Cartan subgroup and nsp ⊂ GL2(Fp) denote the normalizer of
the standard non-split Cartan subgroup nsp◦. After some reductions using group
theory, there turn out to be six modular curves of interest:

(1) X(b3,b5) (also denoted by X0(15) above);
(2) X(s3,b5);
(3) X(ns3◦,b5);
(4) X(b3,ns5);
(5) X(s3,ns5);
(6) X(ns3◦,ns5).

The modular curvesX(b3,b5) andX(s3,b5) are isogenous elliptic curves of Mordell-
Weil rank 0 over Q. They are the obstruction to extending Theorem 1.1 to every
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imaginary quadratic field F , although we can at least understand how their torsion
subgroup grows in imaginary quadratic extensions.

The modular curve X(ns3◦,b5) is a genus 1 curve without a rational point. This
case does not occur in the real quadratic case because ns3◦ does not contain an
odd element, which should represent complex conjugation. The curve contains two
infinite families of imaginary quadratic points, for which, miraculously, it is still
possible to prove modularity! The elliptic curves in the first family turn out to all
have rational j-invariant. The elliptic curves in the second family turn out to all
be Q-curves (isogenous to their conjugates over Q).

The remaining cases also do not occur in the real quadratic setting. The mod-
ular curve X(b3,ns5) is a genus 2 hyperelliptic curve and we study its imaginary
quadratic points using similar methods to those of [FLHS15]. The modular curves
X(s3,ns5) and X(ns3◦,ns5) are bi-elliptic curves of genus 3 whose Jacobians have
Mordell-Weil rank 1. We analyze the imaginary quadratic points on these curves
using the relative symmetric power Chabauty method developed by Siksek [Sik09]
and Box [Box21].

Remark 1.3.2. It seems much more subtle to implement the 3-7 switch over an
imaginary CM field than over a totally real field, as in [FLHS15, §7]. The modular
curve with full level structure at 7 is isomorphic to the Klein quartic curve

x3y + y3z + z3x = 0.

To implement the 3-7 switch, one needs to produce points on a quadratic twist of
the Klein quartic that are defined over solvable CM extensions of the original CM
field. In the totally real case, this can be done with a clever application of Hilbert
irreducibility, obtaining rational points over a degree 4, thus solvable, totally real
extension. This argument does not apply in the imaginary CM case: the direct
argument gives points defined over a degree 4 extension of the original field F , but
this is not necessarily a CM field. By working with Weil restrictions of scalars to
the maximal totally real subfield F+, the degree increases. One can obtain points
defined over a CM extension of F but it seems hard to guarantee that this extension
is always solvable.

The organization of the paper is as follows. In Section 2, we collect preliminaries
on locally symmetric spaces and develop P -ordinary Hida theory in the setting of
their Betti cohomology. In Section 3, we study the P -ordinary condition on the
Galois side and record a key argument with determinants that will be used for local-
global compatibility. In Section 4, we prove Theorem 1.3 and its characteristic 0
counterpart. In Section 5, we use this result together with the techniques developed
in [ACC+18] to prove a modularity lifting theorem over imaginary CM fields in the
potentially Barsotti–Tate case. In Section 6, we combine this modularity lifting
theorem with the results of [AKT19] to prove Theorem 1.2. In Section 7, we
analyze the imaginary quadratic points on several modular curves of small level
and prove Theorem 1.1.
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1.5. Notation. Our notation largely matches the one introduced in [ACC+18,
§1.2]. If F is a perfect field, we let F denote an algebraic closure of F and GF
denote the absolute Galois group Gal(F/F ).

If F is a number field, we let Sp(F ) be the set of places of F above p. If S is a
finite set of finite places of a number field F , we let GF,S denote the Galois group
of the maximal extension of F that is unramified outside S. For a prime `, we let
ε` denote the `-adic cyclotomic character and ε̄` denote its reduction modulo `.

If π is an irreducible admissible representation of GLn(AF ) and λ ∈ (Zn)Hom(F,C)

is dominant for the standard upper triangular Borel subgroup, we say that π is
regular algebraic of weight λ if the infinitesimal character of π∞ is the same as that
of V ∨λ , where Vλ is the algebraic representation of ResF/Q GLn of highest weight λ.
See § 2.1.11 for a discussion of highest weight representations.

If K is a finite extension of Qp for some prime p, we write IK for the inertia
subgroup of GK , FrobK ∈ GK/IK for the geometric Frobenius and WK for the Weil

group. We write ArtK : K×
∼→ W ab

K for the Artin map of local class field theory,
normalized to take uniformizers to geometric Frobenius elements. We let recK
denote the local Langlands correspondence of [HT01], which sends an irreducible
smooth (admissible) representation π of GLn(K) over C to a Frobenius semi-simple
Weil–Deligne representation recK(π) of WK , also over C. We also write recTK for
the arithmetic normalization of the local Langlands correspondence, as defined for
example in [CT14, §2.1]; this normalization is defined for coefficients in any field
which is abstractly isomorphic to C, such as Q`. We define labelled Hodge–Tate
weights of p-adic representations of GK as in [ACC+18, §1.2]. In particular, εp has
Hodge–Tate weight −1.

If G is a locally profinite group and K is an open subgroup, we write H(G,K)
for the Z-algebra of compactly supported bi-K-invariant functions f : G → Z,
cf. [NT16, Lemma 2.3].

We let E/Qp be a p-adic field which will be our coefficient field, with ring of
integers O, uniformiser $ and finite residue field k := O/$. We let CNLO denote
the category of complete, local, Noetherian O-algebras with residue field k.

2. The cohomology of locally symmetric spaces

2.1. Preliminaries. In this section, we gather some preliminaries, and we largely
follow [ACC+18, §2] without giving complete details.

2.1.1. Locally symmetric spaces. Let F be a number field and G be a connected
linear algebraic group over F , with a model over OF that we will still denote by G.
We will denote by XG the symmetric space for ResF/QG, which is a homogeneous
space for G(F ⊗Q R) as in [BS73, §2] and [NT16, Definition 3.1] (and which is
determined by G up to isomorphism of homogeneous spaces).
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Let KG ⊂ G(AF,f ) be a good compact open subgroup in the sense of [ACC+18,
§2.1]: namely it is neat and of the form

∏
vKG,v, where v runs over the finite places

of F . We consider the double quotient

XG
KG

:= G(F )\XG ×G(AF,f )/KG,

which is a smooth, orientable Riemannian manifold. We also consider the partial

Borel–Serre compactification X
G

of XG as in [BS73, §7.1] and form the double
quotient

X
G

KG
:= G(F )\XG ×G(AF,f )/KG,

which is a compact, smooth manifold with corners with interior XG
KG

. We note that

the spaces XG are always connected; when G(R) is not connected, it is sometimes
better to work with XG × π0(G(R)) (equivalently, replacing the isotropy subgroup
in the definition of the symmetric space with its identity connected component).
Since G(R) will be connected in all the cases of interest to us, this will not concern

us. Finally, we consider the boundaries ∂XG := X
G\XG and ∂XG

KG
:= X

G

KG
\XG

KG
.

We define XG := lim←−KG
XG
KG

, endowed with the projective limit topology, where

KG ⊂ G(AF,f ) runs over good compact open subgroups. We also consider the

analogous spaces XG and ∂XG. All these spaces are equipped with a continuous
action of G(AF,f ), which is equipped with the locally profinite topology. Note

also that the spaces XG and ∂XG are compact Hausdorff, being projective limits of
compact Hausdorff spaces. We denote by j : XG ↪→ XG the natural open immersion.
As a consequence of [CGH+20, Lemma 6.2.1] and [NT16, Lemma 2.31], we see that
the actions of any good subgroup KG on XG and ∂XG are free in the sense of [NT16,
Definition 2.23]. These limits have been considered previously by Rohlfs [Roh96].
It follows from the properness of the action of arithmetic groups on the symmetric
space and its compactification (cf. [Roh96, Proposition 1.9]) that we have

XG = G(F )\XG ×G(AF,f ), XG = G(F )\XG ×G(AF,f ),

and ∂XG = G(F )\∂XG ×G(AF,f ),

with topologies induced by the locally profinite topology on the adelic groups. We
prefer to work with these topological spaces, since they seem more natural than
those used in [NT16, ACC+18] which equip the adelic groups with the discrete
topology. We compare these set-ups (‘topological’ and ’discrete’) in the next sub-
section.

2.1.2. Hecke operators and coefficient systems. If S is a finite set of finite places
of F we set GS := G(ASF,f ) and GS := G(AF,S), and similarly KS

G =
∏
v 6∈S KG,v

and KG,S =
∏
v∈S KG,v. We write H(GS ,KS

G) for the global Hecke algebra over Z
which is the restricted tensor product of the local Hecke algebras H(G(Fv),KG,v)
for v a finite place of F not contained in S.

Let R be a commutative ring and let V be a smooth R[KG,S ]-module, which is
finite free as an R-module. We now explain how to obtain from it a local system V
of R-modules on XG

KG
and how to equip the usual and compactly supported coho-

mology groups RΓ(c)(X
G
KG
,V) with an action of the Hecke algebraH(GS ,KS

G)⊗ZR,
by adapting the formalism of [NT16] to our topological setting.

Firstly, note that the R[KG,S ]-module V defines a GS ×KG,S-equivariant local

system, which we denote by V as well, on both XG and XG. Indeed, we first inflate V
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to a smooth R[GS×KG,S ]-module, which is equivalent to a GS×KG,S-equivariant
sheaf on a point by [NT16, Lemma 2.26], and then we pull back this sheaf to
XG and XG, respectively. From now on, we consider the GS × KG,S-equivariant

sheaves V and j!V on XG. By [Sch98, §1, Lemma 1]3, the category of GS ×KG,S-

equivariant sheaves on XG has enough injectives. By [NT16, Lemma 2.25], since
XG is compact, the global sections of a GS ×KG,S-equivariant sheaf on XG form
a smooth R[GS ×KG,S ]-module. We therefore have a well-defined derived functor

RΓ(XG, ), and we obtain

RΓ(XG,V) and RΓ(XG, j!V)

in the bounded below derived category of smooth R[GS×KG,S ]-modules. We apply
the functor RΓ(KG, )4, which gives rise to objects

RΓ(KG, RΓ(XG,V)) and RΓ(KG, RΓ(XG, j!V))

in the bounded below derived category of H(GS ,KS
G)⊗Z R-modules.

On the other hand, we can also view V and j!V as KG-equivariant sheaves on
XG, using the forgetful functor. Recall that the action of KG on XG is free and that

the quotient can be identified with X
G

KG
; let π : XG → X

G

KG
denote the projection

map. The descent functor F → (π∗F)
KG gives an equivalence between the category

of KG-equivariant sheaves on XG and the category of sheaves on X
G

KG
by [NT16,

Lemma 2.24]. We denote the corresponding sheaves on X
G

KG
by V and j!V as well.

Proposition 2.1.3. The following diagram of derived functors is commutative

DSh+
GS×KG,S

(XG)
RΓ(XG, )

//

forget

��

D+
sm(GS ×KG,S , R)

RΓ(KG, )
// D+(H(GS ,KS)⊗Z R)

forget

��

DSh+
KG

(XG)
descent // DSh+(X

G

KG
)

RΓ
(
X

G
KG

,
)

// D+(R)

Proof. This is a topological version of [NT16, Prop. 2.18]. The corresponding
diagram of underived functors commutes up to natural isomorphism. The forgetful
functor from GS × KG,S-equivariant sheaves to KG-equivariant sheaves is exact
and preserves injectives by [Sch98, §3, Corollary 3]. The descent functor is also
exact and preserves injectives, since it is an equivalence of categories. The functor
Γ(XG, ) preserves injectives by [NT16, Lemma 2.28]. �

Note that we have a canonical isomorphism

RΓ
(
X

G

KG
,V
)
∼→ RΓ

(
XG
KG
,V
)

induced by the pullback map j∗, because j is a homotopy equivalence, and that

RΓ(X
G

KG
, j!V) precisely computes RΓc(X

G
KG
,V). This shows how to construct mor-

phisms
H(GS ,KS

G)⊗Z R→ EndD+(R)

(
RΓ(c)(X

G
KG
,V)
)

5.

3It is assumed in loc. cit. that the coefficients have characteristic 0, but this is not used in the

proof.
4This is the derived functor of KG-invariants considered with its profinite topology, so it

computes the continuous group cohomology of KG.
5We will only need this statement, which is slightly weaker than saying that these are objects

in the bounded below derived category of H(GS ,KS
G)⊗Z R-modules.
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The same formalism also applies to RΓ(∂XG
KG
,V).

Lemma 2.1.4. The functor RΓ(XG, ) : DSh+
GS×KG,S

(XG)→ D+
sm(GS ×KG,S , R)

has bounded cohomological dimension.

Proof. We can check this after applying the forgetful functor to KG-equivariant
sheaves. If F ∈ ShKG(XG), then [NT16, Lemma 2.35] implies that RiΓ(XG,F)
vanishes for i > dim(XG

KG
). �

We now compare our set-up with that of [NT16]. We set X
dis

G = G(F )\XG ×
G(AF,f )dis, where the superscript indicates that we are considering G(AF,f ) with
the discrete topology. If we have a good compact open subgroup KG ⊂ G(AF,f ),

then (KG)dis acts freely on X
dis

G with quotient equal to X
G

KG
. Using [NT16, Lemma

2.19] to make the Hecke action on cohomology explicit, we see that, whether we
use the topological or discrete set-up, we will obtain the same Hecke actions on

the cohomology of X
G

KG
. We will prove something a little stronger than this, to

convince the reader that the two different set-ups really are naturally equivalent.

There is a natural map πdis : X
dis

G → XG which induces an exact functor

π∗dis : ShGS×KG,S
(XG)→ Sh(GS×KG,S)dis(X

dis

G ).

Using descent to X
G

KG
for both the topological and discrete categories, we see that

pullback by πdis induces an equivalence ShKG
(XG) = ShKdis

G
(X

dis

G ).

Lemma 2.1.5. We have a natural isomorphism of functors from DSh+
GS×KG,S

(XG)

to D+(H(GS ,KS)⊗Z R):

RΓ(KG,−) ◦RΓ(XG,−) ∼= RΓ(Kdis
G ,−) ◦RΓ(X

dis

G ,−) ◦ π∗dis.

Proof. It follows from [NT16, Lemma 2.19] that we can identify the underived

functors Γ(KG,−)◦Γ(XG,−) = Γ(Kdis
G ,−)◦Γ(X

dis

G ,−)◦π∗dis. From this, we deduce
that there is a natural transformation

RΓ(KG,−) ◦RΓ(XG,−)→ RΓ(Kdis
G ,−) ◦RΓ(X

dis

G ,−) ◦ π∗dis.

We can check that this is an isomorphism after composing with the forgetful map to
D+(R), and this follows from comparing Proposition 2.1.3 and [NT16, Proposition
2.18]. �

We now recall an important finiteness result:

Lemma 2.1.6. Let KG be a good subgroup, and let K ′G ⊂ KG be a normal sub-
group which is also good. Let R be a Noetherian ring, and let V be a smooth
R[KG]-module, finite free as R-module. Then RΓ(c)(X

G
K′G
,V) are perfect objects of

D+(KG/K
′
G, R); in other words, they are isomorphic in this category to bounded

complexes of projective R[KG/K
′
G]-modules.

Proof. The case of usual cohomology is essentially [ACC+18, Lemma 2.1.7]: we

choose a finite triangulation of X
G

KG
and pull this back to a KG-invariant triangu-

lation of XG, then consider the corresponding complex of simplicial chains C•. We

notice that HomZ[K′G] (C•,V) is isomorphic in D+(KG/K
′
G, R) to RΓ(X

G

K′G
,V). The

case of cohomology with compact support can be done in a similar way, by choosing
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our triangulation of X
G

KG
in such a way that a triangulation of ∂XG

KG
is a simpli-

cial subcomplex. Pulling back to XG we obtain simplicial complexes ∂C• → C•.
Letting CBM

• denote the cone of this map, we observe that HomZ[K′G]

(
CBM
• ,V

)
is

isomorphic in D+(KG/K
′
G, R) to RΓc(X

G
K′G
,V). �

Assume now that R = O/$m for some m ∈ Z≥1. If S ⊆ Sp(F ) is a set of places
of F above p, and if V is a smooth O/$m[KSp\S ]-module, we define the completed

cohomology at S of level KS
G to be

RΓ(KS
G, RΓ(XG,V)) ∈ D+

sm(GS ,O/$m).

Similarly, we define the completed cohomology with compact support at S of level
KS

G to be

RΓ(KS
G, RΓ(XG, j!V)) ∈ D+

sm(GS ,O/$m).

For a finite set of finite places T ⊇ Sp(F ) of F , a variant of the above formalism
equips these objects with actions of H(GT ,KT

G) ⊗Z O/$m. The same formalism
applies to

RΓ(KS
G, RΓ(∂XG,V)) ∈ D+

sm(GS ,O/$m).

The following lemma offers a justification for the term completed cohomology.

Lemma 2.1.7. For any i ∈ Z≥0, we have H(GT ,KT
G)-equivariant isomorphisms

of admissible smooth O/$m[GS ]-modules

(2.1.1) Hi
(
RΓ(KS

G, RΓ(XG,V))
) ∼→ lim−→

KG,S

Hi
(
XG
KS

GKG,S
,V
)

and

(2.1.2) Hi
(
RΓ(KS

G, RΓ(XG, j!V))
) ∼→ lim−→

KG,S

Hi
c

(
XG
KS

GKG,S
,V
)
.

Proof. In the category of compact Hausdorff spaces, we have

XG/K
S
G = lim←−

KG,S

X
G

KS
GKG,S

.

This shows that KS
G acts freely on XG, so we can functorially rewrite the LHS

of (2.1.1) and (2.1.2) in terms of the cohomology of either V or j!V on the quotient
XG/K

S
G. We can functorially rewrite the terms on the RHS in terms of the coho-

mology of either V or j!V on X
G

KS
GKG,S

. The result now follows from [NT16, Lemma

2.34]. Finally, admissibility of the cohomology groups follows from Lemma 2.1.6.
�

Our next result will imply an important property of completed cohomology: it
is, in some sense, independent of the weight V. It will be useful to work in a little
more generality, so we assume that V is a smooth O/$m[KG,Sp\S ×∆S ]-module,
flat over O/$m, for an open submonoid ∆S ⊂ GS which contains an open subgroup
US of GS . As above, we associate to V a GT ×KG,T\S × US-equivariant sheaf on

XG by pulling back from a point.

Lemma 2.1.8. We have canonical isomorphisms

RΓ(XG,O/$m)⊗ V ∼→ RΓ(XG,V)
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and
RΓ(∂XG,O/$m)⊗ V ∼→ RΓ(∂XG,V)

in D+
sm(GT ×KG,T\S × US ,O/$m).

Proof. We explain the case of XG, the case of ∂XG is the same. Let f : XG → ∗
be the G(AF,f )-equivariant projection to a point. We set H := GT × KG,T\S ×
US . There is a pair of adjoint functors (f∗, Rf∗) between D+(ShH(∗),O/$m) '
D+

sm(H,O/$m) and D+(ShH(XG),O/$m). There is also a natural isomorphism

f∗(Rf∗(O/$m)⊗ V)
∼→ f∗Rf∗(O/$m)⊗ f∗V

and hence by adjunction a natural map

f∗(Rf∗(O/$m)⊗ V)→ f∗V.
We therefore have a morphism

(2.1.3) RΓ(XG,O/$m)⊗ V = Rf∗(O/$m)⊗ V −→ Rf∗f
∗V = RΓ(XG,V)

in D+
sm(H,O/$m). It is enough to show that this is an isomorphism after forgetting

the equivariant structure. By [Sch98, §1, Corollary 3], if we forget the equivariant
structure for the sheaves on XG, the resulting derived functors compute cohomology
with compact support. Since XG is a compact Hausdorff space, we can apply [KS94,
Prop. 2.6.6], which implies that the morphism in (2.1.3) is an isomorphism (since
V is flat over O/$m, the assumption in loc. cit. that the coefficient ring has finite
weak global dimension is not necessary). �

We can use this lemma to define an object

RΓ(XG,V) := RΓ(XG,O/$m)⊗ V ∈ D+
sm(GT ×KG,T\S ×∆S ,O/$m).

It is independent of the choice of US , by [Sch98, §1, Corollary 3]. When KG,S is a

compact open subgroup of ∆S , we obtain RΓ(KG, RΓ(XG,V)) ∈ D+(O/$m) with
an action of H(GT ,KT

G)⊗H(∆S ,KG,S).
In §4.1, we will need a variant of this lemma with a coefficient system in a

derived category. When we apply this lemma, we will just have group actions, not
monoids, so we now assume V ∈ Db

sm(KG,Sp\S ,O/$m). After inflation and pullback

from a point, we get a corresponding object V ∈ Db(ShGT×KG,T
(XG,O/$m)). To

state the lemma, we need the derived tensor product functor RΓ(XG,O/$m) ⊗L

−. Although Modsm(GT ×KG,T ,O/$m) does not have enough projectives, every
object has a surjection from a O/$m-flat object. Indeed, smoothness implies that
there is a surjection from a direct sum of copies of compact inductions of trivial
representations of compact open subgroups on O/$m6. This gives enough acyclic
objects to compute derived tensor products on D−sm(GT ×KG,T ,O/$m). Since the

functor RΓ(XG,−) on D+(ShGT×KG,T
(XG,O/$m)) has bounded cohomological

dimension (Lemma 2.1.4), it takes bounded objects to bounded objects.

Lemma 2.1.9. Let V ∈ Db
sm(KG,Sp\S ,O/$m). We have a canonical isomorphism

RΓ(XG,O/$m)⊗L V ∼→ RΓ(XG,V)

in Db
sm(GT ×KG,T ,O/$m).

6This is the usual proof of ‘enough projectives’ over a characteristic 0 field. The problem here
is that the trivial representation with coefficients in O/$m of a non-trivial compact p-adic group

is not projective.
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Proof. As in the proof of Lemma 2.1.8, we set H = GT × KG,T and consider

f : XG → ∗ the map to the point. By Lemma 2.1.4, we have a pair of ad-
joint functors (f∗, Rf∗) between unbounded derived categories Dsm(H,O/$m) and
D(ShH(XG,O/$m)). Since f∗ is exact, it is easy to see that we have a natural
isomorphism

f∗(Rf∗(O/$m)⊗L V)
∼→ f∗Rf∗(O/$m)⊗L f∗V

and we then obtain a map

pV : RΓ(XG,O/$m)⊗L V → RΓ(XG,V)

by adjunction. The fact that this is an isomorphism follows from the case where
V is a O/$m-flat module. More precisely, we can replace V by a bounded above
complex F• of O/$m-flat objects in Modsm(H,O/$m), and replace O/$m by
a bounded complex I• of Rf∗-acyclic objects in ShH(XG,O/$m). Using [KS94,
Prop. 2.6.6] again, we see that each sheaf Ii ⊗ Fj is Rf∗-acyclic and the natural
map

f∗Ii ⊗F j → f∗(Ii ⊗F j)
is an isomorphism. The total complexes of the double complexes f∗I• ⊗ F• →
f∗(I• ⊗F•) respectively compute the source and target of pV , so we see that pV is
an isomorphism in Db

sm(GT ×KG,T ,O/$m). �

Remark 2.1.10. With Lemma 2.1.9 in hand, we can prove that RΓ(XG,O/$m) has
bounded Tor-dimension, and then extend our projection formula to handle V in
the unbounded derived category. See for example [Fu15, Corollary 6.5.6] for the
classical projection formula in l-adic cohomology.

Assume now that R = O, and that V is an O[KG,S ]-module, which is finite free
as an O-module and such that V/$m is a smooth O/$m[KG,S ]-module for each
m ∈ Z≥1. We then consider

RΓ(X
G

KG
,V) := lim←−

m

RΓ(X
G

KG
,V/$m)

in D+(O), where the projective limit should be understood as a homotopy limit.
We also consider the analogue with coefficient system j!V. These limits can be
endowed with an action of the Hecke algebra H(GS ,KS

G)⊗Z O7.
Continue to assume R = O. If S ⊆ Sp(F ) is a set of places of F above p, let V

be an O[KSp\S ]-module which is finite free as an O-module and such that V/$m

is a smooth O/$m[KSp\S ]-module. We consider

RΓ(KS
G, RΓ(XG,V)) := lim←−

m

RΓ(KS
G, RΓ(XG,V/$m))

in D+(GS ,O), where again the projective limit should be understood as a homotopy
limit. There is also the analogue with coefficient system j!V. When T ⊇ Sp(F ) is
a finite set of finite places of F , these limits can also be endowed with an action of
the Hecke algebra H(GT ,KT

G)⊗Z O.

7As the proof of Lemma 2.1.6 shows, we have explicit perfect complexes that compute these
derived functors, so we could simply take a projective limit on the level of complexes. To endow
the projective limit with a Hecke action, we can instead consider adelic complexes that compute

these derived functors as in [CGJ19, §5.1]. Combining the fact that derived limits commute with
cohomology [Sta13, Tag 08U1] and Lemma 2.1.5 we can show that we will obtain the same Hecke
actions as in [NT16].

https://stacks.math.columbia.edu/tag/08U1
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We now assume that G is reductive, and let P = MN be a parabolic subgroup
with Levi subgroup M. Let KG ⊂ G(AF,f ) be a good subgroup. In this situation,
we define KP = KG∩P(AF,f ), KN = KG∩N(AF,f ), and define KM to be the image
of KP in M(AF,f ). We say that KG is decomposed with respect to P = MN if we
have KP = KM nKN; equivalently, if KM = KG ∩M(AF,f ).

Assume now that KG is decomposed with respect to P = MN, and let S be a
finite set of finite places of F such that for all v 6∈ S, KG,v is a hyperspecial maximal
compact subgroup of G(Fv). In this case, we can define homomorphisms

rP : H(GS ,KS
G)→ H(PS ,KS

P) and rM : H(PS ,KS
P)→ H(MS ,KS

M),

given respectively by “restriction to P” and “integration along N”; see [NT16,
§2.2.3] and [NT16, §2.2.4] respectively for the definitions of these maps, along with
the proofs that they are indeed algebra homomorphisms, and that rM preserves
integrality. We use S := rM ◦ rP to denote the unnormalised Satake transform.

Finally, we remark that the above formalism also applies to the case of the Hecke
algebra of a monoid, see [ACC+18, §2.1.8].

2.1.11. The general linear group and the quasi-split unitary group. From now on,
we fix an integer n ≥ 2 and we let F be an imaginary CM field containing the
maximal totally real subfield F+. Let c ∈ Gal(F/F+) denote complex conjugation.
We set Sp := Sp(F

+) and Sp := Sp(F ). We let Ψn be the matrix with 1’s on the
anti-diagonal and 0’s elsewhere, and we let

Jn =

(
0 Ψn

−Ψn 0

)
.

We let G̃/OF+ be the group scheme defined by

G̃(R) = {g ∈ GL2n(R⊗OF+ OF ) | tgJngc = Jn}

for any OF+ -algebra R. The generic fibre of G̃ over F+ is a quasi-split unitary
group, which becomes isomorphic to GL2n /F after base change from F+ to F .
In particular, if v̄ is a place of F+ that splits in F , a choice of place v | v̄ of F

determines a canonical isomorphism ιv : G(F+
v̄ )

∼→ GL2n(Fv).

We let P ⊂ G̃ denote the Siegel parabolic consisting of block upper-triangular
matrices with blocks of size n×n. We let P = U oG be a Levi decomposition such
that we can identify G with ResOF /OF+

GLn
8. To simplify the notation, from now

on we write X̃ for XG̃ and X for XG. We also write K̃ and K for good subgroups of

G̃(AF+,f ) and of G(AF+,f ) = GLn(AF,f ). Note that the locally symmetric spaces

X̃K̃ are complex manifolds of (complex) dimension d := n2[F+ : Q], whereas the
locally symmetric spaces XK are real manifolds of (real) dimension d− 1.

We now describe some explicit (integral and rational) coefficient systems for
these symmetric spaces. These will depend on a choice of a prime p and on a choice

of a dominant weight for either G or G̃. We fix a coefficient field E/Qp which is
assumed to be sufficiently large, so that it contains the image of every embedding

Hom(F,Qp). Let T ⊂ B̃ ⊂ G̃ be the maximal torus of diagonal matrices and

the upper triangular Borel subgroup, respectively. Set B := B̃ ∩ G, this can be
identified with the upper triangular Borel subgroup in G.

8 We use the same identification as in [ACC+18, §2.2.1], namely
(
A 0
0 D

)
∈ G(R) 7→ D ∈

GLn(R⊗O
F+
OF ) for an OF+ -algebra R.
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We first treat the case of G. We identify the character group of (ResF+/QT )E
with (Zn)Hom(F,E) in the usual way. A weight (λτ,i) ∈ (Zn)Hom(F,E) with τ ∈
Hom(F,E) and i ∈ 1, . . . , n is dominant for (ResF+/QB)E if it satisfies

λτ,1 ≥ λτ,2 ≥ · · · ≥ λτ,n

for each τ ∈ Hom(F,E). We denote by (Zn+)Hom(F,E) the subset of dominant
weights. The expression ‘λ is a dominant weight for G’ will indicate that a weight
λ ∈ X∗((ResF+/QT )E) is dominant for (ResF+/QB)E .

Assume now that λ ∈ (Zn+)Hom(F,E). We define the G(OF+,p) =
∏
v∈Sp G(OFv )-

representation Vλ to be the integral dual Weyl module of highest weight λ with
coefficients in O, obtained from the Borel–Weil construction. More precisely, if we
let Bn ⊂ GLn denote the standard Borel consisting of upper-triangular matrices
and w0,n denote the longest element in the Weyl group of GLn, we consider the
algebraic induction

(IndGLn
Bn

w0,nλτ )/O := {f ∈ O[GLn] | f(bg) = (w0,nλτ )(b)f(g),

∀ O → R, b ∈ Bn(R), g ∈ GLn(R)},
and we set Vλτ to be the finite free O-module obtained by evaluating this on O and
Vλτ := Vλτ ⊗O E. When τ induces the place v of F , these modules come with an
action of GLn(OFv ) and GLn(Fv) respectively.

Finally, we set Vλ := ⊗τ,OVλτ and Vλ := Vλ ⊗O E. Then Vλ is the absolutely
irreducible algebraic representation of (ResF+/QG)E of highest weight λ and it
is finite-dimensional over E; the lattice Vλ ⊂ Vλ is G(OF+,p)-stable. For every
m ∈ Z≥1, Vλ/$m, is a smooth O/$m[G(OF+,p)]-module that is finite free as an
O/$m-module. Therefore, the formalism of the previous section applies to Vλ.

We now treat the case of G̃. Assume that each place in Sp splits from F+ to

F and that we have a partition of the form Sp = S̃p t S̃cp, with ṽ ∈ S̃p the place

lying above a place v̄ ∈ Sp. This induces a partition on Hom(F,E), by choosing
the embedding τ̃ : F ↪→ E above a given embedding τ : F+ ↪→ E that induces a

place in S̃p. In turn, this induces an identification

(ResF+/QG̃)E =
∏

Hom(F+,E)

GL2n,E

and therefore an identification of the character group of (ResF+/QT )E with (Z2n)Hom(F+,E).

More precisely, this identifies a weight λ = (λτ̃ ,i) with a weight λ̃ = (λ̃τ,i) where

(2.1.4) λ̃τ = (−λτ̃c,n, . . . , ,−λτ̃c,1, λτ̃ ,1, . . . , λτ̃ ,n).

The set of weights that are dominant for (ResF+/QB̃)E are the ones in the subset

(Z2n
+ )Hom(F+,E). For such weights, we can therefore define the integral dual Weyl

module of highest weight λ̃, Vλ̃ ⊂ Vλ̃, a G̃(OF+,p)-stable O-lattice in the highest

weight λ̃ representation of (ResF+/QG̃)E . For every m ∈ Z≥1, Vλ̃/$m, is a smooth

O/$m[
∏
v̄∈Sp G̃(OF+

v̄
)]-module that is finite free as an O/$m-module. Therefore,

the formalism of the previous section also applies to Vλ̃. We say ‘λ̃ is a dominant

weight for G̃’ to indicate that a weight λ̃ ∈ X∗((ResF+/QT )E) is dominant for

(ResF+/QB̃)E .
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We now define appropriate quotients of the Hecke algebras acting on the coho-
mology groups with these coefficient systems. Again, we treat G first. Let S ⊇ Sp
be a finite set of finite places of F and let K ⊂ GLn(AF,f ) be a good subgroup
such that Kv = GLn(OFv ) for v 6∈ S and Kv ⊆ GLn(OFv ) for v ∈ Sp. For

any λ ∈ (Zn+)Hom(F,E), the complex RΓ(XK ,Vλ) is well-defined as an object of
D+(O) (up to unique isomorphism) and equipped with a Hecke action. We set
TS := H(GS ,KS)⊗Z O and

TS(K,λ) := Im
(
TS → EndD+(O)(RΓ(XK ,Vλ))

)
.

In the case of G̃, let S ⊇ Sp be a finite set of finite places of F satisfying S = Sc.

Let S denote the set of finite places of F+ below S. Let K̃ ⊂ G̃(AF+,f ) be a good

compact open subgroup such that K̃v̄ = G̃(OF+
v̄

) for v̄ 6∈ S and K̃v̄ ⊆ G̃(OF+
v̄

) for

v̄ ∈ Sp. To simplify notation, we write G̃S = G̃S etc. For any λ̃ ∈ (Z2n
+ )Hom(F+,E),

the complex RΓ(XK̃ ,Vλ̃) is well-defined as an object of D+(O) (up to unique
isomorphism) and equipped with a Hecke action. We consider the abstract Hecke

O-algebra T̃S := H(G̃S , K̃S) ⊗Z O and its quotient TS(K̃, λ̃) acting faithfully on
RΓ(XK̃ ,Vλ̃).

As a consequence of Lemma 2.1.6, we see that both TS(K,λ) and T̃S(K̃, λ̃) are
finite O-modules. There are obvious versions of all of this with O/$m-coefficients
and for compactly supported cohomology and for the cohomology of the boundary
∂XK̃ of the Borel–Serre compactification of XK̃ .

We will make use of particular elements of some Weyl groups, besides the
longest element w0,n in the Weyl group of GLn which we have already mentioned.

For G = G or G̃, we will write wG
0 for the longest element in the Weyl group

W ((ResF+/QG)E , (ResF+/QT )E). We set wP0 = wG0 w
G̃
0 . It is the longest element in

the set WP of minimal length coset representatives for

W ((ResF+/QG̃)E , (ResF+/QT )E)/W ((ResF+/QG)E , (ResF+/QT )E).

In our development of P -ordinary Hida theory, it will be important to compare

coefficient systems for G̃ and G.
Let Pn,n ⊂ GL2n be the parabolic subgroup of block-upper triangular matrices

with Levi quotient GLn×GLn. By the transitivity of algebraic induction, Vλ̃τ and
Vλ̃τ can be identified with the evaluation on O and E respectively of the algebraic
induction (

IndGL2n

Pn,n
Vλτ̃ ⊗ V−w0,nλτ̃c

)
/O
.

Lemma 2.1.12. The natural Pn,n(O)-equivariant morphism

Vλ̃τ → Vλτ̃ ⊗ V−w0,nλτ̃c

given by evaluation of functions at the identity is surjective.

Proof. By transitivity of parabolic induction, we can identify Vλ̃τ with the evalua-
tion on O of(

IndGL2n

B2n
w0,2nλ̃τ

)
/O

∼→
(

IndGL2n

Pn,n
◦ IndGLn×GLn

Bn×Bn w0,2nλ̃τ

)
/O
,

where, by [Jan03, §I.3.5], the map is given by f 7→ f̃(g)(h) = f(hg) for all O-
algebras R, h ∈ GLn(R)×GLn(R), and g ∈ GL2n(R). By Nakayama, it is enough
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to check surjectivity after base change to Fp, in which case the evaluation at identity
map can be rewritten in geometric terms as the restriction map

H0(X,L)→ H0(X ′,L),

where X = B2n\GL2n is the full flag variety for GL2n, X ′ ⊂ X is the Schubert
variety for the longest Weyl group element in GLn×GLn and L is the line bundle on
X determined by w0,2nλ̃. The result now follows from the main theorem of [And85]

applied to SL2n/Fp. �

2.1.13. Explicit Hecke operators. Fix once and for all a choice $v̄ of uniformiser of
F+
v̄ for every finite place v̄ of F+. When v̄ is unramified in F we set $v = $v̄ for
v|v̄.

We define some explicit Hecke operators at unramified primes first. If v is a finite
place of F and 1 ≤ i ≤ n is an integer then we write Tv,i ∈ H(GLn(Fv),GLn(OFv ))
for the double coset operator

Tv,i = [GLn(OFv )diag($v, . . . , $v, 1, . . . , 1) GLn(OFv )],

where $v appears i times on the diagonal. This is the same as the operator denoted
by TM,v,i in [NT16, Prop.-Def. 5.3]. We define a polynomial

Pv(X) = Xn − Tv,1Xn−1 + · · ·+ (−1)iqi(i−1)/2
v Tv,iX

n−i + . . .

+ qn(n−1)/2
v Tv,n ∈ H(GLn(Fv),GLn(OFv ))[X].

(2.1.5)

It corresponds to the characteristic polynomial of a Frobenius element on recTFv (πv),
where πv is an unramified representation of GLn(Fv).

If v is a place of F+ unramified in F , and v is a place of F above v, and 1 ≤ i ≤ 2n

is an integer, then we write T̃v,i ∈ H(G̃(F+
v ), G̃(OF+

v
)) ⊗Z Z[q−1

v ] for the operator

denoted TG,v,i in [NT16, Prop.-Def. 5.2]. We define a polynomial

P̃v(X) = X2n − T̃v,1X2n−1 + · · ·+ (−1)jqj(j−1)/2
v T̃v,j + . . .

+ qn(2n−1)
v T̃v,2n ∈ H(G̃(F+

v ), G̃(OF+
v

))⊗Z Z[q−1
v ][X].

(2.1.6)

It corresponds to the characteristic polynomial of a Frobenius element on recTFv (πv),

where πv is the base change of an unramified representation σv of the group G̃(F+
v ).

We now describe the behaviour of these Hecke operators under the unnormalised
Satake transform with respect to the Siegel parabolic. We use the following con-
vention: if f(X) is a polynomial of degree d, with constant term a unit a0, we set
f∨(X) := a−1

0 Xdf(X−1).

Proposition 2.1.14. Let v be a place of F , unramified over the place v of F+. Let

S : H(G̃(F+
v ), G̃(OF+

v
))→ H(G(F+

v ), G(OF+
v

))

denote the homomorphism defined at the end of §2.1.1. Then we have

S(P̃v(X)) = Pv(X)qn(2n−1)
v P∨vc(q

1−2n
v X).

Proof. See [NT16, §5.1]. �

We now discuss some Hecke operators at (possibly ramified) places in Sp. Assume

that each prime v̄ of F+ above p splits in F . Let v̄ ∈ Sp, and recall that ṽ is a
chosen prime of F above it. For integers c ≥ b ≥ 0, we define subgroups

Pv̄(b, c) ⊂ G̃(OF+
v̄

) = GL2n(OFṽ )
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which reduce to block upper-triangular matrices (with two n × n blocks) modulo
$c
ṽ and to block unipotent matrices modulo $b

ṽ. We set Pv̄ = Pv̄(0, 1), which is
identified with the standard parahoric subgroup Pn,n of GL2n. For each parabolic

subgroup Qv̄ of Pv̄ which contains B̃v̄ we have an associated parahoric subgroup
Qv̄ ⊂ Pv̄. We note that these subgroups all admit an Iwahori decomposition with
respect to Pv̄, and therefore the formalism of [ACC+18, §2.1.9] applies when we
consider the Hecke algebras of monoids.

Write ũṽ,n := diag($ṽ, . . . , $ṽ, 1, . . . , 1) ∈ GL2n(Fṽ), where $ṽ appears exactly

n times on the diagonal. If c ≥ 1, we write Ũṽ,n ∈ H
(
G̃(OF+

v̄
),Pv̄(b, c)

)
for

the double coset operator Ũṽ,n = [Pv̄(b, c)ι−1
ṽ ũṽ,nPv̄(b, c)]. Also write ũṽ,2n :=

diag($ṽ, . . . , $ṽ) ∈ GL2n(Fṽ) and denote by Ũṽ,2n ∈ H
(
G̃(OF+

v̄
),Pv̄(b, c)

)
the

corresponding double coset operator. Note that these depend on both the choice

of uniformiser $ṽ and on the chosen level. We write ∆̃v̄ ⊂ G̃(F+
v̄ ) for the subset

∆̃v̄ := ι−1
ṽ

(
tµ1∈Z+

tµ2∈Z Pn,n(ũṽ,n)µ1(ũṽ,2n)µ2Pn,n
)
,

which is independent of the choice of ṽ | v̄.
Considering cohomology at level Pv̄ and the ordinary subspace for the Hecke

operator Ũṽ,n will be most important for us. However, we will work a little more
generally to allow us to keep track of additional Hecke operators at v̄ and prove a
local–global compatibility result for ordinary as well as crystalline representations.

So, more generally, we suppose we have a parabolic subgroup B̃v̄ ⊂ Qv̄ ⊂ Pv̄
corresponding to a subset I ⊂ ∆ of the simple roots, and with Levi decomposition
Qv̄ = MQv̄NQv̄ compatible with the decomposition Pv̄ = Gv̄Uv̄. We consider the
monoid of cocharacters

XQv̄ := {ν ∈ X∗(Z(MQv̄ )) : 〈ν, δ〉 ≥ 0 for all δ ∈ ∆− I}.

In fact, this is simply the subset of B̃v̄-dominant cocharacters in X∗(Z(MQv̄ )). We

then define a subset ∆̃Qv̄v̄ ⊂ G̃(F+
v̄ ) containing the parahoric subgroup Qv̄ ⊂ Pv̄ by

∆̃Qv̄v̄ :=
∐

ν∈XQv̄

Qv̄ν($v̄)Qv̄.

We have ∆̃Pv̄v̄ = ∆̃v̄.

We set ∆Qv̄,+v̄ := ∆̃Qv̄v̄ ∩ GF+
v̄

and ∆Qv̄v̄ := ∆Qv̄,+v̄ [ι−1
ṽ (ũ−1

ṽ,n)] (the submonoid of

G(F+
v̄ ) generated by ∆Qv̄,+v̄ and its central element ι−1

ṽ (ũ−1
ṽ,n)).

Lemma 2.1.15. (1) For ν ∈ XQv̄ , the element ν($v̄) is Qv̄-positive; i.e. we
have

ν($v̄) (NQv̄ ∩Qv̄) ν($v̄)
−1 ⊂ NQv̄ ∩Qv̄

and ν($v̄)
−1
(
NQv̄ ∩Qv̄

)
ν($v̄) ⊂ NQv̄ ∩Qv̄.

(2) ∆̃Qv̄v̄ is a monoid under multiplication.
(3) The map [(MQv̄ ∩ Qv̄)ν($v̄)(MQv̄ ∩ Qv̄)] 7→ [Qv̄ν($v̄)Qv̄] defines a ring

isomorphism of Hecke algebras

H(MQv̄ ∩ ∆̃Qv̄v̄ ,MQv̄ ∩Qv̄)
∼→ H(∆̃Qv̄v̄ ,Qv̄)

which also factors through an isomorphism to H(∆Qv̄,+v̄ , G(F+
v̄ ) ∩Qv̄).
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Proof. The first part can be checked directly, or using root groups. The second
part follows from the first, using the Iwahori decomposition of Qv̄. The third part
is [BK98, Corollary 6.12]. �

Remark 2.1.16. Our monoids are usually strictly contained in those defined in
[ACC+18, §2.1.9]. We only need to consider Hecke operators supported on double
cosets of central elements in the Levi subgroup, which in particular implies (as

shown in the preceding lemma) that the Hecke algebraH(∆̃Qv̄v̄ ,Qv̄) is commutative.

Fix v̄ ∈ S̄ and τ ∈ Hom(F+
v̄ , E). Let λ̃ ∈

(
Z2n

+

)Hom(F+,E)
. We define a character

α̃Qv̄
λ̃τ

: ∆̃Qv̄v̄ → E× by setting

α̃Qv̄
λ̃τ

(ν($v̄)) = τ($v̄)
〈ν,wG̃0 λ̃τ 〉

and setting the character to be trivial on Qv̄.

Lemma 2.1.17. Fix v̄ ∈ S̄ and τ ∈ Hom(F+
v̄ , E). Define an action of O[∆̃Qv̄v̄ ] on

Vλ̃τ by

(2.1.7) g ·Qv̄
λ̃τ

x := α̃Qv̄
λ̃τ

(g)−1g · x,

where g · x is the usual action of g ∈ ∆̃Qv̄v̄ ⊂ G̃(F+
v̄ ) on x ∈ Vλ̃τ . The lattice Vλ̃τ is

stable under the ·Qv̄
λ̃τ

-action of O[∆̃Qv̄v̄ ].

Proof. This follows from the fact that the re-scaled action of ∆̃Qv̄v̄ stabilizes each
weight space in Vλ̃τ , which has lowest weight w0,2nλ̃τ . Cf. [Ger19, Definition 2.8].

�

Suppose we have a subset S̄ ⊆ S̄p and standard parabolic subgroups Qv̄ ⊂ Pv̄
for each v̄ ∈ S̄. Then we set ∆̃

QS̄
S̄

:=
∏
v̄∈S̄ ∆̃Qv̄v̄ , with similar notation for ∆. Let

λ̃ ∈
(
Z2n

+

)Hom(F+,E)
. If we omit the superscript QS̄ , we take Qv̄ = Pv̄ for all v̄ ∈ S̄.

As a consequence of Lemma 2.1.17, we have constructed a twisted action of

O[∆̃
QS̄
S̄

] on Vλ̃ which stabilizes the lattice Vλ̃. This action is obtained from the
usual action by rescaling with the inverse of the character

α̃
QS̄
λ̃

:=
∏
v̄∈S̄

∏
τ∈Hom(F+

v̄ ,E)

α̃Qv̄
λ̃τ
.

We construct a similar rescaled action for the Levi subgroup G. Suppose λ ∈
(Zn)

Hom(F,E)
is a dominant weight for G. Recall that we have identified λ with a

(not necessarily dominant) weight λ̃ of G̃. We define a character αQv̄λ : ∆Qv̄v̄ → E×

using the formula

αQv̄λ (ν($v̄)) =
∏

τ∈Hom(F+
v̄ ,E)

τ($v̄)
〈ν,wG0 λ̃τ 〉

and a rescaled action of ∆Qv̄ on Vλ by g ·λ x = αQv̄λ (x)−1g · x. Note that the

rescaling means that ι−1
ṽ (ũṽ,n) ·λ x = x.

Let T ⊇ Sp be a finite set of finite places of F that satisfies T = T c. The

formalism of [ACC+18, §2.1.8] implies then that, for each good subgroup K̃ ⊂
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G̃(AF+,f ) such that K̃v̄ = Pv̄(b, c) with c ≥ 1 for each v̄ ∈ S̄ ⊆ S̄p, there is a
canonical homomorphism

(2.1.8) H(G̃T , K̃T )⊗Z H(∆̃S̄ , K̃S̄)→ EndD+(O)

(
RΓ
(
X̃K̃ ,Vλ̃

))
and in particular all the Hecke operators Ũṽ,n and Ũṽ,2n for v̄ ∈ S̄ act as endo-

morphisms of RΓ
(
X̃K̃ ,Vλ̃

)
. In fact, the Hecke operators Ũṽ,2n for v̄ ∈ S̄ act as

automorphisms of RΓ
(
X̃K̃ ,Vλ̃

)
because the elements ũṽ,2n are central.

We will also consider K̃ with K̃v̄ = Qv̄ for each v̄ ∈ S, and then we have a Hecke
action

(2.1.9) H(G̃T , K̃T )⊗Z H(∆̃
QS̄
S̄
, K̃S̄)→ EndD+(O)

(
RΓ
(
X̃K̃ ,Vλ̃

))
.

Similarly, for the Levi subgroup G, let K ⊂ G(AF+,f ) be a good subgroup with

Kv̄ = Qv̄ ∩G(F+
v̄ ) for v̄ ∈ S. Let {λτ}τ∈Hom(F+

v̄ ,E) be sets of dominant weights for

G at primes v̄ ∈ S̄, giving rise to an O[KS̄ ]-module VλS̄ . Let V be an O[KS̄p\S̄ ]-

module, which is finite free as an O-module and such that V/$m is a smooth
O/$m[KS̄p\S̄ ]-module for every m ∈ Z≥1. We get a Hecke action

(2.1.10) H(GT ,KT )⊗Z H(∆
QS̄
S̄
,KS̄)→ EndD+(O)

(
RΓ
(
XK ,V ⊗O VλS̄

))
.

This Hecke action generalizes in the natural way to the case when V is a complex
of O[KS̄p\S̄ ]-modules as above. For v|v̄ we will be interested in the (invertible)

Hecke operator Uv corresponding to the central element ι−1
v (ũ−1

v,nũv,2n). Under our
identification of G with ResF/F+ GLn, this element is diag($v, . . . , $v).

2.1.18. Automorphic Galois representations and middle degree cohomology. We start
by recalling some well-known results about Galois representations associated to au-
tomorphic representations, and more generally to systems of Hecke eigenvalues
occurring in the cohomology of locally symmetric spaces with integral coefficients.

Theorem 2.1.19. Assume that F contains an imaginary quadratic field and that

π is a cuspidal automorphic representation of G̃(AF+) that is ξ-cohomological9 for

some irreducible algebraic representation ξ of (ResF+/QG̃)C. For any isomorphism

ι : Qp
∼→ C, there exists a continuous, semisimple Galois representation

rι(π) : GF → GL2n(Qp)

satisfying the following conditions:

(1) For each prime ` 6= p which is unramified in F and above which π is un-
ramified, and for each prime v | ` of F , rι(π)|GFv is unramified and the

characteristic polynomial of rι(π)(Frobv) is equal to the image of P̃v(X) in
Qp[X] corresponding to the base change of ι−1(πv).

(2) For each prime v | p of F , rι(π) is de Rham, and for each τ : F ↪→ Qp, we
have

HTτ (rι(π)) = {λ̃τ,1 + 2n− 1, λ̃τ,2 + 2n− 2, . . . , λ̃τ,2n},

9As in [Shi14], ξ-cohomological means that π∞ ⊗ ξ has non-zero (g,K∞)-cohomology.
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where λ̃ ∈ (Z2n
+ )Hom(F,Qp) is the highest weight of the representation ι−1(ξ⊗

ξ)∨ of (ResF/Q GL2n)Qp .10

(3) If F0 ⊂ F is an imaginary quadratic field and ` is a prime which splits in
F0 (including possibly ` = p), then for each prime v | ` of F lying above a
prime v̄ of F+, there is an isomorphism

WD
(
rι(π)|GFv

)F−ss ' recTFv (πv̄ ◦ ιv).

Proof. This is [ACC+18, Theorem 2.3.3]. We mention that it relies on the base
change result of [Shi14] and on the existence and properties of the Galois repre-
sentations associated to regular algebraic, conjugate self-dual cuspidal automorphic
representations of GLm. �

Theorem 2.1.20. Let m ⊂ TT (K,λ) be a maximal ideal. Suppose F contains
an imaginary quadratic field, the finite set of finite places T of F is stable under
complex conjugation, and the following condition is satisfied:

• Let v /∈ T be a finite place, with residue characteristic `. Then either
T contains no `-adic places and ` is unramified in F , or there exists an
imaginary quadratic subfield of F in which ` splits.11.

Then there exists a continuous, semi-simple Galois representation

ρ̄m : GF,T → GLn
(
TT (K,λ)/m

)
such that, for each finite place v 6∈ T of F , the characteristic polynomial of ρ̄m(Frobv)
is equal to the image of Pv(X) in

(
TT (K,λ)/m

)
[X].

Proof. This is [ACC+18, Theorem 2.3.5]: it essentially follows from [Sch15, Corol-
lary 5.4.3]. �

Lemma 2.1.21. Let m ⊂ TT (K,λ) be a maximal ideal as in Theorem 2.1.20.
Suppose k = k(m). Let v be a p-adic place of F . The Hecke operator Uv has a unique

eigenvalue on H∗(XK ,Vλ/$)m, equal to ε̄
n(n−1)

2
p (ArtFv ($v)) · det ρ̄m(ArtFv ($v)).

Proof. Our proof of this will be global, computing the action of Uv in terms of a
central Hecke operator at a suitable unramified prime. We write Zn for the centre
of GLn,F . We have a right action of Zn(AF ) on XK (by right multiplication of
the finite adelic part on GLn(AF,f ) and of the archimedean part on XGLn,F ). The
rescaled action of uv on Vλ allows us to define an action of Zn(AF ) on Vλ which
factors through the p-adic part and is compatible with its existing K action. We
obtain an action of Zn(AF ) on H∗(XK ,Vλ/$)m which factors through the quotient
Zn(AF )/F×∞(Zn(AF,f ) ∩K) for continuity reasons12.

We also have a continuous character ψm : A×F = Zn(AF )→ k× determined by

ψm = ε̄
n(n−1)

2
p det ρ̄m ◦ArtF .

10For each τ : F+ → C, ξ gives a representation of G̃τ and hence for τ, τc extending τ

to F we have a represententation ξ ⊗ ξ of G̃τ × G̃τ = (GL2n,F )τ × (GL2n,F )τc. Note that

r∨,cι (1− 2n) ∼= rι(π) so HTτ (rι(π)) and HTτc(rι(π)) can be read off from each other.
11This condition can always be realised after enlarging T and is used to ensure that the results

of [Sch15] that we appeal to are unconditional.
12In fact we do not even need continuity of the F×∞ action. The cohomology groups are finite,

so the action of F×∞ gives a homomorphism from a product of copies of C× to a finite group. This

is necessarily trivial, since C× has no finite index subgroups.
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Since F×∞ is connected, and ρ̄m is unramified away from T , ψm factors through
the quotient F×\Zn(AF )/F×∞KZ for a compact open subgroup KZ =

∏
wKZ,w of

Zn(AF,f ) with KZ,w = O×Fw for w /∈ T . Shrinking KZ if necessary, we assume that
KZ ⊂ Zn(AF,f ) ∩ K. Note that for a finite place w /∈ T , ψm(Frobw) is equal to
Tw,n mod m.

By Chebotarev density, we can find a place w /∈ T such that the uniformiser $w

and $v map to the same element in the ray class group F×\Zn(AF )/F×∞KZ .
The action of Zn(AF ) on XK factors through the quotient Zn(AF )/(F×∞ ∩

K∞R×)(Zn(AF,f ) ∩ K). We can choose z∞ ∈ F×∞ such that z∞$w and $v map
to the same element in this quotient. Now we can compare the action of the two
elements z∞$w and $v on cohomology. By construction, they act in the same way
on XK . They both act trivially on Vλ. So they act the same on H∗(XK ,Vλ/$)m.
Since the action of F×∞ on cohomology is trivial, we deduce that $w and $v have
the same action on H∗(XK ,Vλ/$)m. The unique eigenvalue of $w (i.e. of the
Hecke operator Tw,n) on H∗(XK ,Vλ/$)m is ψm($w). Our choice of w means this
is equal to ψm($v), and we are done. �

Remark 2.1.22. A more conceptual proof for Lemma 2.1.21 can be given by ar-
guing with (mod $) completed cohomology at level Kp, localized at m. We can
then assume λ is trivial, in which case completed cohomology is equipped with a
continuous action of F×\A×F /F×∞(AF,f ∩ Kp) with unique system of eigenvalues

corresponding to the character ε̄
n(n−1)

2
p · det ρ̄m.

Definition 2.1.23. We say that a maximal ideal m ⊂ TT (K,λ) is non-Eisenstein
if ρ̄m is absolutely irreducible.

Our convention is that when we ask for a maximal ideal m to be non-Eisenstein,
we are implicitly imposing the assumptions of Theorem 2.1.20.

Theorem 2.1.24. Let m ⊂ TT (K,λ) be a non-Eisenstein maximal ideal. There
exist an integer N ≥ 1, which depends only on n and [F : Q], an ideal I ⊂ TT (K,λ)
satisfying IN = 0, and a continuous homomorphism

ρm : GF,T → GLn
(
TT (K,λ)/I

)
such that, for each finite place v 6∈ T of F , the characteristic polynomial of ρm(Frobv)
is equal to the image of Pv(X) in

(
TT (K,λ)/I

)
[X].

Proof. This is [Sch15, Corollary 5.4.4]. �

Let S̄ ⊆ S̄p and let K̃ ⊂ G̃(AF+,f ) be a compact open subgroup, which is
decomposed with respect to the Levi decomposition P = GnU , and which satisfies

K̃v̄ = Pv̄(b, c) or Qv̄ for all v̄ ∈ S̄. We set K := K̃ ∩ G(AF+,f ) and KU :=

K̃ ∩ U(AF+,f ). Let m ⊂ TT (K,λ) be a non-Eisenstein maximal ideal and let

m̃ ⊂ T̃T denote its pullback under the unnormalised Satake transform T̃T → TT .

Recall that the boundary ∂X̃K̃ of the Borel–Serre compactification of X̃K̃ has a

G̃(AF+,f )-equivariant stratification indexed by the rational parabolic subgroups of

G̃ which contain B̃. See [NT16, §3.1.2], especially [NT16, Lemma 3.10] for more

details. For such a standard parabolic subgroup Q, we denote by X̃Q

K̃
the stratum

labeled by Q. This stratum can be written as a double quotient:

X̃Q

K̃
= Q(F+)\XQ × G̃(AF+,f )/K
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By applying the formalism in § 2.1.2, there is, for any λ̃ ∈ (Z2n
+ )Hom(F+,E) a homo-

morphism

T̃T → EndD+(O)

(
RΓ
(
X̃Q

K̃
,Vλ̃
))

.

Therefore, we can define the localisation RΓ
(
X̃Q

K̃
,Vλ̃
)
m̃

.

Theorem 2.1.25. Let m ⊂ TT (K,λ) be a non-Eisenstein maximal ideal and let

m̃ := S∗(m) ⊂ T̃T . Let λ̃ ∈ (Z2n
+ )Hom(F+,E). Pullback along the natural inclusion

induces a T̃T -equivariant isomorphism in D+(O):

RΓ
(
∂X̃K̃ ,Vλ̃

)
m̃

∼→ RΓ
(
X̃P
K̃
,Vλ̃
)
m̃
.

Proof. This is [ACC+18, Thm. 2.4.2]. �

Theorem 2.1.26. Let m̃ ⊂ T̃T (K̃, λ̃) be a maximal ideal. Suppose F contains
an imaginary quadratic field, the finite set of finite places T of F is stable under
complex conjugation, and the following condition is satisfied:

• Let v /∈ T be a finite place, with residue characteristic `. Then either
T contains no `-adic places and ` is unramified in F , or there exists an
imaginary quadratic subfield of F in which ` splits.

Then there exists a continuous, semi-simple Galois representation

ρ̄m̃ : GF,T → GL2n

(
T̃T (K̃, λ̃)/m̃

)
such that, for each finite place v 6∈ T of F , the characteristic polynomial of ρ̄m̃(Frobv)

is equal to the image of P̃v(X) in
(
T̃T (K̃, λ̃)/m̃

)
[X].

Proof. We will use the Hecke algebra TTcl defined in [CGH+20, §6.5]. By reducing to

F-coefficients and increasing the level to sufficiently small compact opens K̃ ′v̄ at all
primes v̄ ∈ S̄p, we can trivialise the local system Vλ̃ ⊗O F. The proof of [CGH+20,
Theorem 6.5.3] shows that the map

TTcl → End
D+

(∏
v̄∈S̄p G̃(O

F
+
v̄

)/K̃′v̄,F
) (RΓ(X̃K̃′ ,F)m̃ ⊗F

(
Vλ̃ ⊗O F

))
is continuous for the discrete topology on the target. By the Hochschild–Serre
spectral sequence, this implies that the map

TTcl → EndD+(F)

(
RΓ
(
X̃K̃ ,Vλ̃ ⊗O F

)
m̃

)
is also continuous for the discrete topology on the target. The existence of a de-

terminant valued in T̃T (K̃, λ̃)/m̃ now follows from [CGH+20, Lemma 6.5.2], which
is the version of [Sch15, Corollary 5.1.11] for usual cohomology and which can be
made unconditional by using Theorem 2.1.19 as an input. This determinant cor-
responds to a semi-simple Fp-valued representation by [Che14, Theorem A]. This

representation can be realised over T̃T (K̃, λ̃)/m̃ by the same argument as in the
proof of [ACC+18, Theorem 2.3.5]. �

We now introduce the key technical condition that our residual representations
must satisfy in order to appeal to the main result of [CS19].
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Definition 2.1.27. A continuous representation ρ̄ : GF → GLm(F) is decomposed
generic13 if there exists a prime ` 6= p such that the following are satisfied:

(1) the prime ` splits completely in F ;
(2) for every prime v | ` of F , the representation ρ̄|GFv is unramified and the

eigenvalues α1, . . . , αm of ρ̄(Frobv) satisfy αi/αj 6= ` for i 6= j.

We note that if a representation ρ̄ is decomposed generic, then by the Chebotarev
density theorem there exist infinitely many primes ` 6= p as in Definition 2.1.27,
cf. [ACC+18, Lemma 4.3.2].

Theorem 2.1.28. Keep the same assumptions on F as in Theorem 2.1.26. Let

m̃ ⊂ T̃T (K̃, λ̃) be a maximal ideal such that the associated Galois representation
ρ̄m̃ constructed in Theorem 2.1.26 is decomposed generic, in the sense of Defini-

tion 2.1.27. Recall that d = dimC X̃K̃ . Then we have T̃T -equivariant morphisms

Hd
(
X̃K̃ ,Vλ̃[1/p]

)
m̃
←↩ Hd

(
X̃K̃ ,Vλ̃

)
m̃
� Hd

(
∂X̃K̃ ,Vλ̃

)
m̃
.

Proof. This follows from [CS19, Thm. 1.1] as in the proof of [ACC+18, Thm. 4.3.3].
Moreover, we can remove the technical hypotheses that [F+ : Q] > 1 and ρ̄m̃ has
length at most two by appealing to Koshikawa’s work [Kos21, Theorem 1.4]. �

2.2. P -ordinary Hida theory. In this section, we develop a P -ordinary version

of Hida theory for group G̃ and the Betti cohomology of the locally symmetric

spaces X̃K̃ , by extending the theory developed in [TU99] for GSp4 and the Betti
cohomology of Siegel modular threefolds. We relate this construction to the P -
ordinary part of completed cohomology.

For this entire section, fix a subset S̄ ⊂ S̄p, where we will take the P -ordinary

(or, slightly more generally, Q-ordinary) part of the cohomology of the X̃K̃ .

2.2.1. P -ordinary Hida theory at finite level. In this section, we will only consider

good subgroups K̃ ⊂ G̃(AF,f ) such that the tame level K̃p is fixed and such that,

for all v̄ ∈ S̄, K̃v̄ = Pv̄(b, c) for some integers c ≥ b ≥ 0. We denote such a good

subgroup by K̃(b, c) and assume from now on that c ≥ 1. Also set PS̄(b, c) :=∏
v̄∈S̄ Pv̄(b, c).
Recall from (2.1.8) that we have well-defined actions of the Hecke algebras

H(∆̃S̄ , K̃S̄) on the complexes RΓ(X̃K̃(b,c),Vλ̃). These actions are compatible with

the natural pullback maps as b, c vary. We define the P -ordinary partRΓ(X̃K̃(b,c),Vλ̃)ord

of the complex RΓ(X̃K̃(b,c),Vλ̃) to be the maximal direct summand on which all

the Ũṽ,n act invertibly. This is a well-defined object of D+ (PS̄(0, c)/PS̄(b, c),O)
by Lemma 2.1.6 and by the theory of ordinary parts, cf. [KT17, §2.4]. Moreover,

it inherits an action of the abstract Hecke algebra T̃T ⊗Z (
⊗

v̄∈S̄ H(∆̃v̄, K̃v̄)[Ũ
−1
ṽ,n]).

We similarly have well-defined actions of the Hecke algebras H(∆̃S̄ , K̃S̄) on

the complexes RΓ(∂X̃K̃(b,c),Vλ̃). Therefore, we can also define the P -ordinary

part RΓ(∂X̃K̃(b,c),Vλ̃)ord of the complex RΓ(∂X̃K̃(b,c),Vλ̃), which is an object of

D+ (PS̄(0, c)/PS̄(b, c),O) equipped with an action of T̃T⊗Z(
⊗

v̄∈S̄ H(∆̃v̄, K̃v̄)[Ũ
−1
ṽ,n]).

13This is slightly weaker than the condition called decomposed generic in [CS17]. See [CS19,
Remark 1.4] and [CS19, Corollary 5.1.3] for an explanation.
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2.2.2. The P -ordinary part of a smooth representation. In this section, we will de-
fine various functors that will allow us to study P -ordinary Hida theory using com-
pleted cohomology. These will be variants of the functors considered in [ACC+18,
§5.2.1], with essentially the same properties, and we will appeal to the basic results
in loc. cit. throughout. We will introduce a variant with more general parahoric
level in §2.2.11 — we find it clearer to introduce the simplest version of the theory
first, which is already sufficient for our results on local-global compatibility in the
crystalline case.

For an integer b ≥ 0, we set

Kv̄(b) := ker
(
G(OF+

v̄
)→ G(OF+

v̄
/$b

v̄)
)
,KS̄(b) :=

∏
v̄

Kv̄(b),KS̄ := KS̄(0).

We also set U0
S̄

:=
∏
v̄∈S̄ U(OF+

v̄
). Let ∆+

S̄
⊂ GS̄ denote the monoid generated by

KS̄ and by {ũṽ,n | v̄ ∈ S̄} and ∆S̄ ⊂ GS̄ the subgroup obtained by adjoining the

inverses of the elements ũṽ,n. We set ∆̃S̄,P := ∆̃S̄ ∩
∏
v̄∈S̄ P (F+

v̄ ) and note that we

have ∆̃S̄,P = ∆+
S̄
n U0

S̄
.

We let
Γ(U0

S̄ , ) : Modsm(∆̃S̄ ,O/$m)→ Modsm(∆+
S̄
,O/$m).

denote the functor of U0
S̄

-invariants.

For V ∈ Modsm(∆̃S̄ ,O/$m), we define the action of an element g ∈ ∆+
S̄

on

v ∈ Γ(U0
S̄
, V ) by the formula

(2.2.1) v 7→ g · v :=
∑

n∈U0
S̄
/gU0

S̄
g−1

ngv,

cf. [Eme10a, §3]. We obtain a derived functor

RΓ(U0
S̄ , ) : D+

sm(∆̃S̄ ,O/$m)→ D+
sm(∆+

S̄
,O/$m).

Since U0
S̄

is compact, an injective object in Modsm(∆̃S̄ ,O/$m) remains Γ(U0
S̄
, )-

acyclic on restriction to ∆̃S̄,P . So this derived functor factors through the restriction

functor to D+
sm(∆̃S̄,P ,O/$m).

We also define a functor

ord : Modsm(∆+
S̄
,O/$m)→ Modsm(∆S̄ ,O/$m)

that is the composition of the localisation functors ⊗O/$m[ũṽ,n]O/$m[(ũṽ,n)±1] for

all v̄ ∈ S̄. Note that ord is an exact functor because localisation is an exact functor,
and it preserves injectives by the same argument as in [ACC+18, Lemma 5.2.7].

Definition 2.2.3. We have a functor of P -ordinary parts

D+
sm(∆̃S̄ ,O/$m)→ D+

sm(∆S̄ ,O/$m), π 7→ RΓ(U0
S̄ , π)ord

obtained by composing the functor RΓ(U0
S̄
, ) with the functor ord.

For b ≥ 0, we also have a functor

Γ(U0
S̄ oKS̄(b), ) : Modsm(∆̃S̄ ,O/$m)→ Mod(∆+

S̄
/KS̄(b),O/$m),

where the action of g ∈ ∆+
S̄
/KS̄(b) is given by the same formula (2.2.1). We denote

the corresponding derived functor by RΓ(U0
S̄
oKS̄(b), ). We also define the functor

ordb : Mod(∆+
S̄
/KS̄(b),O/$m)→ Mod(∆S̄/KS̄(b),O/$m)
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by localisation. Note that ordb is also an exact functor that preserves injectives.
Finally, for c ≥ b ≥ 0 and c ≥ 1, we also have a functor

Γ(PS̄(b, c), ) : Modsm(∆̃S̄ ,O/$m)→ Mod(∆+
S̄
/KS̄(b),O/$m),

where the action of g ∈ ∆+
S̄
/KS̄(b) is given by the same formula (2.2.1). Note

here that on the right hand side we are considering the natural action of the Hecke
algebra

H(PS̄(0, c)∆+
S̄
PS̄(0, c),PS̄(b, c)) = O[∆+

S̄
/KS̄(b)].

Lemma 2.2.4. There is a natural isomorphism

ordb ◦Γ(KS̄(b), ) ' Γ(KS̄(b), ) ◦ ord

of functors Modsm(∆+
S̄
,O/$m) → Mod(∆S̄/KS̄(b),O/$m), which extends to an

isomorphism of derived functors

ordb ◦RΓ(KS̄(b), ) ' RΓ(KS̄(b), ) ◦ ord .

Proof. The same argument as for [ACC+18, Lemma 5.2.6] works for the un-derived
statement. Since ord is exact and preserves injectives and ordb is exact, the state-
ment for derived functors follows. �

Lemma 2.2.5. 14 For all c ≥ b ≥ 0 with c ≥ 1, there is a natural isomorphism

ordb ◦Γ(U0
S̄ oKS̄(b), ) ' ordb ◦Γ(PS̄(b, c), )

of functors

Modsm(∆̃S̄ ,O/$m)→ Mod(∆S̄/KS̄(b),O/$m).

Proof. Let V ∈ Modsm(∆̃S̄),O/$m). We first claim that the natural inclusion
Γ(PS̄(b, c), V ) ↪→ Γ(U0

S̄
oKS̄(b), V ) is a morphism of O/$m[∆+

S̄
]-modules. Indeed,

by the formula (2.2.1), it is enough to check that, for all g ∈ ∆+
S̄
/KS̄(b), the map

U0
S̄/gU

0
S̄g
−1 → PS̄(b, c)/gPS̄(b, c)g−1

is bijective, which holds by the Iwahori decomposition of PS̄(b, c) with respect
to P . By the exactness of ordb, we obtain an injection ordb Γ(PS̄(b, c), V ) ↪→
ordb Γ(U0

S̄
oKS̄(b), V ).

We are left to show that this injection is an equality. Let ũS̄ :=
∏
v̄∈S̄ ũṽ,n and

ŨS̄ :=
∏
v̄∈S̄ Ũṽ,n. The result will follow if we show that, for any v ∈ Γ(U0

S̄
o

KS̄(b), V ), there exists N ≥ 0 such that (ũS̄)Nv ∈ V PS̄(b,c). Since V is smooth,

there exists c′ ≥ c such that v ∈ V PS̄(b,c′). However, if c′ ≥ 2, then ŨS̄v ∈
V PS̄(b,c′−1) by [Eme10a, Lemma 3.3.2]. We conclude by induction. �

Lemma 2.2.6. Let π ∈ D+
sm(∆̃S̄ ,O/$m). Then for any c ≥ b ≥ 0 with c ≥ 1 there

is a natural isomorphism

RΓ(KS̄(b), ordRΓ(U0
S̄ , π))

∼→ ordbRΓ(PS̄(b, c), π)

in D+(∆S̄/KS̄(b),O/$m).

Proof. This is proved in the same way as [ACC+18, Lemma 5.2.9], except we appeal
to Lemma 2.2.5 above instead of Lemma 5.2.8 of op. cit. �

14Compare with [ACC+18, Lemma 5.2.8]
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2.2.7. Independence of level. Recall that the finite free O-module Vλ̃ is equipped

with an action of ∆̃S̄ . We consider the completed cohomology at S̄ with coefficients
in Vλ̃/$m:

π(K̃S̄ , λ̃,m) := RΓ
(
K̃S̄ , RΓ

(
XG̃,Vλ̃/$

m
))
.

We are using the discussion following Lemma 2.1.8 to regard RΓ
(
XG̃,Vλ̃/$

m
)

as

an object of D+
sm(G̃T × K̃T\S̄ × ∆̃S̄ ,O/$m). Then π(K̃S̄ , λ̃,m) is an object of

D+
sm(∆̃S̄ ,O/$m) equipped with an action of T̃T . We note that, for any c ≥ b ≥ 0,

PS̄(b, c) ⊂ ∆̃S̄ and we have a canonical T̃T -equivariant isomorphism

RΓ
(
PS̄(b, c), π(K̃S̄ , λ̃,m)

)
∼→ RΓ

(
X̃K̃(b,c),Vλ̃/$

m
)

in D+ (PS̄(0, c)/PS̄(b, c),O/$m).

We define πord(K̃S̄ , λ̃,m) to be the P -ordinary part of π(K̃S̄ , λ̃,m) as in Def-
inition 2.2.3. This is an object in D+

sm(∆S̄ ,O/$m) equipped with an action of

T̃T .

Proposition 2.2.8. For any integers m ≥ 1 and c ≥ b ≥ 0 with c ≥ 1, there is a

natural T̃T -equivariant isomorphism

RΓ
(
KS̄(b), πord(K̃S̄ , λ̃,m)

)
' RΓ

(
X̃K̃(b,c),Vλ̃/$

m
)ord

in D+(KS̄/KS̄(b),O/$m).

Proof. This is proved in the same way as [ACC+18, Prop. 5.2.15], given Lemma 2.2.6
as an input. Again, the key point is that the two definitions of P -ordinary parts
(via Hida’s idempotent as in [KT17, §2.4] or via localisation as in § 2.2.2) agree on

finite O/$m-modules, and that the cohomology groups of RΓ
(
X̃K̃(b,c),Vλ̃/$

m
)

are finite O/$m-modules by Lemma 2.1.6. �

Corollary 2.2.9 (Independence of level15). For any integers m ≥ 1 and c ≥ b ≥ 0

with c ≥ 1, the natural T̃T -equivariant morphism

RΓ
(
X̃K̃(b,max{1,b}),Vλ̃/$

m
)ord

→ RΓ
(
X̃K̃(b,c),Vλ̃/$

m
)ord

is an isomorphism in D+(KS̄/KS̄(b),O/$m).

Proof. This follows immediately from Proposition 2.2.8, upon noting that the LHS
of the main isomorphism is independent of c ≥ max{1, b}. �

The same results hold for the cohomology of the Borel–Serre boundary, with the
same proof.

Proposition 2.2.10. For any integers m ≥ 1 and c ≥ b ≥ 0 with c ≥ 1, there is a

natural T̃T -equivariant isomorphism

RΓ
(
KS̄(b), πord

∂ (K̃S̄ , λ̃,m)
)
' RΓ

(
∂X̃K̃(b,c),Vλ̃/$

m
)ord

in D+(KS̄/KS̄(b),O/$m).

15Compare with [ACC+18, Cor. 5.2.16]
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2.2.11. A variant at parahoric level. We now suppose we have standard parabolic
subgroups Qv̄ ⊂ Pv̄ for each v̄ ∈ S̄, with corresponding parahoric subgroup Qv̄ ⊂
G̃(OF+

v̄
). We will still be interested in P -ordinary parts — in other words, we only

invert the Hecke operator for the element ũS , as in the previous subsection. Our
degree shifting arguments will apply to this P -ordinary part. Later on, we will take
Q-ordinary parts after specialising to finite level QS , but this means that we need
to keep track of additional Hecke operators on our cohomology groups.

Recall that we have defined monoids ∆̃
QS̄
S̄
,∆
QS̄ ,+
S̄

,∆
QS̄
S̄

. We will also make

use of ∆̃
QS̄
S̄,P

:= ∆̃
QS̄
S̄
∩
∏
v̄∈S̄ P (F+

v̄ ). Note that ∆̃
QS̄
S̄,P

= ∆
QS̄ ,+
S̄

n U0
S̄

. We set

Kv̄ := Qv̄ ∩G(F+
v̄ ) for each v̄ ∈ S̄.

Using the formula (2.2.1), we define a functor

RΓ(U0
S̄ ,−) : D+

sm(∆̃
QS̄
S̄
,O/$m)→ D+

sm(∆
QS̄ ,+
S̄

,O/$m)

which factors through D+
sm(∆̃

QS̄
S̄,P

,O/$m), and the localisation, inverting ũṽ,n for

all v̄ ∈ S̄,

ord : D+
sm(∆

QS̄ ,+
S̄

,O/$m)→ D+
sm(∆

QS̄
S̄
,O/$m)

with composition denoted by π 7→ RΓ(U0
S̄
, π)ord.

Note that KS̄ is not in general normal in ∆
QS̄ ,+
S̄

, but it is in the submonoid

KS̄ [ũṽ,n|v̄ ∈ S̄]. This means we can define a functor

ord0RΓ (KS̄ ,−) : D+
sm(∆

QS̄ ,+
S̄

,O/$m)→ D+
sm(KS̄ [ũ±1

ṽ,n|v̄ ∈ S̄]/KS̄ ,O/$m)

as above, and equip an object in the image of this functor with an action of the

Hecke algebra H(∆
QS̄
S̄
,KS̄). We can also compute this functor as RΓ(KS̄ ,−) ◦ ord,

as in Lemma 2.2.4. We have an analogue of Lemma 2.2.6:

Lemma 2.2.12. Let π ∈ D+
sm(∆̃

QS̄
S̄
,O/$m). There is a natural isomorphism

RΓ(KS̄ , ordRΓ(U0
S̄ , π))

∼→ ord0RΓ (QS̄ , π)

in D+
sm(KS̄ [ũ±1

ṽ,n|v̄ ∈ S̄]/KS̄ ,O/$m) under which the action of [Kv̄ν($v̄)Kv̄] ∈
H(∆

QS̄
S̄
,KS̄) on the left hand side matches with the action of [Qv̄ν($v̄)Qv̄] on the

right hand side.

Proof. The proof is essentially the same as Lemma 2.2.6. The description of the

Hecke action follows from the decomposition ∆̃
QS̄
S̄,P

= ∆
QS̄ ,+
S̄

nU0
S̄

and the fact that

the formula defining the double coset operator [Qv̄ ∩P (F+
v̄ )ν($v̄)Qv̄ ∩P (F+

v̄ )] also
defines [Qv̄ν($v̄)Qv̄].

More precisely, if V ∈ Modsm(∆̃
QS̄
S̄
,O/$m), we consider the natural inclusion

Γ(QS̄ , V ) ↪→ Γ(U0
S̄ nKS̄ , V ).

For δ ∈ ∆Qv̄,+v̄ , the action of [Qv̄δQv̄] on the left hand side is given by
∑
γ∈Qv̄/(Qv̄∩δQv̄δ−1) γδ.

The action on the right hand side is given by
∑
k∈Kv̄/(Kv̄∩δKv̄δ−1)

∑
n∈U0

v̄/kδU
0
v̄ (kδ)−1 nkδ.

The Iwahori decomposition of Qv̄ with respect to P shows that the map (k, n) 7→ nk
gives a well-defined bijection

{(k, n) : k ∈ Kv̄/(Kv̄ ∩ δKv̄δ
−1), n ∈ U0

v̄ /kδU
0
v̄ (kδ)−1} ∼→ Qv̄/(Qv̄ ∩ δQv̄δ−1).

It remains to show that the inclusion

ord0 Γ(QS̄ , V ) ↪→ ord0 Γ(U0
S̄ nKS̄ , V )
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is bijective. As in the proof of Lemma 2.2.5, if v is in the right hand side, there
exists c ≥ 1 such that v ∈ V QS̄∩PS̄(0,c). We can apply [Eme10a, Lemma 3.3.2]

again to show that ŨN
S̄
v ∈ V QS̄ for some N ≥ 0. �

Using this lemma, we get natural analogues of our independence of level state-

ments. In this context, we will have πord(K̃S̄ , λ̃,m) ∈ D+
sm(∆̃

QS̄
S̄
,O/$m) and the

same for boundary cohomology.

2.2.13. Independence of weight. We retain our current set-up, with parabolic sub-
groups Qv̄ for v̄ ∈ S̄ and a parahoric level subgroup KS̄ . Assume that we have a
dominant weight λ for G. For a subset S̄ ⊆ S̄p, set

VλS̄ :=
⊗
v∈S

⊗
τ∈Hom(Fv,E),O

Vλτ .

This is, a priori, a finite free O-module with an action of KS̄ . We have explained

how to extend the inflate the KS̄-action to an action of ∆
QS̄
S̄

(in particular, ũṽ,n
acts trivially for each v̄ ∈ S̄).

Lemma 2.2.14. Using our identification of KS̄ with the block diagonal Levi sub-
group of

∏
v̄∈S̄ Pn,n(OFṽ ), we can identify

VλS̄ =
⊗
v̄∈S̄

⊗
τ∈Hom(F+

v̄ ,E),O

V−w0,nλτ̃c ⊗ Vλτ̃

with the action on both factors V−w0,nλτ̃c ⊗ Vλτ̃ defined using the embedding τ̃ .

Proof. Recall that for each v̄ ∈ S and place ṽ|v̄ of F we have an isomorphism ιṽ :

G̃(F+
v̄ ) ∼= GL2n(Fṽ) identifying the Levi subgroup G(F+

v̄ ) = GLn(Fṽ)×GLn(Fṽc)

with block diagonal matrices in Pn,n(Fṽ) via (Aṽ, Aṽc) 7→
(

(Ψn
tA−1

ṽc Ψn)c 0
0 Aṽ

)
.

We write θ for the isomorphism GLn(Fṽc) ∼= GLn(Fṽ) defined by

θ(A) = (Ψn
tA−1Ψn)c,

which preserves our chosen Borel subgroup B.
For each τ ∈ Hom(F+

v̄ , E), Kv̄ = GLn(OFṽ )×GLn(OFṽc ) acts ‘factor-by-factor’
on Vλτ̃ ⊗ Vλτ̃c . Describing this representation in terms of block diagonal matrices,
we get θ−1Vλτ̃c⊗Vλτ̃ , where θ−1Vλτ̃c denotes the representation of GLn(OFṽ ) given
by pulling back the representation Vλτ̃c by θ−1. To finish the proof, we need to
explain why θ−1Vλτ̃c ∼= V−w0,nλτ̃c . To see this, consider the map

(IndGLn
Bn

w0,nλτ̃c)/O → (IndGLn
Bn
−λτ̃c)/O

f 7→
(
g 7→ f(Ψn

tg−1Ψn)
)

and note that it gives the desired isomorphism. �

Proposition 2.2.15. Given a dominant weight λ̃ for G̃ and a subset S̄ ⊆ S̄p, let

λ̃S̄ be defined as follows:

• if v̄ ∈ S̄ and τ ∈ Hom(F+
v̄ , E), then λ̃S̄τ := (0, . . . , 0).

• if v̄ ∈ S̄p \ S̄ and τ ∈ Hom(F+
v̄ , E), then λ̃S̄τ := λ̃τ .
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Identify λ̃ with a dominant weight λ for G as in 2.1.4. For any integer m ≥ 1 there

is a natural T̃T -equivariant isomorphism

πord(K̃S̄ , λ̃,m)
∼→ πord(K̃S̄ , λ̃S̄ ,m)⊗ VwP0 λS̄/$

m

in D+
sm(∆

QS̄
S̄
,O/$m).

Proof. Note first that πord(K̃S̄ , λ̃,m) only depends on Vλ̃S̄/$
m as an object in

D+
sm(U0

S̄
o∆

QS̄ ,+
S̄

,O/$m). As in Lemma 2.1.12, there is a U0
S̄
o∆

QS̄ ,+
S̄

-equivariant
morphism of finite free O-modules

ev : Vλ̃S̄ → VwP0 λS̄
given by evaluation of functions at the identity, where the action of U0

S̄
o∆

QS̄ ,+
S̄

⊂
∆̃
QS̄
S̄

on the LHS is as in Lemma 2.1.17 and the action on the RHS factors through

the action of ∆
QS̄ ,+
S̄

. By Lemma 2.1.12, this morphism is surjective. Let Kλ̃S̄ :=

ker(ev), a finite free O-module with an action of U0
S̄
o ∆

QS̄ ,+
S̄

.

For any m ≥ 1, we have a short exact sequence of O/$m[U0
S̄
o ∆

QS̄ ,+
S̄

]-modules

0→ Kλ̃S̄/$
m → Vλ̃S̄/$

m → VwP0 λS̄/$
m → 0.

We first claim that ev (mod $m) induces an isomorphism between

πord(K̃S̄ , λ̃,m)
def
= ordRΓ

(
U0
S̄ , RΓ

(
K̃S̄ , RΓ(XG̃,Vλ̃/$

m)
))

and

(2.2.2) ordRΓ
(
U0
S̄ , RΓ

(
K̃S̄ , RΓ(XG̃,Vλ̃S̄/$

m)⊗ VwP0 λS̄/$
m
))

.

By definition (cf. Lemma 2.1.8), we have

RΓ(XG̃,Vλ̃/$
m) = RΓ(XG̃,Vλ̃S̄/$

m)⊗ Vλ̃S̄/$
m.

To prove the claim, it is therefore enough to show that

ordRΓ
(
U0
S̄ , RΓ

(
K̃S̄ , RΓ(XG̃,Vλ̃S̄/$

m)⊗Kλ̃S̄/$
m
))

is trivial. This follows from Lemma 2.2.16 below.
Finally, we observe that there is a natural isomorphism in D+

sm(∆
QS̄
S̄
,O/$m)

between (2.2.2) and πord(K̃S̄ , λ̃S̄ ,m) ⊗ VwP0 λS̄/$
m. Indeed, ũṽ,n, K̃S̄ and U0

S̄
all

act trivially on the finite free O/$m-module VwP0 λS̄/$
m, so we can pull this factor

outside all the functors being applied in (2.2.2). �

Lemma 2.2.16. Let τ ∈ Hom(F+
v̄ , E) and let

Kλ̃τ := ker
(
Vλ̃τ → Vλτ̃ ⊗ Vλ−w0,nλτ̃c

)
be the kernel of the evaluation at identity map. For any m ≥ 1, we have (ũṽ,n)m(Kλ̃τ /$

m) =
0.

Proof. Since Kλ̃τ is the evaluation at O of an algebraic representation of GLn /O, it

has a decomposition into weight spaces for the diagonal torus Tn/O. The parabolic
subgroup Pn,n corresponds to the set of simple roots I = ∆\(en− en+1). It follows
from [Cab84, Proposition 4.1] that the weights which show up in Kλ̃τ are the

weights µ of Vλ̃τ such that µ− w0,2nλ̃τ contains a positive multiple of (en − en+1)
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in its decomposition into simple roots. This condition corresponds to the rescaled
action of ũṽ,n on the µ-weight space acting as multiplication by a positive power of
τ̃($ṽ). �

The same result holds for the cohomology of the Borel–Serre boundary, with the
same proof.

Proposition 2.2.17. Given a weight λ̃ and a subset S̄ ⊆ S̄p, let λ̃S̄ be defined

as in Proposition 2.2.15. For any integer m ≥ 1 there is a natural T̃T -equivariant
isomorphism

πord
∂ (K̃S̄ , λ̃,m)

∼→ πord
∂ (K̃S̄ , λ̃S̄ ,m)⊗ VwP0 λS̄/$

m

in D+
sm(∆

QS̄
S̄
,O/$m).

2.2.18. A variant with dual cofficients. We will also make use of a variant of P -
ordinary Hida theory which can be applied with dual coefficient systems. It is
formulated in terms of the ordinary parts ord∨, ord∨0 defined using the Hecke action

of ũ−1
ṽ,n on invariants under U

1

v̄ and Qv̄ respectively, where U
1

v̄ is the block-strictly-

lower -triangular part of the parahoric Pv̄. We will fix v̄ ∈ S̄ and start with a

representation π of the inverse monoid (∆̃Qv̄v̄ )−1 =
∐
ν∈XQv̄

Qv̄ν($v̄)
−1Qv̄. Set

Kv̄ := Qv̄ ∩G(F+
v̄ ).

Lemma 2.2.19. Let π ∈ D+
sm((∆̃Qv̄v̄ )−1,O/$m). There is a natural isomorphism

RΓ(Kv̄, ord∨RΓ(U
1

v̄, π))
∼→ ord∨0 RΓ (Qv̄, π)

in D+
sm(Kv̄[ũ

±1
ṽ,n]/Kv̄,O/$m) under which the action of [Kv̄ν($v̄)

−1Kv̄] ∈ H((∆Qv̄v̄ )−1,Kv̄)

on the left hand side matches with the action of [Qv̄ν($v̄)
−1Qv̄] on the right hand

side.

Proof. Conjugation by ũ−1
ṽ,nw

P
0 sends U

1

v̄ to U0
v̄ and Qv̄ to the parahoric Qw

P
0

v̄ corre-

sponding to the standard parabolic with Levi subgroup Q
wP0
v̄ ∩G(F+

v̄ ). It moreover

sends (∆̃Qv̄v̄ )−1 to ∆̃
Qw

P
0

v̄
v̄ .

Conjugation by ũ−1
ṽ,nw

P
0 then identifiesRΓ(Kv̄, ord∨RΓ(U

1

v̄, π)) and ord∨0 RΓ (Qv̄, π)

withRΓ(K
wP0
v̄ , ordRΓ(U0

v̄ , π
ũ−1
ṽ,nw

P
0 )) and ord0RΓ

(
Qw

P
0

v̄ , πũ
−1
ṽ,nw

P
0

)
respectively, where

πũ
−1
ṽ,nw

P
0 ∈ D+

sm(∆̃Q
wP0
v̄ ,O/$m) denotes π with the action of x ∈ ∆̃

Qw
P
0

v̄
v̄ given by

the action of (wP0 )−1ũṽ,nxũ
−1
ṽ,nw

P
0 ∈ (∆̃Qv̄v̄ )−1. Applying Lemma 2.2.12 now gives

the desired result. �

An independence of weight statement for dual coefficients can be proved by
following the proof of Proposition 2.2.15, using the short exact sequence

0→ V∨wP0 λS̄
ev∨−−→ V∨

λ̃S̄
→ K∨

λ̃S̄
→ 0

and the topological nilpotence of ũ−1
ṽ,n on K∨

λ̃S̄
.

2.3. New ingredients for degree shifting.
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2.3.1. A computation of P -ordinary parts. In this section, we compute the P -

ordinary part of a parabolic induction from G to G̃, in the same spirit as the
computation of ordinary parts in [ACC+18, §5.3]. Our calculations here are purely
local. The global application is to the boundary of the Borel–Serre compactification

of the locally symmetric spaces for G̃ and it is carried out in § 4.
Fix a prime v̄ of F+ dividing p and let L := F+

v̄ , a p-adic field (with ring of
integers OL and uniformiser $L). In this section, we let G/OL be a split connected
reductive group with split maximal torus T ⊂ G. Write W := W (G,T) for the
Weyl group, and fix a Borel subgroup B containing T and a parabolic subgroup
B ⊂ P ⊂ G with Levi decomposition P = M n U. The Weyl group WP of M can
be identified with a subgroup of W. We denote by WP ⊂W the subset of minimal
length representatives of WP \W. We denote the length of an element w ∈ W by
`(w) ∈ Z≥0.

Recall from [BT65, Cor. 5.20] the (generalised) Bruhat decomposition

G(L) =
⊔

w∈WP

P(L)wB(L).

Denote by PWP the intersection WP ∩ (WP)−1. This is a set of minimal length
representatives for the double cosets WP\W/WP, cf. [DM91, Lemma 3.2.2].

Lemma 2.3.2. We have a set-theoretic decomposition

G(L) =
∐

w∈PWP

P(L)wP(L).

The closure relations (for the p-adic topology) are given by the Bruhat ordering

P(L)wP(L) =
∐

w′≤w∈PWP

P(L)w′P(L).

Moreover, if Ω ⊂ PWP is an upper subset16, then P(L)ΩP(L) is open in G(L).

Proof. See [Hau18, Lemma 2.1.2]. �

We are interested in the parabolic induction functor

Ind
G(L)
P(L) : D+

sm(P(L),O/$m)→ D+
sm(G(L),O/$m).

This functor is exact and preserves injectives. We define several functors related to
it.

For w ∈ PWP, define Sw := P(L)wP(L) and S◦w := P(L)wM(L)U0, where
U0 := U(OL). The subset S◦w ⊂ G(L) is invariant under left multiplication by P(L)
and right multiplication by inverses of elements in M(L)+ n U0, where M(L)+ =
{m ∈ M(L) : mU0m−1 ⊂ U0} (this means that functions with support in S◦w are
stable under right translation by M(L)+ n U0).

For any i ∈ Z≥0, we define

G≥i :=
⊔

`(w)≥i

Sw,

which is an open subset of G(L) by Lemma 2.3.2, and which is invariant under left
and right multiplication by P(L). For any i ∈ Z≥0, we define a functor

I≥i : Modsm(P(L),O/$m)→ Modsm(P(L),O/$m)

16This means that, if w ∈ Ω and w′ ∈ PWP satisfies w′ ≥ w, then w′ ∈ Ω.
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by sending π ∈ Modsm(P(L),O/$m) to

I≥i(π) = {f : G≥i → π | f locally constant, of compact support modulo P(L),

∀p ∈ P(L), g ∈ G≥i, f(pg) = pf(g)},

where P(L) acts by right translation. For w ∈ PWP, we define a functor

Iw : Modsm(P(L),O/$m)→ Modsm(P(L),O/$m)

by sending π ∈ Modsm(P(L),O/$m) to

Iw(π) = {f : Sw → π | f locally constant, of compact support modulo P(L),

∀p ∈ P(L), g ∈ Sw, f(pg) = pf(g)},

where again P(L) acts by right translation. Finally, for w ∈ PWP, we also define a
functor

I◦w : Modsm(P(L),O/$m)→ Modsm(M(L)+ n U0,O/$m)

by defining I◦w(π) ⊂ Iw(π) to be the subset of functions with support in S◦w.

Proposition 2.3.3.

(1) We have I≥0 = Res
G(L)
P(L) ◦ Ind

G(L)
P(L) .

(2) Each functor I≥i, Iw and I◦w is exact.
(3) For each i ∈ Z≥0 and π ∈ Modsm(P(L),O/$m), there is a functorial short

exact sequence

0→ I≥i+1(π)→ I≥i(π)→
⊕
`(w)=i

Iw(π)→ 0.

Proof. The first part follows from the definition of parabolic induction and from
the fact that P(L)\G(L) is compact. The second part follows from the fact that
the natural map G(L) � P(L)\G(L) admits a continuous section, which can be
deduced from [Jan03, Part II, §1.10] and [Hau16, Lemma 2.1.1]. The third part
follows from [Hau18, Lemma 2.2.1], noting that the length function ` is strictly
monotonic for the Bruhat order. �

We deduce that, for any π ∈ D+
sm(P(L),O/$m), there is a functorial distin-

guished triangle

(2.3.1) I≥i+1(π)→ I≥i(π)→
⊕
`(w)=i

Iw(π)→ I≥i+1(π)[1]

in D+
sm(P(L),O/$m).

Proposition 2.3.4. Let π ∈ D+
sm(P(L),O/$m) and let V be a finite free O/$m-

module equipped with a smooth representation of an open submonoid ∆+ ⊂ M(L)
containing an open subgroup K ⊂ M(OL). For any i ∈ Z≥0 and j ∈ Z, the sequence

0→ RjΓ
(
K n U0,V ⊗O/$m I≥i+1(π)

)
→ RjΓ

(
K n U0,V ⊗O/$m I≥i(π)

)
→

⊕
`(w)=i

RjΓ
(
K n U0,V ⊗O/$m Iw(π)

)
→ 0

associated to (2.3.1) is an exact sequence of H(∆+,K)-modules.
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Proof. The distinguished triangle (2.3.1) gives a distinguished triangle

V⊗O/$mI≥i+1(π)→ V⊗O/$mI≥i(π)→
⊕
`(w)=i

V⊗O/$mIw(π)→ V⊗O/$mI≥i+1(π)[1]

in D+
sm(∆+ n U0,O/$m), and taking cohomology gives us the desired sequence

of H(∆+,K)-modules. It remains to check exactness, for which we can forget the
Hecke action and just consider V as a representation of K. We consider decom-
positions G≥i = U1 t U2 into open and closed subsets that are P(L)-invariant on
the left and P(OL)-invariant on the right, and such that U1 ⊂ G≥i+1. Any such
decomposition induces a functorial decomposition I≥i(π) = IU1(π)⊕ IU2(π) in the
category Modsm(K n U0,O/$m), where IU1

denotes functions with support in U1,
and similarly for U2 (we can also tensor this decomposition with V). In particular,
for any π ∈ D+

sm(P(L),O/$m), the associated morphism

RjΓ
(
K n U0,V ⊗O/$m IU1(π)

)
→ RjΓ

(
K n U0,V ⊗O/$m I≥i(π)

)
ofO/$m-modules is injective. Lemma 2.3.5 below implies that I≥i+1 can be written
as a filtered direct limit of of functors of the form IU1 . Since the tensor product
V⊗O/$m and the functor RjΓ(K n U0, ) commute with filtered direct limits17, it
follows that the morphism

RjΓ
(
K n U0,V ⊗O/$m I≥i+1(π)

)
→ RjΓ

(
K n U0,V ⊗O/$m I≥i(π)

)
is injective. Since the injectivity applies for any j ∈ Z, the long exact sequence of
cohomology groups attached to the distinguished triangle (2.3.1) (tensored with V)
gives the statement of the proposition. �

Lemma 2.3.5. For any i ∈ Z≥0, there exist decompositions G≥i = Um1 t Um2 into
open and closed subsets, indexed by m ∈ Z≥1, that are P(L)-invariant on the left
and P(OL)-invariant on the right, such that

G≥i+1 =
⋃
m≥1

Um1

(in particular, each Um1 is a subset of G≥i+1).

Proof. Let Sw := P(L)wP(L), a closed subset of G(L). We claim that it is enough
to find, for each w ∈ PWP with `(w) = i, decompositions G(L) = Umw,1 t Umw,2 into
open and closed subsets, indexed by m ∈ Z≥1, that are P(L)-invariant on the left
and P(OL)-invariant on the right, such that

Sw =
⋂
m≥1

Umw,2.

Indeed, once we have found such decompositions, we set

Um2 :=

 ⋃
`(w)=i

Umw,2

 ∩G≥i,

which is open and closed in G≥i because we have taken a finite union. The Um2 and
their complements induce decompositions of G≥i with the desired properties.

We now describe how to find the decompositions for each w. Set F ` := P\G; this
is a projective variety defined over OL. The closed subset P(L)\Sw ⊂ P(L)\G(L)

17Since KnU0 is compact, a filtered direct limit of injective objects in Modsm(KnU0,O/$m)

is again an injective object in Modsm(K n U0,O/$m), cf. [Eme10b, Prop. 2.1.3].
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can be identified with the OL-points of a closed Schubert subvariety Sw of F `.
Let $L be a uniformiser of OL. For each m ≥ 1, we consider the subset V m ⊂
F `(OL/$m

L ) consisting of the points that satisfy modulo $m
L the equations for Sw.

The preimage Vm ⊂ P(L)\G(L) of V m is an open and closed subset that contains
P(L)\Sw, and is invariant under multiplication on the right by the finite index
normal subgroup of P(OL) of elements that reduce to the identity modulo $m

L . We
intersect the translates of Vm by finitely many coset representatives in P(OL) to
obtain an open and closed subset Wm ⊂ P(L)\G(L) that contains P(L)\Sw, and
is invariant under multiplication on the right by P(OL). Finally, we define Umw,2 to
be the preimage of Wm in G(L). �

Assume now that G = GL2n /L and that P is the standard upper-triangular
parabolic with Levi GLn×GLn. Write ũL := diag($L, . . . , $L, 1, . . . , 1), where
the uniformiser $L of OL occurs n times on the diagonal. Then M(L)+ contains
the monoid generated by M(OL) and ũL. This means that if π ∈ D+

sm(M(L)+ n
U0,O/$m), we can define RΓ

(
U0, π

)
∈ D+

sm(M(L)+,O/$m) and the localisation

(inverting ũL) ordRΓ
(
U0, π

)
∈ D+

sm(M(L)+,O/$m).

We now compute the complexes ordRΓ
(
U0, Iw(π)

)
in two special cases: for w

equal to either the longest element of PWP or to the identity element.

Lemma 2.3.6. Let wP
0 be the longest element of PWP. Then:

(1) I◦
wP

0
takes injectives to Γ(U0, )-acyclics.

(2) Let π ∈ D+
sm(P(L),O/$m). Then there is a natural isomorphism

ordRΓ(U0, I◦wP
0

(π))
∼→ ordRΓ(U0, IwP

0
(π)).

Proof. Since wP
0 is the longest element in PWP, it normalises M(L) and therefore

we have S◦
wP

0
= P(L)wP

0 U0. The proof of [ACC+18, Lemma 5.3.4] applies verbatim;

for convenience, we reproduce it here.
For the first part, let π ∈ Modsm(P(L),O/$m) and fix an O/$m-linear embed-

ding π ↪→ I, where I is an injective O/$m-module. This gives rise to an embedding

π ↪→ Ind
P(L)
1 I of smooth O/$m[P(L)]-modules. By [Eme10b, Lemma 2.1.10], it

suffices to show that I◦
wP

0

(
Ind

P(L)
1 I

)
is an injective smooth O/$m[U0]-module.

There is a natural U0-equivariant isomorphism

I◦wP
0

(
Ind

P(L)
1 I

)
∼→ C∞

(
P(L)wP

0 U0, I
)
,

where C∞
(
P(L)wP

0 U0, I
)

denotes the set of locally constant I-valued functions on

P(L)wP
0 U0 (with the action of U0 by right translation). The isomorphism sends a

function f ∈ I◦
wP

0

(
Ind

P(L)
1 I

)
to F ∈ C∞

(
P(L)wP

0 U0, I
)

given by F (x) := f(x)(1).

Since C∞
(
P(L)wP

0 U0, I
)

is an injective smooth O/$m[U0]-module, we conclude.
For the second part, we first define an exact functor

JwP
0

(π) : Modsm(P(L),O/$m)→ Modsm(M(L)+ n U0,O/$m)

by the formula JwP
0

(π) := IwP
0

(π)/I◦
wP

0
(π). For each π ∈ D+

sm(P(L),O/$m), we

have a distinguished triangle

ordRΓ(U0, I◦wP
0

(π))→ ordRΓ(U0, IwP
0

(π))→ ordRΓ(U0, JwP
0

(π))→ ordRΓ(U0, I◦wP
0

(π))[1].
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It is enough to show that, for any j ∈ Z, we have

ordHj(U0, JwP
0

(π)) = 0.

By direct computation, we see that ũL acts locally nilpotently on JwP
0

(π): it shrinks

the support of a function in IwP
0

(π) towards S◦
wP

0
. We conclude using the same

argument as in [Hau16, Lemma 3.3.1]. �

Lemma 2.3.7. Let wP
0 be the longest element of PWP and let π ∈ D+

sm(P(L),O/$m).
Then there is a natural isomorphism

RΓ(U0, I◦wP
0

(π))
∼→ πw

P
0

in D+
sm(M(L)+,O/$m), where m ∈ M(L)+ acts on πw

P
0 via the action of wP

0m(wP
0 )−1

on π.

Proof. By the first part of Lemma 2.3.6, it is enough to show that there is a natural
isomorphism

(2.3.2) Γ(U0, I◦wP
0

(π))
∼→ πw

P
0

of underived functors. The map sends an U0-invariant function f : P(L)wP
0 U0 → π

to the value f(wP
0 ) ∈ π. This is an isomorphism of O/$m-modules; it remains to

check that (2.3.2) is M(L)+-equivariant, for the Hecke action of M(L)+ on the LHS
and the action twisted by wP

0 on the RHS. In other words, we have to check that,
for any U0-invariant function f : P(L)wP

0 U0 → π and any m ∈ M(L)+, we have the
equality

(2.3.3)
∑

ū∈U0/mU0m−1

f(wP
0 um) = wP

0m(wP
0 )−1f(wP

0 ).

This will hold if and only if the only ū ∈ U0/mU0m−1 that contributes to the LHS
of (2.3.3) is the identity element. We claim that f(wP

0 um) = 0 unless u ∈ mU0m−1.
Assume f(wP

0 um) 6= 0; then wP
0 um ∈ P(L)wP

0 U0. We write wP
0 um = qwP

0 u
′ with

q ∈ P(L) and u′ ∈ U0 and we obtain

u = (wP
0 )−1qwP

0 u
′m−1 = ((wP

0 )−1qm′wP
0 )(mu′m−1),

with m′ := wP
0m
−1(wP

0 )−1 ∈ M(L). But then ((wP
0 )−1qm′wP

0 ) ∈ (wP
0 )−1P(L)wP

0 ∩
U0 = {id} and we deduce u ∈ mU0m−1. �

Let χ : M(L)→ O× be the character defined by the formula

χ(m) =
NmL/Qp detL

(
Ad(m)|Lie U(L)

)−1

|NmL/Qp detL
(
Ad(m)|Lie U(L)

)
|p
.

Lemma 2.3.8. Let π ∈ D+
sm(M(L),O/$m). Then there is a natural isomorphism

ordRΓ
(

U0, Inf
M(L)+nU0

M(L)+ π
)
∼→ O/$m(χ)⊗O/$m π[−rkZpU0]

in D+
sm(M(L)+,O/$m).

Proof. Since U0 acts trivially on π, we have

ordRΓ
(

U0, Inf
M(L)+nU0

M(L)+ π
)
∼→ π ⊗O/$m ordRΓ

(
U0,O/$m

)
.



38 ANA CARAIANI AND JAMES NEWTON

By the proof of [ACC+18, Lemma 5.3.7], the continuous cohomology groups of U0

vanish below the top degree ` := rkZpU0 after applying ordinary parts. It remains
to show that

H`(U0,O/$m) ' O/$m(χ)

as a representation of M(L)+. This follows, just like [Hau16, Prop. 3.1.8], from the
natural isomorphism in [Eme10b, Prop. 3.5.6] and from the explicit description of
the corestriction map in [Eme10b, Prop. 3.5.10]. �

Remark 2.3.9. The functor Iid is the identity on D+
sm(P(L),O/$m) and the functor

I◦id is the natural restriction D+
sm(P(L),O/$m)→ D+

sm(M(L)+nU0,O/$m). Note
also that in this case we have S◦id = Sid, so that we have a natural identification

RΓ(U0, I◦id( ))
∼→ RΓ(U0, Iid( ))

in D+
sm(M(L)+,O/$m). Furthermore, if we start with π ∈ D+

sm(M(L),O/$m), we

can identify Inf
M(L)+nU0

M(L)+ π with the functor I◦id applied to Inf
P(L)
M(L)π.

Corollary 2.3.10. Let π ∈ D+
sm(M(L),O/$m). Then there is a natural isomor-

phism

ordRΓ
(

U0, Iid

(
Inf

P(L)
M(L)π

))
∼→ O/$m(χ)⊗O/$m π[−rkZpU0]

in D+
sm(M(L)+,O/$m).

We now apply our results in the setting of Section 2.2, so we adopt the notation
of that section. We fix a place v̄ ∈ S̄ and a standard parabolic Qv̄ ⊂ Pv̄. We apply

the results of this section with G = G̃O
F

+
v̄

, P = Pv̄, M = GO
F

+
v̄

and U = Uv̄. Set

Kv̄ = Qv̄ ∩ G(F+
v̄ ). Note that ∆Qv̄,+v̄ is a submonoid of G(F+

v̄ )+. The following
proposition summarises the key result of this subsection.

Proposition 2.3.11. Let π ∈ D+
sm(G(F+

v̄ ),O/$m) and let V be a finite free

O/$m-module equipped with a smooth representation of ∆Qv̄,+v̄ with ũṽ,n acting

trivially, which we inflate to an action of ∆̃Qv̄v̄,P = ∆Qv̄,+v̄ n U0
v̄ . Then

ord0R
jΓ
(
Kv̄ n U0

v̄ , Ind
G̃(F+

v̄ )

P (F+
v̄ )
π ⊗ V

)
admits as H(∆Qv̄v̄ ,Kv̄)-module subquotients

RjΓ(Kv̄, π
wP0 ⊗ V) and Rj−rkZpU

0
v̄Γ(Kv̄, π ⊗O/$m(χ)⊗ V).

Proof. By applying the exact functor ord0 to the short exact sequences in Proposi-

tion 2.3.4, we see that ord0R
jΓ
(
Kv̄ n U0

v̄ , Ind
G̃(F+

v̄ )

P (F+
v̄ )
π ⊗ V

)
admits as subquotients

ord0R
jΓ(Kv̄nU0

v̄ , Iw(π)⊗V) for w = wP0 and for w = id. We have an isomorphism
of functors

ord0 ◦RΓ(Kv̄, ) ' RΓ(Kv̄, ) ◦ ord,

as in §2.2.11. By Lemma 2.3.6 and Lemma 2.3.7, we have an isomorphism

ordRΓ(U0
v̄ , IwP0 (π)⊗ V) ' ordRΓ(U0

v̄ , IwP0 (π))⊗ V ' πw
P
0 ⊗ V.

By Corollary 2.3.10, we have an isomorphim

ordRΓ(U0
v̄ , Iid(π)⊗ V) ' ordRΓ(U0

v̄ , Iid(π))⊗ V ' π ⊗O/$m(χ)⊗ V[−rkZpU
0].

�
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We have a corollary which will be applied with ‘dual’ coefficients (cf. §2.2.18).
This can be viewed as a computation of the ordinary part with respect to the
opposite parabolic P applied to a parabolic induction from P .

Corollary 2.3.12. Let π ∈ D+
sm(G(F+

v̄ ),O/$m) and let V be a finite free O/$m-

module equipped with a smooth representation of
(

∆Qv̄,+v̄

)−1

with ũ−1
ṽ,n acting triv-

ially, which we inflate to an action of
(

∆̃Qv̄v̄,P

)−1

. Then

ord∨0 R
jΓ
(
Kv̄ n U

1

v̄, Ind
G̃(F+

v̄ )

P (F+
v̄ )
π ⊗ V

)
admits RjΓ(Kv̄, π ⊗ V) as a H(

(
∆Qv̄v̄

)−1

,Kv̄)-module subquotient.

Proof. We deduce the corollary from Proposition 2.3.11 by twisting. Indeed, mul-
tiplication by ũ−1

ṽ,nw
P
0 induces an isomorphism

RjΓ
(

K n U
1

v̄, Ind
G(L)
P(L)π ⊗ V

)
∼→ RjΓ

(
KwP0 n U0

v̄ , Ind
G(L)
P(L)π ⊗ V

wP0

)
where the action of H(

(
∆Qv̄,+v̄

)−1

,Kv̄) on the left is identified with the action of

H(∆
Qw

P
0

v̄ ,+
v̄ ,Kv̄) on the right by sending [Kv̄ν($v̄)

−1Kv̄] to [K
wP0
v̄ (−wP0 ν)($v̄)K

wP0
v̄ ]

on the right. We recall from the proof of Lemma 2.2.19 that the Q
wP0
v̄ is the

standard parabolic with Levi subgroup Q
wP0
v̄ ∩G(F+

v̄ ). Now Proposition 2.3.11 tells

us that we have a subquotient RjΓ(K
wP0
v̄ , πw

P
0 ⊗VwP0 ), which can be identified with

RjΓ(Kv̄, π ⊗ V) as a H(
(

∆Qv̄v̄

)−1

,Kv̄)-module. �

2.3.13. Parabolic induction and cohomology. We return to the general situation of
§2.3.1, for a split reductive group G defined over (the ring of integers in) a local
field L. In addition, we consider a compact Hausdorff space X, equipped with a
continuous action of the locally profinite group P(L). Set KP := K ∩ P(L). We
assume that X is a free KP-space, in the sense of [NT16, Def. 2.23].

Denote by X ×P G the quotient of X × G(L) by the right action (x, g) · p =
(xp, p−1g) of P(L). Right multiplication by G(L) on itself gives X ×P G a right
action of G(L).

The Iwasawa decomposition G(L) = KP(L) implies that there exists a K-
equivariant homeomorphism

X ×KP
K
∼→ X ×P G.

The LHS is visibly a compact Hausdorff space. Therefore, it makes sense to consider
RΓ (X×P G,O/$m) as an element in D+

sm(G(L),O/$m).

Lemma 2.3.14. We have a natural isomorphism in D+
sm(G(L),O/$m)

(2.3.4) RΓ (X×P G,O/$m)
∼→ Ind

G(L)
P(L) RΓ(X,O/$m).

Proof. First, we explain how to construct a natural map from the LHS of (2.3.4)
to the RHS, then we observe that it is enough to prove the map is an isomorphism
after restriction to D+

sm(K,O/$m), then we prove the latter.



40 ANA CARAIANI AND JAMES NEWTON

Consider the P(L)-equivariant map X → X ×P G given by x 7→ (x, 1). We get
an induced morphism

RΓ(X ×P G,O/$m)→ RΓ(X,O/$m)

in D+
sm(P(L),O/$m), which induces a morphism

RΓ(X ×P G,O/$m)→ Ind
G(L)
P(L) RΓ(X,O/$m)

in D+
sm(G(L),O/$m), by Frobenius reciprocity for smooth representations (also

using that Ind
G(L)
P(L) is an exact functor).

The same morphism can be constructed if we work with KP ⊂ K replacing
P ⊂ G. We now observe that we have a commutative diagram in D+

sm(K,O/$m)

(2.3.5) Res
G(L)
K ◦RΓ (X ×P G,O/$m) //

∼=
��

Res
G(L)
K ◦ Ind

G(L)
P(L) RΓ(X,O/$m)

∼=
��

RΓ(X ×KP
K,O/$m) // IndK

KP
RΓ(X,O/$m)

whose vertical arrows are isomorphisms by the Iwasawa decomposition.
We have a diagram with Cartesian outer square

X ×K

ϕ2
yy

ϕ1

""
X ×KP

K

φ2

%%

X

φ1||

φ
oo

X/KP

.

The map φ is given by x 7→ (x, 1); the top triangle is not commutative, but the
bottom one is. Since X → X/KP is a KP-torsor, the same holds true for X ×K→
X×KP

K. This also implies that X×KP
K→ X/KP is a K-torsor. By [NT16, Lemma

2.24], we have inverse equivalences of categories (ϕ∗2, ϕ
KP
2,∗) between ShK(X ×KP K)

and ShKP×K(X ×K). The analogous statements are true for ϕ1, φ1 and φ2.

The bottom horizontal arrow in (2.3.5) is induced by φ∗. Let O/$m ∼→ I•
be an injective resolution in Sh(X/KP). We claim that φ∗ induces by Frobenius
reciprocity a term-wise K-equivariant isomorphism of complexes

(2.3.6) Γ(X ×KP
K, φ∗2I•)

∼→ IndK
KP

Γ(X,φ∗1I•).

To see the claim, note that φ∗2 = ϕKP
2,∗ϕ

∗
2φ
∗
2 = ϕKP

2,∗ϕ
∗
1φ
∗
1 and we can identify φ∗ with

the restriction to the identity of a function in

Γ
(
X ×KP

K, ϕKP
2,∗ϕ

∗
1(φ∗1I•)

)
∼→ IndK

KP
Γ(X,φ∗1I•).

The map in (2.3.6) is precisely the horizontal map in the bottom row of (2.3.5),
which also implies that the horizontal map in the top row is an isomorphism. �

We will also make use of the following lemma about the interaction between
smooth induction and restriction.
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Lemma 2.3.15. Let π1 ∈ Repsm(KP,O/$m) and π2 ∈ Repsm(K,O/$m) with the
property that π2 takes values in a finite free O/$m-module. There is a natural
isomorphism (

IndK
KP
π1

)
⊗O/$m π2

∼→ IndK
KP

(
π1 ⊗O/$m ResK

KP
π2

)
in Repsm(K,O/$m).

Proof. Since π2 is a finite O/$m-module, there exists a compact open normal
subgroup U ⊂ K that acts trivially on π2. One can define a natural map

Φ :
(

IndK
KP
π1

)
⊗O/$m π2 → IndK

KP

(
π1 ⊗O/$m ResK

KP
π2

)
.

by extending O/$m-linearly from the formula

f ⊗ v 7→ (g 7→ f(g)⊗ π2(g)v).

One can check that Φ lands in IndK
KP

(
π1 ⊗O/$m ResK

KP
π2

)
and is a K-equivariant

homomorphism. To see that Φ does indeed take values in smooth functions, note
that there is a compact open subgroup Uf that stabilises f . Then

f(gu)⊗ π2(gu)v = f(g)⊗ π2(g)v ∀u ∈ Uf ∩ U and g ∈ K,

which shows that each Φ(f ⊗ v) is a smooth function on K.
It remains to show that Φ is an isomorphism. For m ∈ Z≥1, we can find a

decreasing sequence of compact open normal subgroups Um of K with U1 = U
and that form a basis of neighbourhoods of identity in K. It is enough to prove
that Φ induces an isomorphism on the level of Um-invariants for each m. Note
that, for each m, the set of double cosets KP\K/Um is finite, and for any smooth
representation π of KP, we have an isomorphism(

IndK
KP
π
)Um ∼→

⊕
γ∈KP\K/Um

πKP∩γUmγ−1

, f 7→ (f(γ))γ∈KP\K/Um .

Note also that each KP ∩ γUmγ−1 = KP ∩ Um acts trivially on π2. We obtain a
commutative diagram(

IndK
KP
π1

)Um
⊗ π2 ∼=

//

��

⊕
γ∈KP\K/Um(π1)KP∩γUmγ−1 ⊗ π2

��(
IndK

KP

(
π1 ⊗O/$m ResK

KP
π2

))Um
∼=
//
⊕

γ∈KP\K/Um(π1)KP∩γUmγ−1 ⊗ π2

,

where the left vertical map is Φ and the right vertical map is id⊗γ in the component
corresponding to γ. This is visibly an isomorphism.

�

2.3.16. A computation of group cohomology. Keep the notation from the previous
subsection. Inside K = M(OL), consider the congruence subgroups Km := {k ∈
K | k ≡ id (mod $m

L )} indexed by m ∈ Z≥1. The group U0 is equipped with the
adjoint action of K, so that we can view the continuous cohomology RΓ(U0, ) as a
functor D+

sm(K n U0,O/$m)→ D+
sm(K,O/$m).
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Lemma 2.3.17. For any m ∈ Z≥1, there exists M = M(m) ≥ m such that

RΓ(U0,O/$m) '
rkZpU0⊕
i=0

Hi(U0,O/$m)[−i].

as an object in D+
sm(KM ,O/$m). Moreover, each Hi(U0,O/$m) is non-zero and

equipped with the trivial action of KM .

Proof. By [Eme10b, Prop. 2.1.11], an injective smooth representation of K n U0

is also injective as a representation of U0. Therefore, if we apply the forgetful
functor to RΓ(U0,O/$m) in order to view it as an object of D+(O/$m), we obtain
the continuous group cohomology of U0 with coefficients in O/$m. If we forget
the K-action, U0 is a free Zp-module. Therefore, we can compute its continuous
group cohomology via a Koszul complex, using [BMS18, Lemma 7.3, part (ii)], for
example. We see that all the differentials in the Koszul complex vanish, so we
obtain

RΓ(U0,O/$m) '
⊕
i

Hi(U0,O/$m)[−i].

as an object in Dperf(O/$m), the full subcategory of D+(O/$m) consisting of per-
fect complexes. Moreover, we can identify each Hi(U0,O/$m) with ∧iZpU0, which

shows that the cohomology groups are non-zero precisely in the range [0, rkZpU0].
Let Dperf(KM ,O/$m) be the full subcategory of D+

sm(KM ,O/$m) whose es-
sential image under the forgetful functor is Dperf(O/$m). It is enough to show
that, for every object A of Dperf(K,O/$m), there exists M ≥ m such that the
restriction AM of A to Dperf(KM ,O/$m) is isomorphic to the constant object BM
of Dperf(KM ,O/$m) corresponding to the image B of A in Dperf(O/$m). In turn,
this would follow from showing that the natural map

(2.3.7) colimM

(
HomDperf (KM ,O/$m)(BM , AM )

)
→ HomDperf (O/$m)(B,A)

is a bijection. Indeed, on the RHS we have the identity morphism, which must
correspond to a morphism on the LHS for some M ≥ m. We can check that
this morphism in Dperf(KM ,O/$m) is an isomorphism after applying the forgetful
functor to Dperf(O/$m).

The objects of Dperf(O/$m) are precisely the dualizable objects of D+(O/$m)
and the dual is given by applying HomO/$m( ,O/$m). We have the adjunction
(cf. [Sta13, Lemma 07VI])

HomDperf (O/$m)(B,A) = HomDperf (O/$m)(O/$m, B∨ ⊗L A) = H0(B∨ ⊗L A).

Now, we have an adjunction

HomDperf (KM ,O/$m) (BM , AM ) = HomDperf (O/$m) (B,RΓ(KM , AM ))

and we have identified the right hand side with H0(B∨ ⊗L RΓ(KM , AM )). Fix-
ing a strictly perfect complex representing B, and equipping it with the trivial
KM action to get a complex representing BM , we identify B∨ ⊗L RΓ(KM , AM ) =
RΓ(KM , B

∨
M ⊗L AM ).

Therefore, the bijectivity in (2.3.7) reduces to the statement that colimMH
0(KM , B

∨
M⊗L

AM ) (degree 0 hypercohomology) is equal to the degree 0 cohomology of the un-
derlying complex of B∨⊗LA. This follows from the fact that B∨⊗LA is a complex
of smooth representations of K. �

https://stacks.math.columbia.edu/tag/07VI
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We will apply the preceding lemma when proving the crucial Proposition 4.2.6.
In that proof, we will also need the following consequence of the Artin–Rees lemma:

Lemma 2.3.18. Let N be a finite Zp-module and M be a subquotient of N . For
any positive integer m ∈ Z≥1, there exists an integer m′ ≥ m such that M/pmM is

a subquotient of N/pm
′
N .

Proof. If M is a quotient of N , then we may take m′ = m. Therefore, it suffices
to consider the case when M ↪→ N is a subobject. By the Artin–Rees lemma,
cf. [AM16, Cor. 10.10], there exists k � 0 such that

pm+kN ∩M = pm(pkN ∩M) ⊆ pmM.

Set m′ := m + k. We then have an inclusion M/(pm
′
N ∩M) ↪→ N/pm

′
N and a

surjection M/(pm
′
N ∩M) �M/pmM . �

3. Determinants, P -ordinary representations and deformation rings.

3.1. The P -ordinary condition on the Galois side. We place ourselves in

the setting of §2.1.11, so we have a CM field F , unitary group G̃, etc. We fix a
standard parabolic Qv̄ ⊂ PF+

v̄
. After fixing a place v|v̄, this corresponds under ιv to

a standard parabolic Pn1,...,nt ⊂ GL2n, with (n1, . . . , nt) a partition of 2n refining
(n, n). Recall that Qv̄ = Mv̄ n Nv̄ is a Levi decomposition for Qv̄. We use the
notation of §2.1.13, so we have a parahoric subgroup Qv̄ associated with Qv̄.

For 1 ≤ k ≤ t, we define a cocharacter νk ∈ XQv̄ by

νk($v̄) := ι−1
v diag($v, . . . , $v, 1, . . . , 1) ∈ ∆̃Qv̄v̄ ,

where there are n1 + · · · + nk entries equal to $, and denote the Hecke operator

[Qv̄νk($v̄)Qv̄] ∈ H(∆̃Qv̄v̄ ,Qv̄) by Ũkv . It follows from Lemma 2.1.15 that

H(∆̃Qv̄v̄ ,Qv̄) ∼= Z[Ũ1
v , . . . , Ũ

t−1
v , (Ũ tv)

±1].

If λ̃ ∈ (Z2n
+ )Hom(F+,Qp) is a dominant weight for G̃ and σ is a smooth Qp-representation

of G̃(F+
v̄ ), we define the λ̃-rescaled action ofH(∆̃Qv̄v̄ ,Qv̄) on σQv̄ to be given by mul-

tiplying the usual double coset operator action of [Qv̄gQv̄] by α̃Qv̄v̄ (g)−1 (cf. Lemma
2.1.17).

Definition 3.1.1. Let π be a cuspidal automorphic representation of G̃(AF+) and

fix an isomorphism ι : Qp
∼→ C. Let λ̃ ∈ (Z2n

+ )Hom(F+,Qp) be a dominant weight for

G̃. We say that π is ι-Qv̄-ordinary of weight λ̃ if π is ιV ∨
λ̃

-cohomological and the

λ̃-rescaled Hecke operators {Ũkv : 1 ≤ k ≤ t} have a simultaneous eigenvector with
p-adic unit eigenvalues in ι−1πQv̄ .

If π is ι-Qv̄-ordinary of weight λ̃, we define the Qv̄-ordinary subspace of ι−1πQv̄v̄
to be the largest H(∆̃Qv̄v̄ ,Qv̄)-submodule on which the rescaled operators Ũkv have
only p-adic unit eigenvalues for 1 ≤ k ≤ t.

The goal of this section is to establish the following result, generalising [Ger19,
Corollary 2.33], [Tho15, Theorem 2.4].

Theorem 3.1.2. Suppose that π is a cuspidal automorphic representation of G̃(AF+),

ι is an isomorphism ι : Qp
∼→ C and v̄ is a p-adic place of F+ such that π is ι-Qv̄-

ordinary of weight λ̃.
Then we have the following conclusions:
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(1) The associated p-adic Galois representation rι(π) : GF → GL2n(Qp) satis-
fies

(3.1.1) rι(π)|GFv '


r1(π) ∗ · · · ∗

0 r2(π) · · · ∗

0 0
. . . ∗

0 0 · · · rt(π)

 ,

where rj(π) : GFv → GLnj (Qp) is a crystalline representation for each
j = 1, 2, . . . , t.

(2) The Qv̄-ordinary subspace of ι−1πQv̄v̄ is one-dimensional.
(3) For each embedding τ : Fv ↪→ Qp, the τ -Hodge–Tate weights of the rj(π)

are given by decomposing λ̃τ,2n < λ̃τ,2n−1 +1 < · · · < λ̃τ,1 +2n−1 according
to the partition (n1, . . . , nt).

(4) The determinants det rj(π) are given by the formulas:

•
∏k
j=1 det rj(π)(ArtFv (u)) =

∏n1+···+nk
i=1

∏
τ :Fv↪→Qp τ(u)−λ̃τ,2n−i+1−i+1

for u ∈ O×Fv .

•
∏k
j=1 det rj(π)(ArtFv ($v)) is equal to ε

∑n1+···+nk
i=1 (1−i)

p (ArtFv ($v)) times

the eigenvalue of Ũkv on the Qv̄-ordinary subspace.

Before giving the proof, we first establish a preliminary result.

Lemma 3.1.3. Assume that r : GFv → GLm(Qp) is a semi-stable Galois rep-
resentation. Let v1 ≤ v2 ≤ · · · ≤ vm denote the valuations of the eigenvalues
of the geometric Frobenius acting on WD(r), and, for each τ : F ↪→ Qp, let
hτ,1 < hτ,2 < · · · < hτ,m denote the τ -Hodge–Tate weights of r. Then

(3.1.2)

j∑
i=1

vi ≥
1

ev

j∑
i=1

∑
τ

hτ,i

for any 0 ≤ j ≤ m, where ev is the ramification degree of F/Qp.
Furthermore, if we have an equality

j∑
i=1

vσ(i) =
1

ev

j∑
i=1

∑
τ

hτ,i

for some 1 ≤ j ≤ m − 1 and permutation σ ∈ Sn, then r '
(
r1 ∗
0 r2

)
with

r1 : GFv → GLj(Qp) and r2 : GFv → GLm−j(Qp). The representation r1 has
τ -Hodge–Tate weights equal to hτ,1 < · · · < hτ,j for each τ , the eigenvalues of the
geometric Frobenius acting on WD(r1) have valuations v1 ≤ v2 ≤ · · · ≤ vj and we
have vj < vj+1.

Proof. The first part follows from [HKV20, Lemma 6.4.1]. For the second part, if
equality holds for some permutation σ, then by the first part and by the inequalities
on the vi, equality must also hold for the identity permutation. Furthermore, we

have
∑j
i=1 vi =

∑j
i=1 vσ(i). If {σ(1), . . . , σ(j)} 6= {1, . . . , j}, then σ(i) ≥ j + 1 for

some i ≤ j, and so we must have vj = vj+1. We show that vj = vj+1 is impossible.
As in loc. cit., using the inequality in (3.1.2) for j+ 1 and j−1, we deduce that the
inequality for j−1 is actually an equality. Moreover, this implies that hτ,j = hτ,j+1



MODULARITY OF ELLIPTIC CURVES OVER IMAGINARY QUADRATIC FIELDS 45

for all τ , which is a contradiction. We deduce that {σ(1), . . . , σ(j)} = {1, . . . , j}
and that vj < vj+1. The last paragraph in the proof of [HKV20, Lemma 6.4.1]
gives a j-dimensional sub-GFv -representation r1 of r with τ -Hodge–Tate weights
equal to hτ,1 < · · · < hτ,j for each τ and such that the eigenvalues of the geometric
Frobenius acting on WD(r1) are v1 ≤ v2 ≤ · · · ≤ vj . �

Proof of Theorem 3.1.2. We use ιv to identify G̃(F+
v̄ ) with GL2n(Fv). Since Qv̄

contains the Iwahori subgroup of G̃(F+
v̄ ), ι−1πv̄ is a subquotient of a normalised

induction σ = n− Ind
GL2n(Fv)
B2n(Fv) (χ1 ⊗ χ2 ⊗ · · · ⊗ χ2n) with each χi : F×v → Q×p an

unramified character.
We claim that, up to reordering the χi, for each 1 ≤ k ≤ t the p-adic numbers∏n1+···nk
i=1 χi($v) and δB2n

(νk($v̄))
1/2αQv̄

λ̃
(νk($v̄)) differ by a p-adic unit.

By the proof of [Tho12, Prop. 5.4], we have an isomorphism σQv̄ ∼= (JQv̄ (σ))Qv̄∩Mv̄(F+
v̄ )

(normalized Jacquet module) with the λ̃-rescaled action of the Hecke operator Ũkv on

the left given by the action of αQv̄
λ̃

(νk($v̄))
−1δ
−1/2
Qv̄

(νk($v̄))νk($v̄) on the right. We

can further compose with the injection (JQv̄ (σ))Qv̄∩Mv̄(F+
v̄ ) ↪→ (JB2n

(σ))Qv̄∩T2n(Fv),

with Ũkv acting by αQv̄
λ̃

(νk($v̄))
−1δ
−1/2
B2n

(νk($v̄))νk($v̄) on the target. Note that

since νk($v̄) is central in Mv̄, we have δB2n
(νk($v̄)) = δQv̄ (νk($v̄)). We have

JB2n
(σ)ss =

⊕
w∈W χw(1) ⊗ · · · ⊗ χw(2n). Choosing w so that the unit-eigenvalue

eigenvector for the Ũkv contributes to the summand indexed by w gives the desired
reordering of the χi.

By Theorem 2.1.19, since λ̃ is dominant, the τ -Hodge–Tate weights of rι(π)|GFv
are equal to λ̃τ,2n < λ̃τ,2n−1 + 1 < · · · < λ̃τ,1 + 2n − 1. In addition, by making
part (3) of Theorem 2.1.19 explicit at v, the eigenvalues of the geometric Frobenius

acting on WD(rι(π)|GFv ) are q
2n−1

2
v χi($v). Our claim about the p-adic valuations

of the χi($v) implies that the p-adic numbers

n1+···+nk∏
i=1

χi($v) and

q
−〈νk,ρB2n

〉
v

∏
τ :Fv↪→Qp

τ($v)
〈νk,wG̃0 λτ 〉

differ by a p-adic unit. The latter term has the same p-adic valuation as

n1+···+nk∏
i=1

q
1−2n

2
v

∏
τ :Fv↪→Qp

τ($v)
λτ,2n−i+1+i−1.

In turn, this implies that the inequality in (3.1.2) is an equality for j = n1 + · · ·+nk
for each k. We conclude that rι(π)|GFv has the desired shape by Lemma 3.1.3.

To show that the Qv̄-ordinary subspace of ι−1πQv̄v̄ is one-dimensional, it suffices

to prove the analogous statement for σQv̄ ∼= (JQv̄ (σ))Qv̄∩Mv̄(F+
v̄ ). By the geometric

lemma [BZ77, Lemma 2.12], we have

(3.1.3) JQv̄ (σ)ss =
⊕

w∈[W/WQv̄ ]

(
n− IndMv̄

B2n∩Mv̄
χw(1) ⊗ · · · ⊗ χw(2n)

)
.

The notation w ∈ [W/WQv̄ ] means that we take the minimal length representative
w ∈W for each coset. Explicitly, this is given by permutations w ∈ S2n which are
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order-preserving on each of the subsets {1, . . . , n1}, {n1 +1, . . . , n1 +n2}, . . . , {n1 +
· · · + nt−1 + 1, . . . , 2n}. Each summand in (3.1.3) has a one-dimensional space of
invariants under the maximal compact subgroup Qv̄ ∩Mv̄(F

+
v̄ ). On the invariants

of the summand indexed by w, for each 1 ≤ k ≤ t the Hecke operator Ũkv acts by
the scalar

αk,w := αQv̄
λ̃

(νk($v̄))
−1δ
−1/2
B2n

(νk($v̄))

n1+···+nk∏
i=1

χw(i)($v).

We know that αk,1 is a p-adic unit for all k. The inequality in the conclusion of
Lemma 3.1.3 shows that the vp(α1,w) > 0 if w does not preserve {1, . . . , n1}. For
a fixed w, inducting on k and repeating this argument shows that vp(αk,w) = 0 for

all k if and only if w = 1. This shows that the Qv̄-ordinary subspace of ι−1πQv̄v̄ is
one-dimensional.

The statements about the Hodge–Tate weights and determinant of the ri(π)
follow from the Lemma and the identifications above.

It remains to see that each ri(π) is crystalline. We write the argument for
r1(π), it is similar for the other factors. Let wi = vp(χi($v)) for i = 1, . . . , 2n.

The eigenvalues of a geometric Frobenius on WD(r1(π)) are q
2n−1

2
v χi($v) for i =

1, . . . , n1. Lemma 3.1.3 implies that, up to reordering the χi for i = 1, . . . , n1, we
may assume that w1 ≤ w2 · · · ≤ wn1

< wn1+1. If r1(π) is not crystalline, then
by the Bernstein–Zelevinsky classification there exists some i ∈ 2, . . . n1 such that
χi−1 = χi · | | and πv̄ is a subquotient of the normalised parabolic induction

σ′ = n− Ind
GL2n(Fv)
Q′(Fv) (χ1 ⊗ · · · ⊗ χi−2 ⊗ Sp2(χi)⊗ χi+1 ⊗ · · · ⊗ χ2n),

for an appropriate standard parabolic subgroup Q′ = M ′N ′ ⊂ Qv̄, where Sp2(χi)
denotes a twist of the Steinberg representation. We let σ′0 = χ1 ⊗ · · · ⊗ χi−2 ⊗
Sp2(χi)⊗ χi+1 ⊗ · · · ⊗ χ2n.

Applying the geometric lemma again, we have

JQv̄ (σ′)ss =
⊕

w∈[WQ′\W/WQv̄ ]

(
n− IndMv̄

w−1Q′w∩Mv̄

(
JM ′∩wQv̄w−1σ′0

)w)ss
As in the proof that the Qv̄-ordinary subspace is one-dimensional, it follows from

considering valuations that theQv̄-ordinary subspace of ι−1πQv̄v̄ ∼= (JQv̄ (σ′))Qv̄∩Mv̄(F+
v̄ )

can only contribute to the w = 1 term in this decomposition. We deduce that(
n− IndMv̄

Q′∩Mv̄
(σ′0)

)Qv̄∩Mv̄(F+
v̄ )

6= 0,

but this is impossible because Qv̄ ∩ Mv̄(F
+
v̄ ) is maximal compact and σ′0 has a

Steinberg factor. �

3.2. Determinants. In this section we prove a key proposition which will be com-
bined with Theorem 3.1.2 to pass information about local–global compatibility for

Galois representations with coefficients in p-torsion free Hecke algebras for G̃ to
Galois representations with coefficients in torsion Hecke algebras for G. The initial
set-up is as follows: recall our coefficient field E ⊃ O � k and assume we have an
absolutely irreducible continuous representation

ρm : GF → GLn(k)
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together with a continuous lift

ρm : GF → GLn(A)

with coefficients in A ∈ CNLO.
We moreover have a finite flat O-algebra Ã ∈ CNLO with Ã[1/p] =

∏r
i=1Ki a

product of fields, equipped with a surjective map Ã� A. Extending E if necessary,
we can assume that every Ki has residue field k (indeed, we can also assume that
each Ki is equal to E, but we won’t need to do this). We suppose we have a
continuous representation

ρ̃m =
∏

ρ̃i,m : GF →
∏

GL2n(Ki) = GL2n(Ã[1/p])

such that the associated determinant of GF (in the sense of [Che14]) arises from

a continuous Ã-valued determinant Dρ̃m : Ã[GF ] → Ã. This is equivalent to the

characteristic polynomials of ρ̃m(g) having coefficients in Ã for all g ∈ GF .
We recall from [Che14] the important notion of a Cayley–Hamilton determinant:

a determinant D : R → A is Cayley–Hamilton if the characteristic polynomial
χ(r, t) = D(t− r) ∈ A[t] vanishes when evaluated at t = r for all r ∈ R.

The determinant Dρ̃m factors through a Cayley–Hamilton determinant (which

we also denote by Dρ̃m) of B̃ := ρ̃m(Ã[GF ]) ⊂ M2n(Ã[1/p]). Since each element

of B̃ has characteristic polynomial with coefficients in Ã, B̃ is integral over Ã. We
also assume that we have a factorisation of A-valued determinants of A[GF ]

Dρ̃m ⊗Ã A = DρmDρ∨,cm (1−2n).

Fix a place v|p of F . Extending E if necessary, we may assume that every ir-
reducible constituent of the local representation ρm|GFv is absolutely irreducible.
We assume that, for each i, we have an n-dimensional GFv -sub-representation
(ρ̃0
i,m, V

0
i ) ⊂ (ρ̃i,m,K

2n
i ) with quotient (ρ̃1

i,m, V
1
i ), Finally, we assume that:

(1) the isomorphism classes of the irreducible constituents of ρm|GFv are disjoint
from those of ρ∨,cm (1− 2n)|GFv ;

(2) for all i the isomorphism classes of the irreducible constituents of the resid-

ual representation (ρ̃0
i,m) coincide with those of ρm|GFv .

As in the proof of [Che14, Thm. 2.22], we are going to use a basic fact about
idempotents, cf. [Bou98, Chapter III, §4, Exercise 5 (a)].

Lemma 3.2.1. Let S be a Henselian local ring, R a (not necessarily commutative)
S-algebra which is integral over S. Let I be a two-sided ideal of R. Every idempotent
in R/I lifts to an idempotent in R.

Proof. The statement can be reduced to the case of a finite S-algebra R generated
by one element, in particular with R commutative (take the subalgebra of R gen-
erated by an arbitrary lift of the idempotent in R/I). In this case the statement is
clear, since R is then a product of finitely many Henselian local rings. �

The following lemma constructs an element ẽ ∈ M2n(Ã[1/p]) which is an idem-

potent projection onto
∏
i V

0
i , lies in ρ̃m(Ã[GFv ]) and moroever cuts out the first

factor in the product decomposition Dρ̃m ⊗Ã k = DρmDρ∨,cm (1−2n) of residual de-
terminants. Roughly speaking, this is possible because our assumptions on the
irreducible constituents of ρm|GFv mean the global factors Dρm , Dρ∨,cm (1−2n) can be
distinguished locally at v.
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Lemma 3.2.2. (1) The natural map k[GF ]
ρm×ρ

∨,c
m (1−2n)−−−−−−−−−−→ Mn(k) × Mn(k)

induces an isomorphism ι : k[GF ]/ ker(Dρ̃m ⊗Ã k) ∼= Mn(k)×Mn(k).

(2) The idempotent e = ι−1(1Mn(k), 0) is contained in the image of k[GFv ].

(3) There is a lift ẽ ∈ B̃ of e which is in the image B̃v ⊂ B̃ of Ã[GFv ]. (Note

that Dρ̃m⊗Ãk factors through B̃⊗Ãk, so k[GF ]/ ker(Dρ̃m⊗Ãk) is a quotient

of B̃.)
(4) Choose ẽ as in the previous part. For each i ∈ {1, . . . , r} let πi denote the

projection Ã[1/p]2n → V 1
i . Thinking of ẽ as an element of End(Ã[1/p]2n),

we have πi ◦ ẽ = 0 and the image of ẽ in End(V 0
i ) is the identity. In other

words, ẽ is an idempotent projection onto
∏
i V

0
i .

Proof. The first claim follows from our assumption that ρm and ρ∨,cm (1 − 2n) are
distinct and absolutely irreducible, by [Che14, Thm. 2.16].

For the second claim we consider the subalgebraB = ι(k[GFv ]) ofMn(k)×Mn(k).
The semisimple quotient B/Rad(B) contains the idempotent ev which acts as the
identity on each irreducible constituent of ρm|GFv and as zero on each irreducible
constituent of ρ∨,cm (1 − 2n)|GFv ; here we are using our assumption that these two
collections of irreducible constituents are disjoint. Since Rad(B) is nilpotent, we
can lift ev to an idempotent ev ∈ B. By considering the composition series of
ρm|GFv , we see that ev maps to an idempotent unit (i.e. the identity) under the
first projection to Mn(k). Considering the composition series of ρ∨,cm (1 − 2n), ev
maps to a nilpotent idempotent (i.e. zero) under the second projection, so we have
ev = e.

For the third claim, we know that B̃v is integral over Ã (since it is a subalgebra

of B̃). We apply Prop. 3.2.1 with S = Ã, which is Henselian as it is a local ring and

finite over O, and R = B̃v. We deduce that the idempotent e lifts to an idempotent

ẽ in B̃v.
Now we come to the fourth claim. Fix an index i. We choose a GF -stable

OKi-lattice T ⊂ K2n
i . We have a short exact sequence

0→ V 0
i ∩ T → T → πi(T )→ 0

of OKi [GFv ]-modules (in particular the submodule V 0
i ∩ T is stable under ẽ). The

image of ẽ in Endk(πi(T ) ⊗OKi k) is equal to zero, since ẽ lifts the idempotent
which acts as zero on each irreducible constituent of the GFv representation on
πi(T ) ⊗OKi k (by assumption these coincide with the irreducible constituents of

ρ∨,cm (1 − 2n)|GFv ). We deduce that the image of ẽ in EndOKi (πi(T )) is equal to

zero, since it is an idempotent with image in $Kiπi(T ). This shows that πi ◦ ẽ = 0,
as claimed. Similarly, the image of ẽ in Endk((V 0

i ∩ T ) ⊗OKi k) is an idempotent

isomorphism, hence the identity, and so the image of ẽ in EndOKi (V
0
i ∩ T ) itself is

an idempotent isomorphism, hence equal to the identity. �

In the preceding lemma, we constructed an idempotent ẽ, compatible with both
the local ‘P -ordinary’ decomposition and the residual global decomposition Dρ̃m⊗Ã
k = DρmDρ∨,cm (1−2n). Following [BC09, Theorem 1.4.4] (and its generalization

[Che14, Theorem 2.22]), we can now use the idempotents e1 := ẽ, e2 := 1−ẽ to equip

B̃ with a generalized matrix algebra structure compatible with the determinant
Dρ̃m . We now explain in detail what this means (see also [ANT20, §2]). By [Che14,
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Lem. 2.4], we have determinants of dimension n

Dρ̃m,i : eiB̃ei → Ã

x 7→ Dρ̃m(x+ 1− ei)

for i = 1, 2, with (Dρ̃m,1 ⊗Ã k)(e1xe1) = Dρm(x) and (Dρ̃m,2 ⊗Ã k)(e2xe2) =

Dρ∨,cm (1−2n)(x). The eiB̃ei are equipped with Ã-algebra isomorphisms

(3.2.1) ψi : eiB̃ei ∼= Mn(Ã)

with det ◦ψi = Dρ̃m,i. Moreover, the map (ψ1, ψ2) : e1B̃e1 ⊕ e2B̃e2 → Mn(Ã) ×
Mn(Ã) lifts ι : k[GF ]/ ker(Dρ̃m ⊗Ã k) ∼= Mn(k)×Mn(k).

Define idempotents Ei ∈ eiB̃ei by asking for ψi(Ei) to be the matrix with a
one in the top left entry and zeroes elsewhere. We can now define A-submodules

Ai,j := EiB̃Ej ⊂ B̃. For each 1 ≤ i, j, k ≤ 2 we write Ai,jAj,k for the Ã-module
generated by products xy for x ∈ Ai,j , y ∈ Aj,k. It is a submodule of Ai,k. The ψi
induce isomorphisms Ai,i ∼= Ã, so we have a multiplication Ai,j⊗ÃAj,i → Ã and we

identify Ai,jAj,i with an ideal of Ã. If i 6= j, then eiB̃ejB̃ei maps to ker(Dρ̃m⊗Ãk),
and therefore Ai,jAj,i ⊂ mÃ.

Putting everything together gives us isomorphisms

B̃
∼→

(
e1B̃e1 e1B̃e2

e2B̃e1 e2B̃e2

)
∼→

(
Mn(Ã) Mn(A1,2)

Mn(A2,1) Mn(Ã)

)
with multiplication of the last matrix algebra given by using matrix multiplication

and the mapsAi,j⊗ÃAj,i → Ã. The reducibility of the determinant Dρ̃m is reflected
in the GMA structure. More precisely, we apply [ANT20, Proposition 2.5] in our
setting (a mild generalization of [BC09, Proposition 1.5.1]) to deduce:

Proposition 3.2.3. An ideal J ⊂ Ã contains A1,2A2,1 if and only if there are

determinants D1, D2 : B̃ ⊗Ã Ã/J → Ã/J such that

Dρ̃m ⊗Ã Ã/J = D1D2,

D1 ⊗Ã/J k = Dρm ,

and D2 ⊗Ã/J k = Dρ∨,cm (1−2n).

If this property holds, D1 and D2 are uniquely determined and satisfy ker(Dρ̃m ⊗Ã
Ã/J) ⊂ ker(Di) for i = 1, 2.

Proof. This follows immediately from [ANT20, Proposition 2.5]. Note that the
property ‘(COM)’ in [BC09, Lemma 1.3.5] (which follows from the fact that the
trace of a determinant satisfies the identity Tr(xy) = Tr(yx)) means that the ideals
A1,2A2,1 and A2,1A1,2 are equal. �

We can now state and prove the key proposition of this section, where we combine
the GMA structure defined above with the fact that our idempotent ẽ was chosen
to have good local properties at v.

Proposition 3.2.4. Choose an idempotent ẽ ∈ B̃v as in the third part of Lemma
3.2.2.
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(1) The map

A[GF ]→ ẽB̃ẽ⊗Ã A
x 7→ ẽxẽ⊗ 1

is a homomorphism and it induces the determinant Dρm when we compose

with ẽB̃ẽ ⊗Ã A
ψ1⊗id−−−−→ Mn(A) and the usual determinant (see (3.2.1) for

ψ1).
(2) The map

Ã[GFv ]→ ẽB̃ẽ

x 7→ ẽxẽ

is also a homomorphism and it induces the representation
∏r
i=1 ρ̃

0
i,m when

we compose with the natural inclusion ẽB̃ẽ ⊂ EndÃ[1/p](
∏
i V

0
i ) (see the

final part of Lemma 3.2.2 for why we have this inclusion).

(3) There is an Ã-valued lift of the representation ρm|GFv which becomes iso-

morphic to
∏r
i=1 ρ̃

0
i,m when we invert p.

Proof. For the first part, we use Proposition 3.2.3. Since the determinant Dρ̃m ⊗Ã
A = DρmDρ∨,cm (1−2n) is reducible, this tells us that the kernel J of Ã→ A contains
the reducibility ideal A1,2A2,1. It follows that the map

A[GF ]→ ẽB̃ẽ⊗Ã A
x 7→ ẽxẽ⊗ 1

is a homomorphism, and the determinant induced by Dρ̃m,1 ⊗Ã A is equal to Dρm

by the uniqueness part of Proposition 3.2.3.
For the second part, we can check that we have a homomorphism in EndÃ[1/p](

∏
i V

0
i ),

where it follows from the fact that
∏
i V

0
i is GFv -stable. The identification of the

representation with
∏r
i=1 ρ̃

0
i,m is now clear.

For the third part, since ρm is absolutely irreducible as a GF -representation,
it follows from Skolem–Noether (see e.g. [Mil80, Proposition IV.1.4]) that, after

conjugating ψ1 by an element of GLn(Ã), we can assume that the representation
A[GF ] → Mn(A) given by the first part is equal to ρm. By the second part, ψ1

also induces a local representation Ã[GFv ]→ Mn(Ã) which clearly lifts ρm|GFv . It
also follows from the second part that after inverting p this representation becomes
isomorphic to

∏r
i=1 ρ̃

0
i,m. �

3.3. Local deformation rings. In this section we fix a place v ∈ Sp in F and a
residual local Galois representation

ρv : GFv → GLn(k).

Definition 3.3.1. Let B be a finite E-algebra, and let λv = (λτ,1 ≥ · · · ≥
λτ,n)τ∈Hom(Fv,E) be a dominant weight for (ResFv/Qp GLn)E.
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(1) A continuous representation ρ : GFv → GLn(B) is semistable-ordinary of
weight λv if it is conjugate to an upper triangular representation

χ1 ∗ · · · ∗
0 χ2 · · · ∗

0 0
. . . ∗

0 0 · · · χn


where for each 1 ≤ j ≤ n and σ ∈ IFv we have

χj(σ) =
∏

τ∈Hom(Fv,E)

τ(Art−1
Fv

(σ))−λτ,n+1−j−(j−1)

(cf. [Ger19, Definition 3.8].)
(2) We define a p-adic Hodge type (in the sense of [Kis08, §2.6]) vλv associated

to λv as in [Ger19, §3.3]. This is an n-dimensional E-vector space DE with
a decreasing filtration on DE⊗QpFv by E⊗QpFv-submodules. More precisely
DE ⊗Qp Fv is isomorphic as a filtered E ⊗Qp Fv-module to DdR(ρ) where
ρ : GFv → GLn(E) is a de Rham representation with labelled Hodge–Tate
weights (λτ,1 + n− 1 > λτ,2 + n− 2 > · · · > λτ,n)τ∈Hom(Fv,E).

(3) A semistable continuous representation ρ : GFv → GLn(B) has p-adic
Hodge type vλv if for each i there is an isomorphism of B ⊗Qp Fv-modules

gri(ρ⊗Qp BdR)GFv ∼= B ⊗E (griDE ⊗Qp Fv).

We recall ([Ger19, Lemma 3.9]) that a semistable-ordinary representation of
weight λv is semistable with p-adic Hodge type vλv .

Lemma 3.3.2. Let B be a finite local E-algebra and suppose ρB : GFv → GLn(B)
is semistable of Hodge type vλv with ρ := ρB ⊗B (B/mB) semistable-ordinary of
weight λv. Then ρB is semistable-ordinary of weight λv.

Proof. Extending E if necessary, we assume B has residue field E. Let v1 ≤ v2 ≤
· · · ≤ vn denote the valuations of the eigenvalues of geometric Frobenius acting
on WD(ρ) (with algebraic multiplicities). It follows from the proof of [HKV20,
Lemma 6.4.1] that in fact this sequence of slopes is strictly increasing and we have
an equality

(3.3.1) vi =
1

ev

∑
τ

(λτ,n+1−i + i− 1)

for each 1 ≤ i ≤ n. The ordinary filtration on ρ corresponds to a filtration F• of
Dst(ρ) by admissible filtered (φ,N)-modules which are free over Fv,0 ⊗Qp E. For

i = 1, . . . , n, F i ⊂ Dst(ρ) is the E-vector subspace spanned by the generalized
eigenspaces of φfv with eigenvalues of valuation ≤ vi. The (admissible) filtered
(φ,N)-module Dst(ρB) is a successive extension of copies of Dst(ρ). We define
F iB to be the B-submodule spanned by the generalized eigenspaces of φfv with
eigenvalues of valuation ≤ vi. This defines a filtration of Dst(ρB) by free Fv,0⊗QpB-
submodules, stable under the actions of φ and N . Weak admissibility of Dst(ρB)
and the equalities (3.3.1) imply that each F iB is weakly admissible and F iB/F

i+1
B =

Dst(χi,B) for a crystalline character χi,B : GFv → E× with labelled Hodge–Tate
weights (λτ,n+1−i + i− 1)τ∈Hom(Fv,E). �
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We consider the lifting ring R�
ρv

with the universal lift ρuniv
v : GFv → GLn(R�

ρv
),

and recall some results of Bellovin, Geraghty, Hartl–Hellmann and Kisin:

Theorem 3.3.3. Let λv = (λτ,1 ≥ · · · ≥ λτ,n)τ∈Hom(Fv,E) be a dominant weight
for (ResFv/Qp GLn)E.

(1) There is a unique O-flat quotient Rst,λv
ρv

of R�
ρv

with the following property:

• If B is a finite E-algebra, an O-algebra map ζ : R�
ρv
→ B factors

through Rst,λv
ρv

if and only ρuniv
v ⊗Rst,λv

ρv
,ζ B is semistable with p-adic

Hodge type vλv .

(2) Rst,λv
ρv

is reduced.

(3) There is a unique O-flat quotient Rcris,λv
ρv

of R�
ρv

with the following property:

• If B is a finite E-algebra, an O-algebra map ζ : R�
ρv
→ B factors

through Rcris,λv
ρv

if and only ρuniv
v ⊗Rst,λv

ρv
,ζ B is crystalline with p-adic

Hodge type vλv .

(4) Rcris,λv
ρv

[ 1
p ] is regular (in particular, Rcris,λv

ρv
is reduced).

(5) There is a unique O-flat quotient R4,λvρv
of R�

ρv
with the following property:

• If B is a finite E-algebra, an O-algebra map ζ : R�
ρv
→ B factors

through R4,λvρv
if and only ρuniv

v ⊗Rst,λv
ρv

,ζ B is semistable-ordinary of

weight λv.

(6) Spec(R4,λvρv
[ 1
p ]) is an open and closed subspace of Spec(Rst,λv

ρv
)[ 1
p ]. In par-

ticular, R4,λvρv
is reduced.

Proof. The first and third parts are [Kis08, Theorem 2.7.6, Corollary 2.7.7]. The
fourth part is a consequence of [Kis08, Theorem 3.3.8]. The second part is a conse-
quence of (a very special case of) [BG19, Theorem 3.3.3] (see also [Bel16, HH20]).
The fifth part is [Ger19, Lemma 3.10]. The sixth part follows from Lemma 3.3.2. �

Remark 3.3.4. We have emphasised the reducedness of our local deformation rings
because in some parts of the literature the maximal reduced quotients of Kisin’s
deformation rings are introduced, characterised by their morphisms to finite field
extensions of E (e.g. in [BLGGT14]). It won’t make any difference to us in practice,
because in the end we will be considering maps from local deformation rings to

reduced finite flat O-algebras Ã as in §3.2.

3.3.5. Fixed determinant deformation rings. It is often useful to consider deforma-
tion rings with fixed determinant. Let λv be a dominant weight for (ResFv/Qp GLn)E
and suppose ψ : GFv → O× is a crystalline character with τ -labelled Hodge–Tate
weights

∑n
i=1 λτ,i + (n − i) for each τ : F ↪→ E. Suppose moreover that det ρv

coincides with ψ : GFv → k×, the reduction of ψ. Then we have a quotient R�,ψ
ρv

of R�
ρv

, classifying liftings with determinant ψ (composed with the structure map

from O to the test O-algebra).

We define quotients Rcris,λv,ψ
ρv

= Rcris,λv
ρv

⊗R�
ρv

R�,ψ
ρv

and R4,λv,ψρv
= Rcris,λv

ρv
⊗R�

ρv

R�,ψ
ρv

of our local deformation rings.

Lemma 3.3.6. Suppose p - n. Let λv and ψ be as above. Let R = Rcris,λv
ρv

or

R4,λvρv
, and Rψ = Rcris,λv,ψ

ρv
or R4,λv,ψρv

respectively. Then there is a section to the
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quotient map R → Rψ extending to an isomorphism RψJXK ∼= R. In particular,
Rψ is O-flat and reduced and can be characterised using the properties of Theorem

3.3.3 parts (3) or (5) respectively for maps from R�,ψ
ρv

to finite E-algebras.

Proof. This is essentially [EG14, Lemma 4.3.1]. If we consider the universal lifting
ρuniv : GFv → GLn(R), then the composition of the character ψ−1 det ρuniv with
any map R → B to a finite E-algebra is crystalline with all labelled Hodge–Tate
weights equal to zero. In other words these compositions are unramified. Since
R is O-flat and Noetherian, it follows that ψ−1 det ρuniv is itself unramified. This
character is also residually trivial. Since p - n, Hensel’s lemma implies that there
is an unramified character α : GFv → 1 + mR with αn = ψ−1 det ρuniv. The
representation α−1 ⊗ ρuniv has determinant ψ and defines a section of the quotient
map R → Rψ. This extends to a map RψJXK → R sending X to α(Frobv) − 1.
We can identify RψJXK with a quotient of R�

ρv
(in fact, of R) using the lifting

ρuniv,ψ ⊗ ur(1 + X), the twist of the universal lifting to Rψ with the unramified
character taking Frobv to 1+X. Composing this lifting with our map RψJXK→ R
gives ρuniv, and it follows that our map is an isomorphism RψJXK ∼= R. �

4. Local-global compatibility in the crystalline case

4.1. A computation of boundary cohomology. The goal of this section (Corol-
lary 4.1.9) is to describe, in terms of the cohomology of the G-locally symmetric
spaces, a particular direct summand of the completed cohomology for the boundary

of the G̃-locally symmetric spaces. It will be one of the key ingredients allowing
us to describe Hecke algebras acting on cohomology for G in an arbitrary fixed

cohomological degree in terms of the middle degree cohomology for G̃.

4.1.1. Notation. Let T̄ ⊇ S̄p be a finite set of finite places of F+ with preimage the
finite set of finite places T of F . Let S̄ ⊆ S̄p be a set of primes of F+ dividing p

with preimage S ⊆ Sp. For G = G̃, P, U , or G, we set G0
S̄

=
∏
v̄∈S̄ G(OF+

v̄
).

Given λ̃ ∈ (Z2n
+ )Hom(F+,E) a dominant weight for G̃, we define

Vλ̃S̄ :=
⊗
v̄∈S̄

⊗
τ∈Hom(F+

v̄ ,E),O

Vλ̃τ .

We also define the object VU (λ̃S̄ ,m) in Db(ShGT×KT (XG,O/$m)) corresponding
to the object RΓ(U0

S̄
,Vλ̃S̄/$

m) of Db
sm(KS ,O/$m) (after inflation to Db

sm(GT ×
KT ,O/$m)). The boundedness is a consequence of the finite cohomological di-
mension of the torsion-free compact p-adic analytic group U0

S̄
cf. [Ser65].

We let VjU (λ̃S̄ ,m) denote its cohomology sheaves; note that these are non-zero

precisely when j ranges from 0 to n2
∑
v̄∈S̄ [F+

v̄ : Qp], by the Künneth formula for
group cohomology and by Lemma 2.3.17.

If K ⊂ G(AF+,f ) is a good subgroup, each VU (λ̃S̄ ,m) descends to an object in

Db(Sh(XK ,O/$m)) with locally constant cohomology sheaves. Taking a homo-

topy limit gives VU (λ̃S̄) ∈ Db(Sh(XK ,O)) again with locally constant cohomol-
ogy sheaves (since XK is locally contractible we can find opens over which the

VjU (λ̃S̄ ,m) are constant for all m ≥ 1). By passing to a limit over m, the cohomol-

ogy RΓ(XK ,VU (λ̃S̄)⊗VλS̄p\S̄ ) comes with whatever actions (e.g. of TT or a monoid

acting at S̄p\S̄) we have on RΓ(XK ,VU (λ̃S̄ ,m)⊗ VλS̄p\S̄/$
m).
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We will often have an action of a commutative O-algebra T (one of our Hecke
algebras) on an O-module or, more generally, an object in C in D(O). We will then
write T(C) for the image of T in EndD(O)(C).

Given λ ∈ (Zn+)Hom(F,E) a dominant weight for G, we define

VλS :=
⊗
v∈S

⊗
τ∈Hom(Fv,E),O

Vλτ .

4.1.2. Boundary cohomology.

Theorem 4.1.3. Assume that K̃ ⊂ G̃(AF+,f ) is a good subgroup that is decomposed

with respect to P , and with the property that, for each v̄ ∈ S̄p, K̃U,v̄ = U0
v̄ . Let

m ⊂ TT be a non-Eisenstein maximal ideal and let m̃ := S∗(m) ⊂ T̃T .
Choose a partition

S̄p = S̄1 t S̄2

of the set S̄p of primes of F+ lying above p. Let λ̃ be a dominant weight for G̃

satisfying λ̃v̄ = 0 for all v̄ ∈ S̄2. Then

S∗ ◦ Ind
G̃S̄2

PS̄2
RΓ
(
KS̄2 , RΓ

(
XG,VU (λ̃S̄1

,m)
))

m

is a T̃T -equivariant direct summand of

RΓ
(
K̃S̄2 , RΓ

(
∂XG̃,Vλ̃/$

m
))

m̃

in D+
sm(G̃S̄2

,O/$m).

Proof. By combining Proposition 4.1.4 and Lemma 4.1.5, we obtain a T̃T -equivariant

isomorphism in D+
sm(G̃S̄2

,O/$m)
(4.1.1)

RΓ
(
K̃S̄2 , RΓ

(
∂XG̃,Vλ̃/$

m
))

m̃

∼→ RΓ

(
K̃S̄2 , Ind

G̃S̄1×G̃0
S̄1

P S̄1×P 0
S̄1

RΓ
(
XP ,Vλ̃/$

m
))

m̃

.

Using the analogue for smooth representations of [NT16, Corollary 2.6], we can
rewrite the RHS of (4.1.1) as r∗P applied to

(4.1.2)
⊕
g

Ind
G̃S̄2

PS̄2
RΓ
(
gK̃S̄2g−1 ∩ P (AF+,f ), RΓ(XP ,Vλ̃/$

m)
)
r∗Gm

,

where g runs over the double cosets

(PT\S̄p × P
0
S̄1

)\(G̃T\S̄p × G̃
0
S̄1

)/(K̃T\S̄p × K̃S̄1
),

and we view each RΓ
(
gK̃S̄2g−1 ∩ P (AF+,f ), RΓ(XP ,Vλ̃/$m)

)
as a TTP -module

in D+
sm(PS̄2

,O/$m). We restrict to the direct summand corresponding to g = 1
in (4.1.2). We now conclude by Proposition 4.1.8. �

Proposition 4.1.4.

(1) We have G̃(AF+,f )-equivariant closed immersion

(XP × G̃(AF+,f ))/P (AF+,f ) ↪→ ∂XG̃
18,

18Here, we consider the groups G̃(AF+,f ) and P (AF+,f ) as endowed with their natural profi-

nite topologies.
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whose complement is a disjoint union of locally closed subspaces of the form

(XQ × G̃(AF+,f ))/Q(AF+,f ) with Q ⊂ G̃ a standard F+-rational parabolic
such that Q 6⊆ P .

(2) With all assumptions as in Theorem 4.1.3, the natural pullback map induces

a T̃T -equivariant isomorphism in D+
sm(G̃S̄2

,O/$m)

RΓ
(
K̃S̄2 , RΓ

(
∂XG̃,Vλ̃/$

m
))

m̃

∼→ RΓ
(
K̃S̄2 , RΓ

(
(XP × G̃(AF+,f ))/P (AF+,f ),Vλ̃/$

m
))

m̃
.

Proof. The first part follows from the description of the boundary of the Borel–
Serre compactification in [NT16, §3.1.2], see especially Lemma 3.10 of loc. cit.
This reference uses the ‘discrete’ versions Xdis

Q of the spaces XQ, but we can com-
pare the two situations after taking quotients by compact open subgroups, and the

space (XQ × G̃(AF+,f ))/Q(AF+,f ) is equal to the inverse limit of its quotients by

compact open subgroups K̃ of G̃(AF+,f ) (we can use the fact that G̃(AF+,f ) →
Q(AF+,f )\G̃(AF+,f ) is a locally trivial Q(AF+,f )-torsor, as in the proof of Propo-

sition 2.3.3). These quotients can in turn be computed as quotients of (Xdis
Q ×

G̃(AF+,f )dis)/Q(AF+,f )dis, because Q(AF+,f )\G̃(AF+,f )/K̃ is a finite set for each

compact open K̃.
For the second part, we first note that we can check whether a map is an iso-

morphism on the level of cohomology groups. For a standard F+-rational proper

parabolic subgroup Q ⊂ G̃ and a good subgroup K̃ ⊂ G̃(AF+,f ), set

X̃Q

K̃
:= (XQ × G̃(AF+,f ))/Q(AF+,f )K̃,

which is a disjoint union of finitely many locally symmetric spaces for Q. Using

excision and Lemma 2.1.7, we see that it is enough to show that, for Q ⊂ G̃ a
standard F+-rational parabolic with Q 6⊆ P , we have

Hi
c(X̃

Q

K̃
,Vλ̃/$

m)m̃ = 0,

for any i ∈ Z≥0. This is standard by now, see for example the proof of [ACC+18,
Theorem 3.4.2]. �

Lemma 4.1.5. Keep the assumption on λ̃ from the statement of Theorem 4.1.3.

There is a natural isomorphism in D+
sm(G̃S̄1 × G̃0

S̄1
,O/$m)

RΓ
(

(XP × G̃(AF+,f ))/P (AF+,f ),Vλ̃/$
m
)
∼→ Ind

G̃S̄1×G̃0
S̄1

P S̄1×P 0
S̄1

RΓ
(
XP ,Vλ̃/$

m
)
.

Proof. The case of constant coefficientsO/$m follows from Lemma 2.3.14 combined
with the Iwasawa decomposition at primes in S̄1. For coefficients in a local system
Vλ̃/$m, where by assumption the action is non-trivial only at the primes in S̄1, we
use the projection formula in Lemma 2.1.8 and the tensor identity in Lemma 2.3.15
(at primes in S̄1) to reduce to the case of constant coefficients. �

Lemma 4.1.6. There is a natural isomorphism

Inf
P (AF+,f )

G(AF+,f )RΓ
(
XG,O/$m

) ∼→ RΓ
(
XP ,O/$m

)
in D+

sm(P (AF+,f ),O/$m).
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Proof. The map is given by pullback along the P (AF+,f )-equivariant projection

XP � XG. To show that the map is an isomorphism, it is enough to check that
it induces an isomorphism after applying the forgetful functor to D+(O/$m), and
then it is enough to consider it on the level of cohomology groups. By Lemma 2.1.7,
this reduces to establishing the isomorphism

lim−→
K

Hi(XK ,O/$m)
∼→ lim−→

KP

Hi(XP
KP ,O/$

m),

where KP ⊂ P (AF+,f ) runs over compact open subgroups of the form K n KU

with K ⊂ G(AF+,f ) and KU ⊂ U(AF+,f ) compact open subgroups. We use the

Leray–Serre spectral sequence for the fibration XU
KU
→ XP

KP
→ XK . It is enough

to check that

lim−→
KU

Hj(XU
KU ,O/$

m) = lim−→
ΓU :=U(F+)∩KU

Hj(ΓU\U(F+⊗QR),O/$m) =

{
O/$m for j = 0

0 otherwise.

The first equality follows by strong approximation for U , the second by direct
computation. We note that this computation should be thought of in the category
of O/$m[[K]]-modules, with a trivial action of K on the RHS. �

Lemma 4.1.7. With the notation as in the proof of Theorem 4.1.3, there exists a
natural isomorphism

InfP
T\S̄2

GT\S̄2
RΓ
(
KT\S̄2

, RΓ
(
XG,VU (λ̃S̄1

,m)
))

∼→ RΓ
(
KP,T\S̄2

, RΓ(XP ,Vλ̃/$
m)
)

in D+
sm(PT\S̄2 ,O/$m).

Proof. By Lemma 2.1.9, we have isomorphisms

RΓ
(
XG,VU (λ̃S̄1

,m)
)
∼→ RΓ(XG,O/$m)⊗L

O/$m RΓ(KU,S̄1
,Vλ̃/$

m)

∼→ RΓ(XG,O/$m)⊗L
O/$m RΓ(KU,T\S̄2

,Vλ̃/$
m)

in D+
sm(GT\S̄2 ×KT\S̄2

,O/$m). We have a natural isomorphism

InfP
T\S̄2

GT\S̄2

(
RΓ(XG,O/$m)⊗L

O/$m RΓ(KU,T\S̄2
,Vλ̃/$

m)
)
∼→

RΓ
(
KU,T\S̄2

, Inf
P (AF+,f )

G(AF+,f )RΓ(XG,O/$m)⊗L
O/$m Vλ̃/$

m
)

in D+
sm(PT\S̄2 ×KT\S̄2

,O/$m) because an arbitrary colimit of injective represen-
tations of KU,T\S̄2

is injective. We conclude by Lemma 4.1.6, by Hochschild–Serre

applied to KP,T\S̄2
= KT\S̄2

nKU,T\S̄2
, and by Lemma 2.1.8 applied to XP . �

Proposition 4.1.8. With the notation as in the proof of Theorem 4.1.3, we have
a TTP -equivariant isomorphism

RΓ
(
KS̄2

P , RΓ(XP ,Vλ̃/$
m)
)
∼→ r∗G ◦ Inf

PS̄2

GS̄2
RΓ
(
KS̄2 , RΓ

(
XG,VU (λ̃S̄1

,m)
))

in D+
sm(PS̄2

,O/$m).

Proof. We separate the set of finite places of F+ away from S̄2 into the union of the
set of finite places away from T and the set of finite places T \ S̄2, which contains
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S̄1. By the analogue for smooth representations of [NT16, Corollary 2.8], there is
a TTP -equivariant natural transformation in D+

sm(PS̄2
,O/$m) between

r∗GRΓ
(
KT , Inf

PS̄2

GS̄2
RΓ(KT\S̄2

, RΓ
(
XG,VU (λ̃S̄1

,m)
))

and

RΓ
(
KT
P , InfP

T\S̄2

GT\S̄2
RΓ(KT\S̄2

, RΓ
(
XG,VU (λ̃S̄1

,m)
))

.

If we can show that this natural transformation is an isomorphism, we can conclude
by Lemma 4.1.7. To prove that the natural transformation is an isomorphism,
we can forget the TTP -action and work in D+(O/$m). There, it reduces to the
statement that taking KT

U -invariants is an exact functor, which holds true because
KT
U is a profinite abelian group with trivial p-part. �

The following is a result in the style of [ACC+18, Theorems 4.2.1 and 5.4.1].
This is the only part of this subsection that we will use in what follows.

Corollary 4.1.9. Assume that K̃ ⊂ G̃(AF+,f ) is a good subgroup that is decom-

posed with respect to P , and with the property that, for each v̄ ∈ S̄p, K̃U,v̄ = U0
v̄ .

Let m ⊂ TT be a non-Eisenstein maximal ideal and let m̃ := S∗(m) ⊂ T̃T .
Choose a partition

S̄p = S̄1 t S̄2 t S̄3

of the set S̄p of primes of F+ lying above p. Let λ̃ and λ be dominant weights for

G̃ and G, respectively. Assume that the following conditions are satisfied:

(1) For each τ : F+ ↪→ E inducing a place v̄ ∈ S̄1, λ̃τ = (−λτ̃c, λτ̃ ) (identifica-
tion as in (2.1.4));

(2) For each τ : F+ ↪→ E inducing a place v̄ ∈ S̄2 t S̄3, λ̃τ = 0.

Then

S∗ ◦ Ind
G̃S̄3

PS̄3
RΓ
(
KS̄3 , RΓ

(
XG,VλS̄1

/$m ⊗ VU (λ̃S̄2
,m)

))
m

is a T̃T -equivariant direct summand of

RΓ
(
K̃S̄3 , RΓ

(
∂XG̃,Vλ̃/$

m
))

m̃

in D+
sm(G̃S̄3

,O/$m).

Proof. This follows from Theorem 4.1.3 applied with S̄′1 := S̄1 t S̄2 and S̄′2 := S̄3,
as long as we can show that VλS̄1

/$m is a GT ×KT -equivariant direct summand of

VU (λ̃S̄1
,m). This follows from [NT16, Corollary 2.11], as in the proof of [ACC+18,

Theorem 4.2.1] (and the proof of [ACC+18, Theorem 2.4.4]). �

4.2. The integral case. In this section we prove our main results on local–global
compatibility: Proposition 4.2.13 and Theorem 4.2.15.

4.2.1. Degree shifting. Let S̄ ⊂ S̄p. Recall that, for each v̄ ∈ S̄p, we have chosen

a place ṽ | v̄ of F , with complex conjugate ṽc. The isomorphism ιṽ : G̃(F+
v̄ ) ∼=

GL2n(Fṽ) identifies the Levi subgroup G(F+
v̄ ) = GLn(Fṽ) × GLn(Fṽc) with block

diagonal matrices in GL2n(Fṽ) via (Aṽ, Aṽc) 7→
(

(Ψn
tA−1

ṽc Ψn)c 0
0 Aṽ

)
.

We have standard parabolics Qv̄ ⊂ Pv̄ for each v̄ ∈ S̄ and we set Kv̄ := Qv̄ ∩
Gv̄(F

+
v̄ ), a parahoric subgroup of Gv̄(F

+
v̄ ). The conjugate parahoric (Kv̄)

wP0 can



58 ANA CARAIANI AND JAMES NEWTON

also be viewed as the intersection Qw
P
0

v̄ ∩ Gv̄(F+
v̄ ), where Q

wP0
v̄ is the standard

parabolic with Levi subgroup Q
wP0
v̄ ∩Gv̄(F+

v̄ ).
We introduce the following notation on the level of abstract Hecke algebras:

TQS̄ ,S̄−ord := TT ⊗Z

⊗
v̄∈S̄

H(∆Qv̄v̄ ,Kv̄)

 ,TQS̄ ,S̄−ord

wP0
:= TT ⊗Z

⊗
v̄∈S̄

H((∆Qv̄v̄ )w
P
0 ,K

wP0
v̄ )


and T̃QS̄ ,S̄−ord := T̃T ⊗Z

⊗
v̄∈S̄

H(∆̃Qv̄v̄ ,Qv̄)[Ũ−1
ṽ,n]

 .

The unnormalised Satake transform S : T̃→ T extends to a morphism denoted by

Sw
P
0 : T̃QS̄ ,S̄−ord → TQS̄ ,S̄−ord

wP0
,

given by [Qv̄ν($v̄)Qv̄] 7→ [K
wP0
v̄ ν($v̄)

wP0 K
wP0
v̄ ]. In particular, Ũṽ,n maps to Uṽ =

[K
wP0
v̄ diag($ṽ, · · · , $ṽ)K

wP0
v̄ ] and Ũṽ,2n maps to

UṽU
−1
ṽc = [K

wP0
v̄

(
diag($ṽ, · · · , $ṽ), (diag($ṽ, · · · , $ṽ)

−1)c
)
K
wP0
v̄ ].

To make use of Poincaré duality, we will need to introduce Hecke algebras twisted
by the duality involutions ι, ι̃ which are defined by

ι[KwP0 gKwP0 ] = [KwP0 g−1KwP0 ] and ι̃[K̃gK̃] = [K̃g−1K̃]

(see [ACC+18, §2.2.19]). They give isomorphisms

ι : TQS̄ ,S̄−ord

wP0

∼→ TQS̄ ,S̄−ord,ι

wP0
:= TT ⊗Z

⊗
v̄∈S̄

H(
(

(∆Qv̄v̄ )w
P
0

)−1

,K
wP0
v̄ )


and

ι̃ : T̃QS̄ ,S̄−ord ∼→ T̃QS̄ ,S̄−ord,ι̃ := T̃T ⊗Z

⊗
v̄∈S̄

H(
(

∆̃Qv̄v̄

)−1

,Qv̄)[[Qv̄ũ−1
ṽ,nQv̄]

−1]

 .

We will also make use of an untwisted Hecke algebra for the Levi, defined by

TQS̄ ,S̄−ord,ι := TT ⊗Z

(⊗
v̄∈S̄ H(

(
∆Qv̄v̄

)−1

,Kv̄)

)
.

We define Sι : T̃QS̄ ,S̄−ord,ι̃ → TQS̄ ,S̄−ord,ι extending S according to the formula

[Qv̄ν($v̄)
−1Qv̄] 7→ [Kv̄ν($v̄)

−1Kv̄].

Proposition 4.2.2. Assume that K̃ ⊂ G̃(AF+,f ) is a good subgroup that is decom-

posed with respect to P and with the property that, for each v̄ ∈ S̄p, K̃U,v̄ = U0
v̄ .

Let m ⊂ TT be a non-Eisenstein maximal ideal, let m̃ := S∗(m) ⊂ T̃T , and assume
that ρ̄m̃ is decomposed generic in the sense of Definition 2.1.27.

Choose a partition

S̄p = S̄1 t S̄2 t S̄3

of the set S̄p of primes of F+ lying above p, together with standard parabolic sub-

groups Qv̄ ⊂ Pv̄ for each v̄ ∈ S̄3. Let λ̃ and λ be dominant weights for G̃ and G,
respectively. Assume that the following conditions are satisfied:
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(1) For each τ : F+ ↪→ E inducing a place v̄ ∈ S̄1, λ̃τ = (−w0,nλτ̃c, λτ̃ )
(identification as in (2.1.4));

(2) For each τ : F+ ↪→ E inducing a place v̄ ∈ S̄2, λ̃τ = 0.

(3) For each v̄ ∈ S̄3, K̃v̄ = Qv̄. For each τ : F+ ↪→ E inducing such a place v̄,

we also have the standard identification λ̃τ = (−w0,nλτ̃c, λτ̃ )

Then the unnormalised Satake transform SwP0 : T̃QS̄3
,S̄3−ord → T

QS̄3
,S̄3−ord

wP0
de-

scends to a homomorphism

T̃QS̄3
,S̄3−ord

(
Hd
(
X̃K̃ ,Vλ̃

)ord

m̃

)
→ T

QS̄3
,S̄3−ord

wP0

(
Hd
(
X
KS̄3K

wP0
S̄3

,VλS̄1
⊗ VU (λ̃S̄2

)⊗ VλS̄3

)
m

)
,

where Hd denotes the degree d hypercohomology. The Hecke action on the source
is defined in (2.1.9) and the one on the target is defined in (2.1.10). The Hecke

operators Ũṽ,n for v̄ ∈ S̄ are invertible on the source because we are considering the
ordinary part of cohomology at the primes in S̄.

Moreover, we have an injection

T̃QS̄3
,S̄3−ord

(
Hd
(
X̃K̃ ,Vλ̃

)ord

m̃

)
↪→ T̃QS̄3

,S̄3−ord

(
Hd
(
X̃K̃ ,Vλ̃[1/p]

)ord

m̃

)
.

Proof. We will apply Theorem 2.1.28, noting that taking the ordinary part preserves
injectivity and surjectivity of the maps in that statement. This reduces us to

proving that SwP0 descends to a homomorphism

T̃QS̄3
,S̄3−ord

(
Hd
(
∂X̃K̃ ,Vλ̃

)ord

m̃

)
→ T

QS̄3
,S̄3−ord

wP0

(
Hd
(
X
KS̄3K

wP0
S̄3

,VλS̄1
⊗ VU (λ̃S̄2

)⊗ VλS̄3

)
m

)
.

Combining Proposition 2.2.17 and Lemma 2.2.12 shows thatHd(∂X̃K̃ ,Vλ̃/$
m)ord

m̃

is isomorphic as a T̃QS̄3
,S̄3−ord-module with

RdΓ
(
KS̄3

, πord
∂ (K̃S̄3 , λ̃S̄3 ,m)⊗ Vw

P
0

λS̄3

/$m
)
.

For each v̄ ∈ S̄3, the action ofH(∆̃Qv̄v̄ ,Qv̄)[Ũ−1
ṽ,n] is via its isomorphism toH(∆Qv̄v̄ ,Kv̄)

(cf. Lemma 2.1.15).
Using Corollary 4.1.9 and interchanging the P -ordinary part with the tensor

product by Vw
P
0

λS̄3

, we find a T̃QS̄3
,S̄3−ord-equivariant direct summand

(4.2.1)

ord0 Hd
(
KS̄3

n U0
S̄3
, Ind

G̃S̄3

PS̄3
RΓ
(
KS̄3 , RΓ

(
XG,VλS̄1

/$m ⊗ VU (λ̃S̄2
,m)

))
⊗ Vw

P
0

λS̄3

/$m

)
m̃

.

We find a subquotient of the term (4.2.1) using the wP0 -case of Proposition 2.3.11.

We claim that it is T̃QS̄3
,S̄3−ord-equivariantly isomorphic to

(4.2.2) Hd
(
X
KS̄3K

wP0
S̄3

,VλS̄1
/$m ⊗ VU (λ̃S̄2

,m)⊗ VλS̄3
/$m

)
m̃

,

where the action of T̃QS̄3
,S̄3−ord on (4.2.2) is via the extension SwP0 of the unnor-

malised Satake transform defined above. This follows from the fact that the action

of GS̄3
on RΓ

(
KS̄3 , RΓ

(
XG,VλS̄1

/$m ⊗ VU (λ̃S̄2
,m)

))
needs to be pre-conjugated

by wP0 when applying Proposition 2.3.11. Note that this is compatible with the
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rescaled Hecke actions, since the fact that wP0 commutes with wG0 implies that we
have the equality

α
Qw

P
0

v̄

λ (ν($v̄)
wP0 ) = αQv̄

λw
P
0

(ν($v̄)).

Taking stock, we obtain a homomorphism

T̃QS̄3
,S̄3−ord

(
Hd
(
∂X̃K̃ ,Vλ̃/$

m
)ord

m̃

)
→ T̃QS̄3

,S̄3−ord
(
Hd
(
XK ,VλS̄1

/$m ⊗ VU (λ̃S̄2
,m)⊗ VλS̄3

/$m
)
m̃

)
,

where the action of T̃QS̄3
,S̄3−ord on the RHS is via SwP0 .

Finally, these morphisms are compatible as m varies and all the above cohomol-
ogy groups are finitely generated O-modules, so we can take inverse limits with
respect to m to obtain a homomorphism

T̃QS̄3
,S̄3−ord

(
Hd
(
∂X̃K̃ ,Vλ̃

)ord

m̃

)
→ T̃QS̄3

,S̄3−ord
(
Hd
(
XK ,VλS̄1

⊗ VU (λ̃S̄2
)⊗ VλS̄3

)
m̃

)
.

We conclude because S∗(m) = m̃, so Hd
(
XK ,VλS̄1

⊗ VU (λ̃S̄2
)⊗ VλS̄3

)
m

is a Hecke-

equivariant direct summand of Hd
(
XK ,VλS̄1

⊗ VU (λ̃S̄2
)⊗ VλS̄3

)
m̃

. �

We have a similar statement to the above which will be useful after applying
Poincaré duality. Most things go through very similarly. At places in S̄2, the
weight λ̃S̄2

is trivial so nothing changes when we take a dual. At places in S̄3

we use the results of §2.2.18 and Corollary 2.3.12. However, we need to modify
things at places in S1, because RΓ(U0

S̄
,V∨
λ̃S̄
/$m) may not admit V∨λS̄/$

m as a KS̄-

equivariant direct summand. This causes a problem for the analogue of Corollary
4.1.9 on the dual side. The following lemma will act as a replacement.

Lemma 4.2.3. Let S̄ ⊂ S̄p, let λ̃ and λ be dominant weights for G̃ and G respec-
tively. Assume that the following condition is satisfied:

(1) For each τ : F+ ↪→ E inducing a place v̄ ∈ S̄, λ̃τ = (λτ̃ ,−w0,nλτ̃c) (note
that this is the wP0 -conjugate of the standard identification).

Let m ∈ Z≥1 be an integer. Then RΓ
(
U0
S̄
,V∨
λ̃S̄
/$m

)
admits V∨λS̄/$

m as a

KS̄-equivariant direct summand.

Proof. Taking duals and applying the proof of [ACC+18, Theorem 2.4.4], it suffices
to show that there is a Vλ̃S̄ surjective P (OF+,S̄)-equivariant map

Vλ̃S̄ → VλS̄
with a KS̄-equivariant splitting. It follows from [NT16, Proposition 2.10] that
there is a KS̄-equivariant decomposition Vλ̃S̄ = VλS̄ ⊕W , with VλS̄ invariant under

the action of the unipotent subgroup U(OF+,S̄) in the parabolic opposite to P .
Moreover, it follows from the main theorem of [Cab84] that, after extending scalars
to E, W ⊗O E is identified with the P (F+

S̄
)-stable subspace (1 − U(F+

S̄
))Vλ̃S̄,E ⊂

Vλ̃S̄,E (thanks to Lambert A’Campo for pointing this out). This implies that W is

P (OF+,S̄)-stable, so quotienting out by W gives the desired map Vλ̃S̄ → VλS̄ . �

We can now state our version of Proposition 4.2.2 with dual coefficients.
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Proposition 4.2.4. Assume that K̃ ⊂ G̃(AF+,f ) is a good subgroup that is decom-

posed with respect to P , and with the property that, for each v̄ ∈ S̄p, K̃U,v̄ = U0
v̄ . Let

m ⊂ TT be a non-Eisenstein maximal ideal and assume that ρ̄S∗(m∨) is decomposed
generic in the sense of Definition 2.1.27.

Choose a partition

S̄p = S̄1 t S̄2 t S̄3

of the set S̄p of primes of F+ lying above p, together with standard parabolic sub-

groups Qv̄ ⊂ Pv̄ for each v̄ ∈ S̄3. Let λ̃ and λ be dominant weights for G̃ and G,
respectively. Assume that the following conditions are satisfied:

(1) For each τ : F+ ↪→ E inducing a place v̄ ∈ S̄1, λ̃τ = (λτ̃ ,−w0,nλτ̃c) (note
the change compared to Proposition 4.2.2);

(2) For each τ : F+ ↪→ E inducing a place v̄ ∈ S̄2, λ̃τ = 0.

(3) For each v̄ ∈ S̄3, K̃v̄ = Qv̄. For each τ : F+ ↪→ E inducing such a place v̄,

we also have λ̃τ = (λτ̃ ,−w0,nλτ̃c)

Then the unnormalised Satake transform Sι : T̃QS̄3
,S̄3−ord,ι̃ → TQS̄3

,S̄3−ord,ι

descends to a homomorphism

T̃QS̄3
,S̄3−ord,ι̃

(
Hd
(
X̃K̃ ,V

∨
λ̃

)ord∨

S∗(m∨)

)
→ TQS̄3

,S̄3−ord,ι
(
Hd
(
XK ,V∨λS̄1

⊗ VU (λ̃S̄2
)⊗ V∨λS̄3

)
m∨

)
,

where Hd denotes the degree d hypercohomology. Moreover, we have an injection

T̃QS̄3
,S̄3−ord,ι̃

(
Hd
(
X̃K̃ ,V

∨
λ̃

)ord∨

S∗(m∨)

)
↪→ T̃QS̄3

,S̄3−ord,ι̃

(
Hd
(
X̃K̃ ,V

∨
λ̃

[1/p]
)ord∨

S∗(m∨)

)
and the target is isomorphic, via Poincaré duality, to T̃QS̄3

,S̄3−ord

(
Hd
(
X̃K̃ ,Vλ̃[1/p]

)ord

ι̃∗S∗(m∨)

)
.

Proof. With the ingredients mentioned in the preamble, this is a straightforward
modification of the proof of Proposition 4.2.2. �

Note that we have ρι̃∗S∗(m∨) = ρm(−n)⊕ ρ∨,cm (1− n).

Assume we are given a non-Eisenstein maximal ideal m ⊂ T with m̃ := S∗(m),
and a subset S̄ ⊆ S̄p. We will use the following notation:

A(K,λ, q) := TQ
wP0
S̄

,S̄−ord

wP0
(Hq(XK ,Vλ)m) ,

A(K,λ, q,m) := TQ
wP0
S̄

,S̄−ord

wP0
(Hq(XK ,Vλ/$m)m) , and

Ã(K̃, λ̃, S̄) := T̃Q
wP0
S̄

,S̄−ord
(
Hd(X̃K̃ ,Vλ̃)ord

m̃

)
.

Given a neat compact open subgroup K ⊂ GLn(AF,f ) and an integer m ∈ Z≥1,
define the subgroup K(m, S̄) ⊂ K by setting

K(m, S̄)v := Kv ∩ {(1n) mod $m
v } ⊂ GLn(OFv )

if v is a p-adic place of F which lies above a place in S̄, and K(m, S̄)v := Kv

otherwise. Also, given a good subgroup K̃ ⊂ G̃(AF+,f ) and an integer m ∈ Z≥1,

define the good subgroup K̃(m, S̄) ⊂ K̃ by setting

K̃(m, S̄)v̄ := K̃v̄ ∩
{(

1n ∗
0 1n

)
mod $m

ṽ

}
⊂ GL2n(OFṽ ) = G̃(OF+

v̄
)
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if v̄ is a p-adic place of F+ contained in S̄, and K̃(m, S̄)v̄ := K̃v̄ otherwise.

Lemma 4.2.5. Assume that the subset S̄ ⊂ S̄p has the following property:
∑
v̄ 6∈S̄ [F+

v̄ :

Qp] ≥ 1
2 [F+ : Q]. Let q ∈

[⌊
d
2

⌋
, d− 1

]
. Then d− q ≤

∑
v̄ 6∈S̄ n

2[F+
v̄ : Qp].

Proof. If d is odd, then so is [F+ : Q], and we have

d− q ≤ d+ 1

2
≤ d+ n2

2
≤
∑
v̄ 6∈S̄

n2[F+
v̄ : Qp].

If d is even, then d− q ≤ d
2 ≤

∑
v̄ 6∈S̄ n

2[F+
v̄′′ : Qp]. �

Proposition 4.2.6. Let v̄, v̄′ be two distinct places of S̄p. Let S̄1 := {v̄′}, S̄3 := {v̄}
and S̄2 be their complement in S̄p. Let λ ∈

(
Zn+
)Hom(F,E)

be a highest weight for

G. Let m ∈ Z≥1 be an integer and K̃ ⊂ G̃(AF+,f ) be a good subgroup. Assume that
the following conditions are satisfied.

(1) We have ∑
v̄′′∈S̄p
v̄′′ 6=v̄,v̄′

[F+
v̄′′ : Qp] ≥

1

2
[F+ : Q].

(2) For each p-adic place v̄′′ of F+ not equal to v̄ (including v̄′′ = v̄′), we

have U(OF+

v̄′′
) ⊂ K̃v̄′′ and K̃v̄′′ = K̃(m, S̄1 ∪ S̄2)v̄′′ ; in other words K̃v̄′′ ⊂{(

1n ∗
0 1n

)
mod $m

ṽ′′

}
for each of these places. Finally, we have K̃v̄ =

Qw
P
0

v̄ corresponding to the standard parabolic Q
wP0
v̄ ⊂ PF+

v̄
with Levi sub-

group Q
wP0
v̄ ∩G(F+

v̄ ).
(3) For each embedding τ : F ↪→ E inducing the place v̄ or v̄′ of F+, we have
−λτc,1 − λτ,1 ≥ 0.

(4) m ⊂ T is a non-Eisenstein maximal ideal such that ρ̄m̃ is decomposed
generic.

Define a weight λ̃ ∈ (Z2n
+ )Hom(F+,E) as follows: if τ : F+ ↪→ E does not induce

either v̄ or v̄′, set λ̃τ = 0. If τ induces v̄ or v̄′, set λ̃τ = (−λτ̃c, λτ̃ ) (identification

as in (2.1.4))19. Set K := (K̃ v̄ ∩G(Av̄F+,f )) · (Qv̄ ∩G(F+
v̄ )), identified in the usual

way with a neat subgroup of GLn(AF,f ).

Let q ∈
[⌊
d
2

⌋
, d− 1

]
. Then there exists an integer m′ ≥ m, an integer N ≥ 1, a

nilpotent ideal J ⊂ A(K,λ, q,m) satisfying JN = 0, and a commutative diagram

T̃Q
wP0
v̄ ,{v̄}−ord

Sw
P
0

��

// Ã
(
K̃(m′, S̄2), λ̃, v̄

)

��

TQ
wP0
v̄ ,{v̄}−ord

wP0
// A(K,λ, q,m)/J.

Moreover, the integer N can be chosen to only depend on n and on [F+ : Q].

19The condition (3) in the statement of the Proposition guarantees that λ̃ will be dominant.
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Proof. To simplify notation, we set T := TQ
wP0
v̄ ,{v̄}−ord

wP0
, T̃ := T̃Q

wP0
v̄ ,{v̄}−ord. We

would like to show that there exist non-negative integers m′ ≥ m and N such that

Sw
P
0

(
AnnT̃ H

d(X̃K̃(m′,S̄2),Vλ̃)ord
m̃

)N
⊆ AnnT H

q(XK ,Vλ/$m)m.

This is similar to [ACC+18, Prop. 4.4.1]; we will apply Proposition 4.2.2 repeatedly,
which plays the same role as Proposition 4.3.1 in loc. cit.. The argument is subtle,
for two reasons.

• We need to work with O-coefficients in order to access the Hecke algebras

Ã
(
K̃(m′, S̄2), λ̃, v̄

)
, whilst the Hecke algebra A(K,λ, q,m) acts on coho-

mology with torsion coefficients.
• The spectral sequence computing the hypercohomology in Proposition 4.2.2

is not known to degenerate.

The second issue does not occur in [ACC+18]. To deal with both these issues, we
will argue by descending induction on the degree q. The induction hypothesis is
the following.

Hypothesis 4.2.7. Let q ∈
[⌊
d
2

⌋
, d− 1

]
. Then the Proposition holds for every coho-

mological degree i ∈ [q + 1, d− 1] and for every m ∈ Z≥1. Moreover, the integer N
can be chosen to depend only on n, [F+ : Q] and q.

Note that the induction hypothesis is satisfied automatically for q = d − 1. As-
sume that the hypothesis is satisfied for some q ∈

[⌊
d
2

⌋
, d− 1

]
. We will prove the

Proposition for q, which will imply the induction hypothesis for q − 1.

Fix m, K̃ and λ as in the statement. Let M = M(m) ≥ m be the integer guar-
anteed by Lemma 2.3.17. We first increase the level, going from XK to XK(M,S̄2).

This uses the same argument as in the proof of [ACC+18, Prop. 4.4.1], that we
briefly recall here. Firstly, Poincaré duality gives an equality

AnnT H
q(XK ,Vλ/$m)m = ι

(
AnnTι H

d−1−q(XK ,V∨λ /$m)m∨
)
,

where m∨ = ι(m) ⊂ TT and Tι := T
QS̄3

,S̄3−ord,ι

wP0
.

The Hochschild–Serre spectral sequence gives an inclusion

d−q−1∏
i=0

AnnTι H
i(XK(M,S̄2),V∨λ /$m)m∨ ⊂ AnnTι H

d−1−q(XK ,V∨λ /$m)m∨ ,

and Poincaré duality gives

d−1∏
i=q

AnnT H
i(XK(M,S̄2),Vλ/$m)m ⊂ AnnT H

q(XK ,Vλ/$m)m.

We deal with the terms for i ≥ q + 1 using induction. (See the last paragraph of
the proof for more details on how one applies the induction hypothesis.) Therefore,
we are left with the term for i = q and we may assume that K = K(M, S̄2).

Now, note that the T-algebra A(K,λ, q,m) does not depend on λv̄′′ for v̄′′ 6= v̄,
because the level Kv̄′′ is deep enough that the action on Vλ/$m is trivial. Therefore,
we replace Vλ/$m by

Vλv̄ ⊗ Vλv̄′ ⊗ V
d−q
U (λ̃S̄2

,m).
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This is non-zero by Lemmas 2.3.17 and 4.2.5. More generally, for any non-negative
integer j ≤

∑
v̄′′∈S̄2

n2[F+
v̄′′ : Qp], set Vj := Vλv̄ ⊗Vλv̄′ ⊗V

j
U (λ̃S̄2

). We have a short
exact sequence of T-modules

0→ Hq(XK ,Vd−q)m/$m → Hq(XK ,Vd−q/$m)m → Hq+1(XK ,Vd−q)m[$m]→ 0,

where we are interested in understanding the Hecke algebra A(K,λ, q,m) acting on
the term in the middle. We can understand the Hecke algebra acting on the $m-
torsion in Hq+1(XK ,Vd−q)m using the induction hypothesis: the argument is iden-
tical to the argument used in the proof of [ACC+18, Prop. 4.4.1]. Therefore, we are
left with understanding the faithful quotient of T acting on Hq(XK ,Vd−q)m/$m.

There is a T-equivariant spectral sequence

(4.2.3) Ei,j2 (O) := Hi(XK ,Vj)m ⇒ Hi+j(XK ,Vλv̄ ⊗ Vλv̄′ ⊗ VU (λ̃S̄2
))m.

If we knew that this spectral sequence degenerates on the E2 page, we would de-
duce that Hq(XK ,Vd−q)m is a T-equivariant subquotient of Hd(XK ,VλS̄1

⊗VλS̄3
⊗

VU (λ̃S̄2
))m, and we would win by Proposition 4.2.2. However, it is not clear, in this

generality, whether the spectral sequence (4.2.3) degenerates. Instead, we compare
it to the following T-equivariant spectral sequence, whose terms are O/$m-modules
(4.2.4)

Ei,j2 (O/$m) := Hi(XK ,Vj/$m)m ⇒ Hi+j(XK ,Vλv̄ ⊗ Vλv̄′ ⊗ VU (λ̃S̄2
,m))m.

Since K = K(M, S̄2), Lemma 2.3.17 implies that all the differentials in (4.2.4) are
zero. Let

φi,jr : Ei,jr (O)→ Ei,jr (O/$m)

be the natural, T-equivariant map between the spectral sequences (4.2.3) and (4.2.4).

Let F i,jr := Im(φi,jr ). When r = 2, we have F i,j2 = Ei,j2 (O)/$m. For r ≥ 3, we at
least have a surjection Ei,jr (O)/$m � F i,jr , because F i,jr is an O/$m-module.

With this new notation, we are interested in relating AnnT(F q,d−q2 ) to AnnT(Ed∞(O)).
For any r ≥ 2, let d−r : Eq−r,d−q+1−r

r → Eq,d−qr and d+
r : Eq,d−qr → Eq+r,d−q+1−r

r

denote the rth differentials. Because all the differentials in (4.2.4) are zero, we have

that Im(d−r ) ⊆ Ker(φq,d−qr ). Since φq,d−qr induces φq,d−qr+1 , we deduce that we have
an injection

F q,d−qr+1 = Ker(d+
r )/

(
Im(d−r ) + Ker(d+

r ) ∩Ker(φq,d−qr )
)
↪→ F q,d−qr = Eq,d−qr /Ker(φq,d−qr ).

Moreover, the cokernel of this injection becomes identified, under the map induced
by d+

r , with Im(d+
r )/d+

r (Ker(φq,d−qr )). Since ($m) ⊆ Ker(φq,d−qr ), the latter is a
quotient of Im(d+

r )/$m. By Lemma 2.3.18, there exists some m′r ≥ m such that the

latter is a subquotient of Eq+r,d−q+1−r
2 (O)/$m′r , or even of Eq+r,d−q+1−r

2 (O/$m′r ).
We therefore have an inclusion

AnnT E
d
∞(O) ·

d−q−1∏
r=2

AnnT E
q+r,d+1−q−r
2 (O/$m′r ) ⊆ AnnT F

q,d−q
2 .

For the Ed∞(O) term, Proposition 4.2.2 implies that there is an inclusion

Sw
P
0

(
AnnT̃ H

d(X̃K̃ ,Vλ̃)ord
m̃

)
⊆ AnnT E

d
∞(O).

For each Eq+r,d+1−q−r
2 (O/$m′r ) = Hq+r(XK ,Vd+1−q−r/$m′r )m, we use the argu-

ment above via Poincaré duality and the Hochschild–Serre spectral sequence to
increase the level to K(m′r, S̄2). We then apply the induction hypothesis.
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Each time we apply the induction hypothesis, we find some integer m′i ≥ m
and some nilpotence degree Ni, which can be bounded in terms of dim(XK), for
i running over some finite index set I whose size can also be bounded in terms of
dim(XK). To find a common m′ ≥ m, we let m′ := supi∈Im

′
i. For each i, we have

AnnT̃ H
d(X̃K̃(m′,S̄2),Vλ̃)ord

m̃ ⊆ AnnT̃ H
d(X̃K̃(m′i,S̄2),Vλ̃)ord

m̃ ,

because this is true rationally and the cohomology groups are torsion-free. We

then let J denote the image of the ideal SwP0
(

AnnT̃ H
d(X̃K̃(m′,S̄2),Vλ̃)ord

m̃

)
in

A(K,λ, q,m). To find an appropriate nilpotence degree N , we set N = 1 +∑
iNi. �

Again we have a similar statement with dual coefficients. We introduce some
more notation, depending on a decomposition S̄p = S̄1 ∪ S̄2 ∪ S̄3:

A∨(K,λ, q) := TQS̄3
,S̄3−ord,ι (Hq(XK ,V∨λ )m∨) ,

A∨(K,λ, q,m) := TQS̄3
,S̄3−ord,ι (Hq(XK ,V∨λ /$m)m∨) , and

Ã∨(K̃, λ̃, S̄3) := T̃QS̄3
,S̄3−ord,ι̃

(
Hd(X̃K̃ ,V

∨
λ̃

)ord∨

S∗m∨
)
.

Proposition 4.2.8. Let v̄, v̄′ be two distinct places of S̄p. Let S̄1 := {v̄′}, S̄3 := {v̄}
and S̄2 be their complement in S̄p. Let λ ∈

(
Zn+
)Hom(F,E)

be a highest weight for

G. Let m ∈ Z≥1 be an integer and K̃ ⊂ G̃(AF+,f ) be a good subgroup. Assume that
the following conditions are satisfied.

(1) We have ∑
v̄′′∈S̄p
v̄′′ 6=v̄,v̄′

[F+
v̄′′ : Qp] ≥

1

2
[F+ : Q].

(2) For each p-adic place v̄′′ of F+ not equal to v̄ (including v̄′′ = v̄′), we

have U(OF+

v̄′′
) ⊂ K̃v̄′′ and K̃v̄′′ = K̃(m, S̄1 ∪ S̄2)v̄′′ ; in other words K̃v̄′′ ⊂{(

1n ∗
0 1n

)
mod $m

ṽ′′

}
for each of these places. Finally, we have K̃v̄ =

Qv̄ corresponding to the standard parabolic Qv̄ ⊂ PF+
v̄

.

(3) For each embedding τ : F ↪→ E inducing the place v̄ or v̄′ of F+, we have
λτc,n + λτ,n ≥ 0.

(4) m ⊂ T is a non-Eisenstein maximal ideal such that ρ̄S∗(m∨) is decomposed
generic.

Define a weight λ̃ ∈ (Z2n
+ )Hom(F+,E) as follows: if τ : F+ ↪→ E does not induce

either v̄ or v̄′, set λ̃τ = 0. If τ induces v̄ or v̄′, set λ̃τ = (λτ̃ ,−λτ̃c). Set K :=

K̃ ∩G(AF+,f ), identified in the usual way with a neat subgroup of GLn(AF,f ).

Let q ∈
[⌊
d
2

⌋
, d− 1

]
. Then there exists an integer m′ ≥ m, an integer N ≥ 1, a

nilpotent ideal J ⊂ A∨(K,λ, q,m) satisfying JN = 0, and a commutative diagram

T̃Qv̄,{v̄}−ord,ι̃

Sι

��

// Ã∨
(
K̃(m′, S̄2), λ̃, v̄

)
��

TQv̄,{v̄}−ord,ι // A∨(K,λ, q,m)/J.
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Moreover, the integer N can be chosen to only depend on n and on [F+ : Q].

We will now be able to reduce questions about Galois representations with coef-
ficients in the torsion Hecke algebras A(K,λ, q,m) to understanding the properties
of the Galois representations with coefficients in the p-torsion free Hecke algebras

Ã(· · · ) and Ã∨(· · · ). To do this, we need some results about automorphic Galois
representations in characteristic 0.

For the statement of the next proposition, recall that we have introduced Hecke

operators Ũkv for a place v ∈ Sp in §3.1.

Proposition 4.2.9. Let v̄ be a p-adic place of F+, let m ⊂ TQ
wP0
v̄ ,v̄−ord

wP0
be a

non-Eisenstein maximal ideal in the support of some H∗(XK ,Vλ), and set m̃ :=

(SwP0 )∗(m), a maximal ideal of T̃Q
wP0
v̄ ,v̄−ord. Fix v|v̄ in F and suppose that Ũkv /∈ m̃

for 1 ≤ k ≤ t.
Assume that π is a cuspidal automorphic representation of G̃(AF+), ι is an

isomorphism ι : Qp
∼→ C and π is ι-Q

wP0
v̄ -ordinary of weight λ̃. Suppose moreover

that the Hecke eigenvalues on (ι−1π∞)K̃,Q
wP0
v̄ −ord come from a map

f : T̃Q
wP0
v̄ −ord

m̃
→ Qp,

where the superscript ‘Qw
P
0

v̄ − ord’ denotes that we replace the local factor π
Qw

P
0

v̄
v̄

with its one-dimensional Qw
P
0

v̄ -ordinary subspace.
We have the associated p-adic Galois representation rι(π) : GF → GL2n(Qp) (the

existence of f implies that we have an isomorphism of semi-simplified reductions
rι(π) ∼= ρm̃). Consider the (n, n)-block decomposition

rι(π)|GFṽ '
(
r1(π) ∗

0 r2(π)

)
guaranteed by Theorem 3.1.2 (noting that r1(π), r2(π) may be futher decomposed

according to the shape of Qw
P
0

v̄ ). For i = 1, 2, assume that E is large enough that
ri(π) can be defined over it, via the embedding E ↪→ Qp coming from f , and let

ri(π) be the semi-simplification of the reduction modulo $ of ri(π). Then

det r1(π) (ArtFv ($v)) = det ρ̄m(ArtFv ($v)) and

det r2(π) (ArtFv ($v)) = det (ρ̄∨,cm (1− 2n)) (ArtFv ($v)).

Proof. By Theorem 3.1.2, det r1(π) (ArtFṽ ($ṽ)) ∈ O× is equal to ε
n(1−n)

2
p (ArtFv ($v))

times the eigenvalue of Ũv,n acting on the Qw
P
0

v̄ -ordinary subspace of ι−1πQ
wP0
v̄ . By

the description of the map SwP0 , the reduction of this eigenvalue modulo $ is equal

to the image of Uv in TQ
wP0
v̄ ,v̄−ord

wP0
/m. By Lemma 2.1.21, det ρ̄m(ArtFv ($v)) is

equal to ε̄
n(1−n)

2
p (ArtFv ($v)) times the eigenvalue of Uv acting on H∗(XK ,Vλ/$)m,

so we obtain the first equation. For the second equation, let rι(π) be the semi-
simplification of the reduction modulo $ of rι(π). The same line of reasoning
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implies that det rι(π) (ArtFv ($v)) is equal to ε̄
n(1−2n)
p (ArtFv ($v)) times the im-

age of Uv · U−1
vc in Tv̄−ord/m. We conclude by the first equation and by another

application of Lemma 2.1.21. �

To proceed, we recall the notion of a CTG weight from [ACC+18, Def. 4.3.5].

Definition 4.2.10. A weight λ̃ ∈ (Z2n
+ )Hom(F+,E) is CTG (“cohomologically trivial

for G”) if it satisfies the following condition

• Given w ∈ WP , define λw = w(λ̃ + ρ) − ρ, viewed as an element of
(Zn+)Hom(F,E) in the usual way. For each w ∈ WP and i0 ∈ Z, there
exists τ ∈ Hom(F,E) such that λw,τ − λ∨w,τc 6= (i0, i0, . . . , i0).

An important application of the CTG assumption is the following variant of
[ACC+18, Theorem 2.4.11]:

Proposition 4.2.11. Let m ⊂ TT be a non-Eisenstein maximal ideal. Fix a place
v̄ ∈ S̄p and a standard parabolic Qv̄ ⊂ Pv̄ and suppose m̃ is a maximal ideal of

T̃Qv̄,{v̄}−ord which extends S∗(m). Let K̃ ⊂ G̃(AF+,f ) be a good subgroup such that

m̃ is in the support of H∗(X̃K̃ ,Vλ̃)ord for a CTG weight λ̃. Suppose that Ũkv /∈ m̃
for 1 ≤ k ≤ t (in other words, these Hecke operators act with unit eigenvalues on

H∗(X̃K̃ ,Vλ̃)ord
m̃ ). Let d = 1

2 dimRX
G̃ = n2[F+ : Q].

Then Hd(X̃K̃ ,Vλ̃)ord
m̃ [1/p] is a semisimple T̃Qv̄,{v̄}−ord[1/p]-module, and for ev-

ery homomorphism

f : T̃Qv̄,{v̄}−ord(Hd(X̃K̃ ,Vλ̃)ord
m̃ )→ Qp,

and isomorphism ι : Qp → C there exists a cuspidal automorphic representation

π of G̃(AF+) which is ι-Qv̄-ordinary of weight λ̃ such that f is associated to the

Hecke eigenvalues on (ι−1π∞)K̃,Qv̄−ord, where ‘Qv̄ − ord’ indicates that we replace

the local factor πQv̄v̄ with its one-dimensional Qv̄-ordinary subspace.

Proof. This follows from combining (the proof of) [ACC+18, Theorem 2.4.11] with

the fact that the Qv̄-ordinary subspace of πQv̄v̄ (which is all that contributes to
cohomology localised at m̃) is one-dimensional, which is part of Theorem 3.1.2. �

Remark 4.2.12. In Proposition 4.2.6, we may assume that the weight λ̃ is CTG,
without changing the Hecke algebra A(K,λ, q,m). This is because [ACC+18,
Lemma 4.3.6] shows that a weight can be ensured to be CTG by modifying it
at only one embedding τ : F+ ↪→ E. Choose a τ which induces the place v̄′ of F+.
Because the level at v̄′ is assumed to be deep enough in Proposition 4.2.6, we may
modify λ̃τ = (−λτ̃c, λτ̃ ) without changing the Hecke algebra A(K,λ, q,m).

We can now apply the results of §3 to obtain the main result of this section.

Proposition 4.2.13. Assume that p splits in an imaginary quadratic subfield of
F . Let K ⊂ G(AF+,f ) = GLn(AF,f ) be a good subgroup and fix distinct places
v̄, v̄′ ∈ Sp. Let λ be a dominant weight for G.

Let m ∈ Z≥1 be an integer. Fix a standard parabolic Qv̄ ⊂ Pv̄, suppose that

Kv̄ = Qv̄ ∩ G(F+
v̄ ) and let m ⊂ TQv̄,{v̄−ord} be a maximal ideal in the support of

H∗(XK ,Vλ/$m).
Fix ṽ|v̄ in F . Using ιṽ, we identify Qv̄ with a standard block-upper-triangular

parabolic subgroup of GL2n corresponding to a decomposition (n1, . . . , nt) of 2n.
Suppose that n = n1 + · · ·+ nr.
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Assume that:

(1) We have ∑
v̄′′∈S̄p
v̄′′ 6=v̄,v̄′

[F+
v̄′′ : Qp] ≥

1

2
[F+ : Q].

(2) m is a non-Eisenstein maximal ideal such that ρ̄m is decomposed generic.
(3) Let v /∈ T be a finite place, with residue characteristic l. Then either T

contains no l-adic places and l is unramified in F , or there is an imaginary
quadratic subfield of F in which l splits.

(4) For all ν ∈ XQv̄ , the Hecke operator [Kv̄ν($v̄)Kv̄] is not contained in m.

Then for each q ∈ [0, d− 1] there exists an integer N ≥ 1, depending only on n
and [F+ : Q], a nilpotent ideal J of TQv̄,{v̄−ord}(Hq(XK ,Vλ/$m)m) with JN = 0
and a continuous n-dimensional representation

ρm : GF,T → GLn(TQv̄,{v̄−ord}(Hq(XK ,Vλ/$m)m)/J)

such that the following conditions are satisfied:

(1) For each place v /∈ T of F , the characteristic polynomial of ρm(Frobv) is
equal to the image of Pv(X).

(2) For v|v̄, the representation ρm|GFv has a lift to ρ̃v : GFv → GLn(Ã), where

Ã is a finite flat local O-algebra equipped with a morphism

f : Ã→ TQv̄,{v̄−ord}(Hq(XK ,Vλ/$m)m)/J.

(3) Inverting p, the lift ρ̃v[1/p] is semistable with labelled Hodge–Tate weights
(λτ,n < · · · < λτ,1 + n− 1)τ :Fv↪→E.

(4) Furthermore, these semistable lifts satisfy

ρ̃ṽ[1/p] '


ρ̃ṽ,r+1 ∗ · · · ∗

0 ρ̃ṽ,r+2 · · · ∗

0 0
. . . ∗

0 0 · · · ρ̃ṽ,t

 and ρ̃ṽc [1/p] '


ρ̃ṽc,r ∗ · · · ∗

0 ρ̃ṽc,r−1 · · · ∗

0 0
. . . ∗

0 0 · · · ρ̃ṽc,1


where the representations ρ̃v,j : GFv → GLnj (Ã[1/p]) are crystalline with
labelled Hodge–Tate weights determined by the requirement that they are
increasing from top left to bottom right.

(5) For j = r+1, . . . , t, the characters det ρ̃ṽ,j take values in Ã and their image
under f is given by characters ψj determined by:

•
∏k
j=r+1 ψj(ArtFṽ (u)) =

∏nr+1+···+nk
i=1

∏
τ :Fṽ↪→Qp τ(u)−λτ,n−i+1−i+1 for

u ∈ O×Fṽ .

•
∏k
j=r+1 ψj(ArtFṽ ($ṽ)) is equal to ε

∑nr+1+···+nk
i=1 (1−i)

p (ArtFṽ ($ṽ))Ũ
k−r
v .

Proof. We already know the existence of ρm satisfying the first condition (local–
global compatibility at unramified places), so we are free to enlarge T . As ex-
plained in the proof of [ACC+18, Corollary 4.4.8], we may assume (applying a
twisting argument) that ρm̃ = ρm ⊕ ρ∨,cm (1 − 2n) is decomposed generic, not just
that ρ̄m is decomposed generic. We will use a similar twisting argument later
in this proof. We can also use Hochschild–Serre to reduce to the case when
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Kv̄′′ ⊂
{(

1n ∗
0 1n

)
mod $m

ṽ′′

}
for each v̄′′ ∈ Sp − {v̄}. This means we can

moreover assume that λv̄′′ = 0 if v̄′′ ∈ S̄p − {v̄}.
Now we let K̃ ⊂ G̃(AF+,f ) be a good subgroup satisfying:

• K̃ ∩G(AF+,f ) = K.

• K̃T = G̃(ÔTF+).

• For each v̄′′ ∈ Sp−{v̄}, we have U(OF+

v̄′′
) ⊂ K̃v̄′′ and K̃v̄′′ ⊂

{(
1n ∗
0 1n

)
mod $m

ṽ′′

}
.

• K̃v̄ = Qw
P
0

v̄ (the corresponding standard parabolic has block sizes (nr+1, . . . , nt, n1, . . . , nr)).

Next, we use a twisting argument to reduce to the case when −λτ̃c,1 − λτ,1 ≥ 0.
Indeed, twisting by εµp moves us from the weight λ to the weight λ′ := (λτ,1 −
µ, . . . , λτ,n−µ)τ :F↪→E (cf. [ACC+18, Proposition 2.2.22]), and we satisfy the desired
condition if we take µ to be sufficiently positive.

At this point we assume that q ≥ bd2c. We will handle small q at the end of the
proof using Poincaré duality. We are now in a position to apply Proposition 4.2.6.
Following Remark 4.2.12, we are free to modify λv̄′ so that the weight λ̃ is CTG.
We have A(K,λ, q,m) = TQv̄,{v̄−ord}(Hq(XK ,Vλ/$m)m).

Suppose we have a continuous character ψ : GF → k× (perhaps after extending
O), which is unramified at Sp, and let ψ : GF → O× denote the Teichmüller lift

of ψ. Choose a finite set T ′ ⊃ T (closed under complex conjugation) which also
contains all the places where ψ is ramified, and a good normal subgroup K ′ ⊂ K
satisfying:

• (K ′)T
′−T = KT ′−T .

• K ′/K is abelian of order prime to p.
• For each place v of F , the restriction of ψ|GFv ◦ArtFv to det(K ′v) is trivial.
• T ′ satisfies assumption (3) from the Proposition.

We will then consider the Hecke algebras for the twist

A(K ′, λ, q,m, ψ) := TQv̄,{v̄−ord}(Hq(XK′ ,Vλ/$m)m(ψ)),

(see [ACC+18, §2.2.19] for the definition of m(ψ) and note that ρm(ψ) = ρm ⊗ ψ).
Establishing the proposition for any of these twists will imply it for the Hecke
algebra A(K,λ, q,m). We will always assume that ψ is chosen so that ρ

m̃(ψ)
remains

decomposed generic.
We can, twisting by a suitable ψ if necessary, assume that the isomorphism classes

of the irreducible constituents of ρm|GFṽ are disjoint from those of ρ∨,cm (1−2n)|GFṽ .
Applying Proposition 4.2.6, for each ψ as above we have a finite flat O-algebra

Ã(ψ) and a nilpotent ideal Jψ with a map fψ : Ã(ψ) → A(K ′, λ, q,m, ψ)/Jψ.

Using Propositions 4.2.9 and 4.2.11, we deduce that there is a Q
wP0
v̄ -ordinary Galois

representation ρ̃m(ψ) =
∏r
i=1 ρ̃

i
m(ψ) : GF → GL2n(Ã(ψ)[1/p]) =

∏r
i=1E such that,

for each i, the factor ρ̃im(ψ) comes with a (n, n)-block decomposition

ρ̃im(ψ)|GFṽ '
(
ri1,ψ ∗

0 ri2,ψ

)
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We can take a semisimplified reduction to the residue field and then, by Proposition
4.2.9, we have

(4.2.5) det ri1,ψ (ArtFṽ ($ṽ)) = det(ρ̄m ⊗ ψ)(ArtFṽ ($ṽ)).

Sub-lemma 1. Possibly after enlarging O, there is a continuous character ψ :
GF → k×, unramified at Sp and with ρ

m̃(ψ)
decomposed generic, such that

(1) the isomorphism classes of the irreducible constituents of ρm(ψ)|GFṽ are

disjoint from those of ρ∨,cm(ψ)(1− 2n)|GFṽ ;

(2) for all 1 ≤ i ≤ r the isomorphism classes of the irreducible constituents of

the residual representation ri1,ψ coincide with those of ρm(ψ)|GFṽ .

Proof. We denote the irreducible constituents (with multiplicity) of ρm|GFṽ by
S1, . . . , Sm, and let dj = dimSj and δj = detSj . The irreducible constituents of

ρ∨,cm (1− 2n)|GFṽ are given by T1, . . . , Tm where Tj = S∨,cj (1− 2n). For each ψ, the

irreducible constituents of ri1,ψ are given by a multiset {Sj⊗ψ̄ : j ∈ Ii}
∐
{Tj⊗ψ̄∨,c :

j ∈ Ji} for two subsets Ii, Ji ⊂ {1, . . . ,m} with
∑
j∈Ii dj +

∑
j∈Ji dj = n.

Now comparing what this entails for det ri1,ψ(ArtFṽ ($ṽ)) with the formula (4.2.5),
we get:ψ̄n m∏

j=1

δj

 (ArtFṽ ($ṽ)) =

∏
j∈Ii

ψ̄djδj
∏
j∈Ji

(ψ
∨,c

)djδ∨,cj ε̄dj(1−2n)
p

 (ArtFṽ ($ṽ))

which rearranges to

(ψ̄∨,c)
∑
j∈Ji

dj (ArtFṽ ($ṽ)) =

ψ̄n−∑j∈Ii
dj

m∏
j=1

δj
∏
j∈Ii

δ∨j
∏
j∈Ji

δcj ε̄
dj(2n−1)
p

 (ArtFṽ ($ṽ))

=
(
ψ̄n−

∑
j∈Ii

dj · δ(Ii, Ji)
)

(ArtFṽ ($ṽ)),

where the character δ(Ii, Ji) only depends on the (finitely many) possible choices of
Ii and Ji. Now we can choose ψ so that any equation of this form forces

∑
j∈Ji dj =

0 and
∑
j∈Ii dj = n (whilst also preserving the first condition of the sub-lemma).

Indeed, since Grunwald–Wang allows us to find ψ with specified behaviour at any
finite set of places, we can choose ψ locally trivial at a prime which is decomposed

generic for ρm̃ and the pair ψ(ArtFṽ ($ṽ)), ψ(ArtFṽc ($ṽc)) arbitrary in (F×p )2. We
choose this pair of elements with orders bigger than n, coprime to each other, and
coprime to the orders of the elements δ(Ii, Ji)(ArtFṽ ($ṽ)).

We conclude that Ji = ∅ and Ii = {1, . . . ,m} for every i, so in other words the
isomorphism classes of the irreducible constituents of the residual representation

ri1,ψ coincide with those of ρm(ψ)|GFṽ . �

We may now assume that the isomorphism classes of the irreducible constituents
of ρm|GFṽ are disjoint from those of ρ∨,cm (1− 2n)|GFṽ and that for all 1 ≤ i ≤ r the

isomorphism classes of the irreducible constituents of the residual representation ri1
coincide with those of ρm|GFṽ . Applying Proposition 3.2.4 and Theorem 3.1.2 we

deduce the statement of the Proposition for the Hecke algebra A(K,λ, q,m).
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It remains to handle the case q < bd2c. Poincaré duality gives an isomorphism:

ι : A(K,λ, q,m) ∼= A∨(K,λ, d− 1− q,m).

We can now run the same argument as above, using Proposition 4.2.8. Since the
Satake map in the dual degree shifting is untwisted, in this case we will have 2n-
dimensional Qv̄-ordinary representations ρ̃m∨ lifting

ρι̃∗S∗(m∨) = ρm(−n)⊕ ρ∨,cm (1− n)

with a decomposition

ρ̃m∨ |GFṽ '
(
r1 ∗
0 r2

)
such that the lower right block r2 lifts ρm(−n). This is compatible with the fol-
lowing: in the dual case, we twist by a sufficiently negative power of cyclotomic

to arrange that λ̃ = wP0 λ is dominant for G̃ (using our standard identification of

weights for G and G̃). Then ρ̃m∨ is cohomological of weight wP0 λ, so the τ -labelled
Hodge–Tate weights of ρ̃m∨ |GFṽ are given by

−λτc,1 < · · · < −λτc,n + n− 1 < λτ,n + n < · · · < λτ,1 + 2n− 1.

In particular, the Hodge–Tate weights of r2(n) are as expected. This completes the
proof for all values of q. �

4.2.14. Local–global–compatibility using deformation rings. We formulate a conse-
quence of Proposition 4.2.13 in terms of Galois deformation rings. The local defor-
mation rings we need were defined in §3.3.

Theorem 4.2.15. Suppose that F is an imaginary CM field that contains an imagi-
nary quadratic field. Let p be a prime which splits in an imaginary quadratic subfield
of F . Let T be a finite set of finite places of F , which contains Sp and which is
stable under complex conjugation, and such that the following condition is satisfied:

• Let v /∈ T be a finite place, with residue characteristic `. Then either
T contains no `-adic places and ` is unramified in F , or there exists an
imaginary quadratic subfield of F in which ` splits.

Let K ⊂ G(AF+,f ) = GLn(AF,f ) be a good subgroup with Kv = GLn(OFv ) ∀v 6∈ T .
Fix distinct places v̄, v̄′ ∈ Sp. Let λ be a dominant weight for G.

We fix a standard parabolic Qv̄ ⊂ Pv̄ and suppose we are in one of three cases:

(cr-ord) ιṽ(Qv̄) is the standard parabolic given by the partition (n, 1, . . . , 1) of 2n.
(ord) ιṽ(Qv̄) = B2n

(cr) Qv̄ = Pv̄.

Suppose that Kv̄ = Qv̄ ∩G(F+
v̄ ) and let m ⊂ TQv̄,{v̄−ord} be a maximal ideal in

the support of H∗(XK ,Vλ).
Assume that:

(1) We have ∑
v̄′′∈S̄p
v̄′′ 6=v̄,v̄′

[F+
v̄′′ : Qp] ≥

1

2
[F+ : Q].

(2) m is a non-Eisenstein maximal ideal such that ρ̄m is decomposed generic.
(3) For all ν ∈ XQv̄ , the Hecke operator [Kv̄ν($v̄)Kv̄] is not contained in m.
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Then there exists an integer N ≥ 1, depending only on n and [F+ : Q], a nilpotent
ideal J of TQv̄,{v̄−ord}(RΓ(XK ,Vλ)m) with JN = 0 and a continuous n-dimensional
representation

ρm : GF,T → GLn(TQv̄,{v̄−ord}(RΓ(XK ,Vλ)m)/J)

satisfying

• For each place v /∈ T of F , ρm is unramified and the characteristic polyno-
mial of ρm(Frobv) is equal to the image of Pv(X).

Moreover, the induced map tρm : R�
ρm
→ TQv̄,{v̄−ord}(RΓ(XK ,Vλ)m)/J has the

following property in each of our three cases:

(cr-ord) The restriction of tρm to R�
ρm|GFṽ

factors through R4,λṽρm|GFṽ
and the restric-

tion to R�
ρm|GFṽc

factors through Rcris,λṽc
ρm|GFṽc

.

(ord) For v|v̄, restriction of tρm to R�
ρm|GFv

factors through R4,λvρm|GFv
.

(cr) For v|v̄, restriction of tρm to R�
ρm|GFv

factors through Rcris,λv
ρm|GFv

.

Proof. The first point is that is enough to prove our statement for Galois represen-
tations with coefficients in TQv̄,{v̄−ord}(RΓ(XK ,Vλ/$m)m) for integers m ∈ Z≥1.
This is because we have an isomorphism (by [NT16, Lemma 3.11])

TQv̄,{v̄−ord}(RΓ(XK ,Vλ)m)
∼→ lim←−

m

TQv̄,{v̄−ord}(RΓ(XK ,Vλ/$m)m).

In fact, we can prove the statement one cohomological degree at a time (cf. the
proof of [ACC+18, Theorem 4.5.1]). Indeed, the kernel of the map

TQv̄,{v̄−ord}(RΓ(XK ,Vλ/$m)m)→
∏
q

TQv̄,{v̄−ord}(Hq(XK ,Vλ/$m)m)

is a nilpotent ideal with vanishing dth power, and a Galois representation with coef-
ficients in a quotient of

∏
q TQv̄,{v̄−ord}(Hq(XK ,Vλ/$m)m) which satisfies condition

(4.2.15) can be conjugated to take values in the image of TQv̄,{v̄−ord}(RΓ(XK ,Vλ/$m)m)
(by Carayol’s lemma, cf. the proof of [ACC+18, Proposition 4.4.8]).

Now our statement follows from Proposition 4.2.13. This produces a lift of the
map R�

ρm|GFv
→ TQv̄,{v̄−ord}(Hq(XK ,Vλ/$m)m)/J to a map with target a finite

flat local O-algebra R�
ρm|GFv

→ Ã. This map factors through the appropriate

(crystalline or ordinary) quotient by the characterising property of this quotient.
�

We also need a small refinement which will help us in a ‘fixed determinant’
setting:

Corollary 4.2.16. In the setting of Theorem 4.2.15, assume moreover that p - n
and we have a quotient map f : TQv̄,{v̄−ord}(RΓ(XK ,Vλ)m)/J → A such that
det(f∗(ρm)) = ψ for a character ψ : GF,T → O× which is crystalline at all places
in Sp with τ -labelled Hodge–Tate weights

∑n
i=1 λτ,i + (n− i) for each τ : F ↪→ E.

Then for v|v̄ the induced map R4,λvρm|GFv
→ A or Rcris,λv

ρm|GFv
→ A factors through the

appropriate fixed determinant ψ lifting ring (cf. §3.3.5).

Proof. This follows from Lemma 3.3.6. �
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4.3. The characteristic 0 case. For simplicity, we restrict to the crystalline case
here. For this subsection, we drop our running assumption that F contains an
imaginary quadratic field.

Theorem 4.3.1. Suppose π is cuspidal automorphic representation of GLn(AF ),
regular algebraic of weight λ, with F a totally real or CM field. Let v be a place of F
dividing p and suppose πGLn(OFv ) and πGLn(OFvc ) are both non-zero. (We allow the
possibility that v = vc, even in the CM case.) Let ι : Qp → C be an isomorphism,

and consider the continuous semisimple representation rι(π) : GF → GLn(Qp)
constructed in [HLTT16]. Assume that:

(1) rι(π) is irreducible and decomposed generic.

Then rι(π)|GFv and rι(π)|GFvc are crystalline with τ -labelled Hodge–Tate weights

λιτ,n < · · · < λιτ,1 + n− 1 for τ : F → Qp inducing v or vc respectively.

Proof. Fix a prime ` such that rι(π) satisfies the decomposed generic condition at
`. Using cyclic base change and Theorem 4.2.15, it suffices to find a cyclic CM
extension F ′/F with the following properties:

(1) F ′ is linearly disjoint from F
ker rι(π)

over F .
(2) F ′ contains an imaginary quadratic field.
(3) Every p-adic place of (F ′)+ splits in F ′.
(4) ` splits completely in F ′.
(5) The places v, vc split completely in F ′.
(6) There is a place w̄ of (F ′)+, lying over the place v̄|v of F+, and another

p-adic place w̄′ of (F ′)+ such that∑
w̄′′|p in (F ′)+

w̄′′ 6=w̄,w̄′

[(F ′)+
w̄′′ : Qp] ≥

1

2
[(F ′)+ : Q].

We can achieve the final property by choosing F ′ with [(F ′)+ : F+] ≥ 4 and with
v̄ split completely in (F ′)+, and then choosing w̄, w̄′ to be two distinct places of
(F ′)+ lying over v̄. We conclude that it is possible to find such an extension F ′. �

5. Automorphy lifting

5.1. A potentially Barsotti–Tate modularity lifting theorem. We begin by
stating the main theorem in this section. In order to get an optimal result for
applications to modularity of elliptic curves, we only consider Galois representations
with inverse-cyclotomic determinant.

Theorem 5.2. Let F be an imaginary CM field and let p be an odd prime. Sup-
pose given a continuous representation ρ : GF → GL2(Qp) satisfying the following
conditions:

(1) ρ is unramified almost everywhere and det(ρ) = ε−1
p .

(2) For each place v|p of F , the representation ρ|GFv is potentially semistable
with all labelled Hodge–Tate weights equal to (0, 1).

(3) ρ is decomposed generic (Definition 2.1.27) and ρ|GF (ζp)
is irreducible.

(4) If p = 5 and the projective image of ρ(GF (ζ5)) is conjugate to PSL2(F5),
we assume further that the extension of F cut out by the projective image
of ρ does not contain ζ5.
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(5) There exists a cuspidal automorphic representation π of PGL2(AF ) and an
isomorphism ι : Qp ∼= C satisfying the following conditions:
(a) π is regular algebraic of weight 0.
(b) For each place v|p where ρ|GFv is potentially crystalline, rι(π)|GFv is

potentially ordinary of weight 0 (in the sense of [Ger19, §5.2]) if and
only if ρ|GFv is potentially ordinary of weight 0. We moreover assume
that recFv (πv) has monodromy operator 0.

(c) For each place v|p where ρ|GFv is not potentially crystalline, π is ι-
ordinary of weight 0 at v and rι(π)|GFv is not potentially crystalline.

Then ρ is automorphic: there exists a cuspidal automorphic representation Π of
PGL2(AF ), regular algebraic of weight 0, such that ρ ∼= rι(Π).

Remark 5.2.1. Using Theorem 4.2.15, we can replace the assumption that rι(π)|GFv
is potentially ordinary of weight 0 at certain places v with an assumption on πv.

Remark 5.2.2. We restrict to Galois representations with inverse-cyclotomic deter-
minant, as in [AKT19], so that we can handle the case where p = 3 and the image
of ρ(GF (ζ3)) is SL2(F3).

Remark 5.2.3. We could consider also the Fontaine–Laffaille case, for arbitrary
dimension n Galois representations – namely, assume that p is unramified in F and
that the weight λ satisfies the condition:

(5.2.1) λτ,1 − λτ,n < p− n for all τ ∈ Hom(F,E).

Using the local-global compatibility result given by Theorem 4.2.15 instead of The-
orem [ACC+18, Theorem 4.5.1], one could also prove an automorphy lifting the-
orem in this case that strenghtens [ACC+18, Theorem 6.1.1]. The restrictions on
the Hodge–Tate weights in the automorphy lifting theorem in loc. cit. are stronger
than the condition in (5.2.1) only because of restrictions in the corresponding result
on local-global compatibility. The rest of the argument would go through verbatim.

5.3. Galois deformation theory. To prove our automorphy lifting theorem we
apply the patching method in [ACC+18, §6], making modifications as in [AKT19]
to avoid the assumption that there is a σ ∈ GF − GF (ζp) such that ρ(σ) is scalar
and to include cases with p = 3 or 5 where ρ|GF (ζp)

does not have enormous im-

age. In addition, we work with local lifting rings at p that have two irreducible
components (either ordinary/non-ordinary or crystalline ordinary/non-crystalline
ordinary), which is why we need assumption (5b) in this theorem. The fact that
these local lifting rings have generically reduced special fibre, which we will re-
call shortly, is important for implementing (derived) Ihara avoidance in a situation
where local lifting rings have more than one component.

We adopt all the terminology and notation of [ACC+18, §6.2.1], although the
coefficient ring ‘Λ’ appearing there will always be O for us, and our Galois rep-
resentations will all be two-dimensional. So, we fix a continuous and absolutely
irreducible ρ : GF → GL2(k), and let S be a finite set of finite places of F contain-
ing Sp and all the places where ρ is ramified.

For each v ∈ S, we have a local lifting ring R�
v for ρv := ρ|GFv and the notion

of a local deformation problem Dv: a set valued functor on CNLO satisfying some
conditions which in particular imply that it is represented by a quotient Rv of R�

v .
A global deformation problem is a tuple

(ρ, S, {Rv}v∈S),
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where for each v ∈ S, Rv is a quotient of R�
v representing a local deformation

problem for ρv.
A global deformation problem with fixed determinant is a tuple

(ρ, ψ, S, {Rv}v∈S),

where ψ : GF,S → O× is a character which lifts det(ρ), (ρ, S, {Rv}v∈S) is a global
deformation problem, and the lifts parameterized by each Rv have determinant
ψ|GFv .

If S is a global deformation problem (with or without fixed determinant), and
T is a subset of S, we have the functor DTS of T -framed deformations of type S.
When T = ∅, we denote the functor (of deformations of type S) by DS .

The functors DS and DTS are represented by CNLO-algebras RS and RTS , respec-
tively.

For a global deformation problem S = (ρ, S, {Rv}v∈S) (or one with fixed deter-

minant, S = (ρ, ψ, S, {Rv}v∈S)) and T ⊂ S, we define RT,loc
S = ⊗̂v∈TRv. There is

a natural local O-algebra map RT,loc
S → RTS .

We are assuming that p is odd. We will make use of the following local defor-
mation problems (which we identify in terms of their representing ring), where ψ
always denotes a fixed determinant character.

• Fixed determinant lifting rings Rψv , parameterizing lifts of ρ|GFv with de-
terminant ψ|GFv . We will make use of these rings when v /∈ Sp and

H2(Fv, ad0ρ) = 0, in which case Rψv is formally smooth over O of rela-
tive dimension 3.
• Fixed determinant ‘level raising’ lifting rings Rψ,χv , for v with qv ≡ 1 mod p

and ρ|GFv trivial, and a character χ : O×Fv → O
× which is trivial modulo

$ (cf. [AKT19, §A.1.2]). They classify lifts ρ with determinant ψ and
characteristic polynomial

charρ(σ)(X) = (X − χ(Art−1
Fv

(σ)))(X − χ−1ψ(Art−1
Fv

(σ)))

for all σ ∈ IFv .

• Barsotti–Tate lifting ringsRψ,BT
v for v|p. These are the ringsR

cris,(0,0)τ∈Hom(Fv,E),ψ

ρv
in the notation of §3.3. Note that we assume that ψ|GFv is crystalline with
all labelled Hodge–Tate weights equal to 1 and that it lifts det ρv for this
ring to be defined. In practice, we will take ψ to be the inverse of the
cyclotomic character.

5.3.1. Ordinary deformation rings. We will also use, when v | p, the ordinary lifting

ringR
4,(0,0)τ∈Hom(Fv,E),ψ
v with fixed determinant and Hodge–Tate weights (0, 1). For

simplicity, we only consider the case ψ = ε−1
p , with ρ|GFv trivial and εp trivial on

GFv , and set

R4v := R
4,(0,0)τ∈Hom(Fv,E),ψ
v

in the notation of §3.3.
We recall some properties of R4v , following [Sno18]. Note that twisting by the

cyclotomic character and using the reducedness of R4v (Theorem 3.3.3) shows that
our lifting ring can indeed be identified with the ring denoted by R in [Sno18,
Proposition 4.3.2].
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Proposition 5.3.2. (1) Spec(R4v ) is equidimensional of dimension [Fv : Qp]+
4, with two irreducible components Xcr = Spec(R4,crv ), Xst = Spec(R4,stv )
characterized by their points valued in finite extensions E′/E:
• x : R4v → E′ factors through R4,crv if and only if ρx is crystalline.
• x : R4v → E′ factors through R4,stv if and only if ρx is conjugate to a

representation of the form

(
1 ∗
0 ε−1

p

)
.

(2) Each generic point of Spec(R4v /$) is the specialization of a unique generic
point of Spec(R4v ).

Proof. The first part follows from [Sno18, Proposition 4.3.2]. The second part also
follows from Snowden’s results, as we now explain. It suffices to show that the
dimension of Xcr ∩ Xst ∩ Spec(R4v /$) is < [Fv : Qp] + 3, as this shows that
there is no point of large enough dimension to be a generic point of Spec(R4v /$)
generalizing to both generic points of Spec(R4v ).

Snowden defines another ring R̃4v [Sno18, Proposition 4.4.3]. The ring R̃4v is

a quotient (O-flat and reduced) of the finite R
�,ε−1

p
v -algebra given by adjoining

a root of the characteristic polynomial of a lift of Frobenius under the universal

lifting of ρ|GFv . It comes with a finite morphism π : Spec(R̃4v )→ Spec(R4v ) which
is an isomorphism after inverting p. In particular, π is surjective and induces a
bijection between irreducible components. We denote the irreducible components

of Spec(R̃4v ) lying over Xcr and Xst by X̃cr and X̃st respectively. Morevoer,

π induces an isomorphism X̃st ∼= Xst. From this, we deduce that π induces a

finite surjective map X̃st ∩ X̃cr → Xst ∩ Xcr and hence a finite surjective map

X̃st ∩ X̃cr ∩ Spec(R̃4v /$) → Xcr ∩ Xst ∩ Spec(R4v /$). So we can bound the
dimension of the target of this map by bounding the dimension of the source.

Snowden explicitly describes the mod $ fibre Spec(R̃4v /$) [Sno18, Theorem 4.6.1,

Lemma 4.6.4]. Its irreducible components are the mod $ fibres of X̃st and X̃cr,
and they intersect in a proper closed subset (of dimension [Fv : Qp] + 2). �

Lemma 5.3.3. Each generic point of Spec(R
ε−1
p ,BT
v /$) is the specialization of a

unique generic point of Spec(R
ε−1
p ,BT
v ).

Proof. We let R = R
ε−1
p ,BT
v . The lemma follows from generic reducedness of

Spec(R/$) and the fact that every generic point of Spec(R) has characteristic
0. The generic reducedness follows from [CEGS, Theorem 1.3]. This proposition

applies to the lifting ring RBT
v = R

ψ,(0,1)τ∈Hom(Fv,Qp)

v without fixed determinant, but
since p is odd RBT

v is formally smooth over R. So we deduce that R is also gener-
ically reduced. Every generic point of Spec(R) has characteristic 0 because R is
O-flat. To deduce the claim about generic points of Spec(R/$), let p ∈ Spec(R) be
the image of a generic point of Spec(R/$). Since Spec(R/$) is generically reduced,
Rp/$Rp = (R/$)p is a field. Now we know that Rp is a Noetherian local ring with
a principal maximal ideal; it is therefore a local principal ideal ring with non-zero
ideals generated by powers of $. Since p is not a generic point of Spec(R), Rp has
dimension 1 and (0) is its unique minimal prime (in particular, Rp is a DVR). �

Lemma 5.3.4. Let v be a place of F with v|p. Suppose that ρ|GFv is trivial, the

residue field kv is not equal to Fp, and R
ε−1
p ,BT
v is non-zero. Then Spec(R

ε−1
p ,BT
v )
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has exactly two irreducible components, one whose points correspond to ordinary
Galois representations and one whose points correspond to non-ordinary Galois
representations.

Proof. This follows from results of Kisin [Kis09, Corollary 2.5.16] and Gee [Gee06,
Proposition 2.3]. �

Definition 5.3.5. A Taylor–Wiles datum for a global deformation problem S is a
tuple (Q,N, (αv,1, αv,2)v∈Q) consisting of:

• A finite set of finite places Q of F , disjoint from S, and a positive integer
N such that qv ≡ 1 mod pN for each v ∈ Q.
• For each v ∈ Q and i ∈ {1, 2}, distinct unramified k-valued characters

αv,1, αv,2 such that ρ|GFv ∼=
⊕2

i=1 αv,i.

We call N the level of the Taylor–Wiles datum.
If (Q,N, (αv,1, αv,2)v∈Q) is a Taylor–Wiles datum for S, then we define a new

global deformation problem

SQ = (ρ, S ∪Q, {Rv}v∈S ∪ {R�
v }v∈Q)

(respectively, SQ = (ρ, ψ, S ∪Q, {Rv}v∈S ∪ {Rψv }v∈Q) if S has fixed determinant).

5.4. Patching. Our set-up is very close to that of [ACC+18, §6]. First we give
an axiomatic description of the kinds of objects which will be the output of the
patching method, and deduce a formal modularity lifting result.

We assume given the following objects:

(1) A power series ring S∞ = O[[X1, · · · , Xr]] with augmentation ideal a∞ =
(X1, . . . , Xr).

(2) Perfect complexes C∞, C
′
∞ of S∞-modules, and a fixed isomorphism

C∞ ⊗L
S∞ S∞/$ ∼= C ′∞ ⊗L

S∞ S∞/$

in D(S∞/$).
(3) Two S∞-subalgebras

T∞ ⊂ EndD(S∞)(C∞)

and

T ′∞ ⊂ EndD(S∞)(C
′
∞),

which have the same image in

EndD(S∞/$)(C∞ ⊗L
S∞ S∞/$) = EndD(S∞/$)(C

′
∞ ⊗L

S∞ S∞/$),

where these endomorphism algebras are identified using the fixed isomor-
phism in (2). Call this common image T∞. Note that T∞ and T ′∞ are finite
S∞-algebras.

(4) Two Noetherian complete local S∞-algebras R∞ and R′∞ and surjections
R∞ � T∞/I∞, R′∞ � T ′∞/I

′
∞, where I∞ and I ′∞ are nilpotent ideals. We

write I∞ and I
′
∞ for the image of these ideals in T∞. Note that it then

makes sense to talk about the support of H∗(C∞) and H∗(C ′∞) over R∞,
R′∞, even though they are not genuine modules over these rings. These
supports actually belong to the closed subsets of SpecR∞, SpecR′∞ given
by SpecT∞, SpecT ′∞, and hence are finite over SpecS∞.
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(5) An isomorphism R∞/$ ∼= R′∞/$ compatible with the S∞-algebra struc-
ture and the actions (induced from T∞ and T ′∞) on

H∗(C∞ ⊗L
S∞ S∞/$)/(I∞ + I

′
∞) = H∗(C ′∞ ⊗L

S∞ S∞/$)/(I∞ + I
′
∞),

where these cohomology groups are identified using the fixed isomorphism.
(6) Integers q0 ∈ Z and l0 ∈ Z≥0.

Assumption 5.4.1. Our set-up is assumed to satisfy the following:

(1) dimR∞ = dimR′∞ = dimS∞ − l0, and dimR∞/$ = dimR′∞/$ =
dimS∞ − l0 − 1.

(2) (Behavior of components) Assume that each generic point of SpecR∞/$ is
the specialization of unique generic points of SpecR∞ and SpecR′∞. More-
over, we assume that SpecR∞ and SpecR′∞ are O-flat and equidimen-
sional. These hypotheses imply that every generic point of SpecR∞ and
SpecR′∞ has characteristic 0 (by O-flatness) and SpecR∞/$, SpecR′∞/$
are equidimensional (by the principal ideal theorem).

(3) (Generic concentration) We have

H∗(C∞ ⊗L
S∞ S∞/a∞)[

1

p
] 6= 0,

and these groups are non-zero only for degrees in the interval [q0, q0 + l0].
(4) (Automorphic point) We fix a characteristic 0 point x ∈ Spec(T∞/a∞T∞).

Note that SuppR∞(H∗(C∞)) = SpecT∞ and SuppR′∞(H∗(C ′∞)) = SpecT ′∞.

(This is because the kernel of T∞ → EndS∞(H∗(C∞)) is nilpotent and the same
for T ′∞ and C ′∞.)

Proposition 5.4.2. Consider the automorphic subset of SpecR∞:

SuppR∞(H∗(C∞)) = SpecT∞ ⊂ SpecR∞.

(1) There exists an irreducible component Ca ⊂ SpecR∞, containing the auto-
morphic point x, with Ca ⊂ SpecT∞.

(2) Let Ca ⊂ SpecT∞ be an irreducible component of SpecR∞ which contains
x. Suppose C ⊂ SpecR∞ is an irreducible component such that the subsets
C ∩ Spec(R∞/$) and Ca ∩ Spec(R∞/$) of Spec(R∞/$) contain generic
points xC , xa respectively, which generalize to the same generic point x′ of
SpecR′∞. Then C ⊂ SpecT∞.

Proof. First we note that the pullback of x to S∞ is a∞. We write x̃ ∈ Spec(T∞⊗S∞
S∞,a∞) for the prime ideal extending x.

It follows from our assumptions and [CG18, Lemma 6.2], just as in the proof of
Proposition [ACC+18, Proposition 6.3.8], that H∗(C∞,a∞) is non-zero exactly in
degree q0+l0 and that M∞ := Hq0+l0(C∞,a∞) is a Cohen–Macaulay S∞,a∞ -module
with depth and dimension equal to dimS∞,a∞ − l0 = dimS∞ − l0 − 1.

Since the image of a∞S∞,a∞ in End(Hq0+l0(C∞,a∞))) is contained in the image
of x̃, we deduce that depth(x̃,M∞) ≥ dimS∞,a∞ − l0. An M∞-regular sequence in
x̃ remains regular on M∞,x̃, and the localization (T∞⊗S∞S∞,a∞)x̃ is equal to T∞,x.
So depthT∞,x(M∞,x̃) ≥ dimS∞,a∞ − l0. In particular, dimT∞,x ≥ dimS∞− l0− 1,
so the one-dimensional prime x is contained in an irreducible component of SpecT∞
of dimension at least dimS∞ − l0. By dimension considerations, this irreducible
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component can be identified with an irreducible component of SpecR∞. This shows
the existence of an irreducible component Ca as in the first part.

For the second part, we let xa be the generic point of Ca. Since the pull-
back of xa to S∞ is contained in a∞, the ‘localization’ C∞,xa defined following
[ACC+18, Lemma 6.3.3] is quasi-isomorphic to the complex with M∞,xa in degree
q0 + l0 and zero elsewhere. In particular, with the length function on complexes
defined in [ACC+18, §6.3.1], we have lgT∞,xa (C∞,xa) 6= 0. The generic point xa
of SpecR∞/(xa, $) given to us in the statement of the proposition has dimension
dimS∞ − l0 − 1 and is a generic point of SpecR∞/($) which lies in SpecT∞. Let
x′a denote the corresponding point of SpecR′∞/($). It has a unique generalization
x′ ∈ SpecR′∞.

Now let xC be the generic point of C. We wish to show that it lies in SpecT∞.
We are given a generic point xC of SpecR∞/(xC , $), which must have dimen-
sion dimS∞ − l0 − 1 and be a generic point of SpecR∞/($). Let x′C denote the
corresponding point of SpecR′∞/($), which also generalizes to x′ by hypothesis.

We now repeatedly use [ACC+18, Lemma 6.3.7]. As lgT∞,xa (C∞,xa) 6= (0),

we deduce that lgT∞,xa ((C∞ ⊗L
S∞

S∞/($))xa) 6= 0. Hence x′a ∈ SpecT ′∞ and

lgT ′∞,x′a
((C ′∞ ⊗L

S∞
S∞/($))x′a) 6= 0, from which we deduce that x′ ∈ SpecT ′∞ and

lgT ′∞,x′
(C ′∞,x′) 6= 0. We further deduce that x′C ∈ SpecT ′∞ and lgT ′

∞,x′
C

((C ′∞ ⊗L
S∞

S∞/($))x′C ) 6= 0. Hence xC ∈ SpecT∞ and lgT∞,xC
((C∞ ⊗L

S∞
S∞/($))xC ) 6= 0,

from which we finally deduce that xC ∈ SpecT∞ (and lgT∞,xC
(C∞,xC ) 6= (0)). �

Corollary 5.4.3. Let C be an irreducible component of SpecR∞ satisfying the
assumption of Proposition 5.4.2(2) for some ‘automorphic’ component Ca. Let x
be a point of C, and let y be the contraction of x in S∞. Then the support of
H∗(C∞ ⊗L

S∞
S∞/y)y over SpecR∞ contains x. If y is one-dimensional of charac-

teristic 0 this says that x is in the support of H∗(C∞ ⊗L
S∞

S∞/y)[1/p].

Proof. This follows from Proposition 5.4.2(2) by considering the Tor spectral se-
quence computing the cohomology of C∞,y⊗L

S∞,y
S∞,y/y, as in the proof of [ACC+18,

Corollary 6.3.9]. �

5.5. Hecke algebras and cohomology of locally symmetric spaces for PGL2.
We now go back to the constructions of §2.1.2, which we apply to G = G = PGL2,F

for an imaginary CM field F . We need to drop the assumption that K =
∏
vKv ⊂

G(AF,f ) is neat. We assume for convenience that K ⊂ PGL2(ÔF ). Thanks to
the results of [AKT19, §5], all the properties we need for cohomology of locally
symmetric spaces for PGL2 can be deduced from the case of GL2 with neat level.

We fix a finite set S of finite places of F such that Sp ⊂ S and Kv = PGL2(OFv )
for v /∈ S. We assume that R = O or O/$m for some m ∈ Z≥1. Let V be a R[KS ]-
module, finite free as an R-module, and such that V/$r is a smooth KS-module
for each r ≥ 1.

We will make use of the Hecke algebra H(G
S
,KS). For each finite place v /∈ S

and 1 ≤ i ≤ 2, we write Tv,i for the image of Tv,i ∈ H(GL2(Fv),GL2(OFv )) in

H(PGL2(Fv),PGL2(OFv )). In fact Tv,2 = 1 in H(G
S
,KS). We write Pv(X) for

the image of the polynomial (2.1.5) in H(PGL2(Fv),PGL2(OFv ))[X].
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We consider the object

C•(K,V) := lim←−
r

RΓ(K,RΓ(XG,V/$
r))

of D+(R) (we do not need to take a limit if R is finite), which comes equipped with

an action of H(G
S
,KS).

More generally, if K ′ =
∏
K ′v ⊂ K is an open normal subgroup with (K ′)S =

KS , then we consider the object

C•(K/K ′,V) = lim←−
r

RΓ(K ′, RΓ(XG,V/$
r))

of D+(R[K/K ′]), which again comes with an action of H(G
S
,KS).

We can construct C•(K/K ′,V), with its Hecke action, by taking a derived limit
of the complexes HomZ[K′](C•,V/$r), where C• denotes the complex of singular

chains with Z-coefficients on XG. Commuting the derived limit with cohomology of
K/K ′, using [Sta13, Tag 08U1], we see that RΓ(K/K ′, C•(K/K ′,V)) = C•(K,V).

Lemma 5.5.1. There are natural Hecke equivariant quasi-isomorphisms A(K/K ′,V) ∼=
C•(K/K ′,V), where A(K/K ′,V) are the complexes constructed in [AKT19, §5.1]

using the singular chains of X
dis

G .

Proof. We can reduce to the case where V = V/$r and K ′ is neat. Pullback by

the continuous map X
dis

G → XG induces a Hecke equivariant map A(K/K ′,V) →
C•(K/K ′,V) inducing the identity on the cohomology groups, which are identified

with H∗(X
G

K′ ,V) on both sides. �

Since K is not assumed to be neat, C•(K,V) is not necessarily a perfect complex.
However, using the Hochschild–Serre spectral sequence to compute its cohomology
in terms of C•(K ′,V) for K ′ ⊂ K a neat open normal subgroup, we see that its
cohomology groups are finitely generated R-modules [AKT19, Lemma 5.1].

A similar argument shows that the O-algebras

TS
G

(C•(K/K ′,V)) ⊂ EndD+(R[K/K′])(C
•(K/K ′,V))

generated by the image of H(G
S
,KS) are O-finite [AKT19, Lemma 5.2].

As a consequence, for a maximal ideal m ⊂ TS
G

(C•(K/K ′,V)), we have a di-

rect summand C•(K/K ′,V)m cut out by an idempotent em in the Hecke algebra
[AKT19, Prop. 3.6]

Proposition 5.5.2. Suppose that p is odd, and that S satisfies the following con-
ditions:

(1) S is stable under complex conjugation
(2) F contains an imaginary quadratic field. Let v /∈ S be a finite place, with

residue characteristic l. Then either S contains no l-adic places and l is
unramified in F , or there exists an imaginary quadratic subfield of F in
which l splits.

Then for any maximal ideal m ⊂ TS
G

(C•(K/K ′,V)), there exists a semisimple con-
tinuous representation

ρm : GF,S → GL2(TS
G

(C•(K/K ′,V))/m)

https://stacks.math.columbia.edu/tag/08U1
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such that for each v /∈ S,

det(X − ρm(Frobv)) = Pv(X) mod m.

Suppose moreover that ρm is absolutely irreducible. Then there exists an integer
N ≥ 1, depending only on [F : Q], an ideal J ⊂ TS

G
(C•(K/K ′,V)) with JN = 0,

and a continuous representation

ρm : GF,S → GL2(TS
G

(C•(K/K ′,V))/J)

such that for each v /∈ S,

det(X − ρm(Frobv)) = Pv(X) mod J.

In particular, we have det ρm = ε−1
p .

Proof. This is essentially [AKT19, Cor. 5.7] (the assumption there that K/K ′ is

abelian is not necessary). We let KG and K ′G be the pre-images in GL2(ÔF ) of K
and K ′ respectively. Then [AKT19, Corollary 5.5] identifies TS

G
(H∗(C•(K/K ′,V)))

as a quotient of a GL2-Hecke algebra TSG(H∗(C•(KG/K
′
G,V))). We then reduce

to the case where KG = K ′G is a neat level subgroup in GL2, as in the proofs of
[AKT19, Theorems 5.6, 5.8], and finally appeal to [ACC+18, Theorems 2.3.5, 2.3.7].
The determinant of ρm is ε−1

p by Chebotarev density, considering the constant terms
of the polynomials Pv(X). �

Proposition 5.5.3. Let m be a maximal ideal of TS
G

(C•(K,V)) with residue field
k. We make the following assumptions:

(1) V ⊗ k ∼= k (with trivial action of KS).
(2) p is odd and ρm is absolutely irreducible.
(3) ζp ∈ F .

Then the cohomology groups Hi(C•(K,V))m vanish for i > dimRX
G. In particular,

C•(K,V)m is a perfect complex of R-modules.

Proof. This follows from [AKT19, Thm. 5.11]. �

5.6. The proof of Theorem 5.2. We first prove a version of Theorem 5.2 with
some additional assumptions. The general case will follow using solvable base
change, as in [ACC+18, §6.5.12] and the proof of [AKT19, Theorem A.14].

We fix the following data:

(1) An imaginary CM field F , an odd prime p and an isomorphism ι : Qp ∼= C.
(2) A finite set S of finite places of F , including the places above p.
(3) A (possibly empty) subset R ⊂ S of places prime to p.
(4) A decomposition Sp = Scrp

∐
Sstp .

(5) A cuspidal automorphic representation π of PGL2(AF ) which is regular
algebraic of weight 0. We may identify π with a cuspidal automorphic
representation of GL2(AF ) with trivial central character.

We assume the following conditions are satisfied:

(5) If l is a prime lying below an element of S, or which is ramified in F , then
F contains an imaginary quadratic field in which l splits. In particular,
each place of S is split over F+ and the extension F/F+ is everywhere
unramified.
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(6) For each v ∈ Sp, let v denote the place of F+ lying below v. Then there
exists a place v′ 6= v of F+ such that v′|p and∑

v′′ 6=v,v′
[F+
v′′ : Qp] >

1

2
[F+ : Q].

Moreover, we assume that the residue field of v is strictly bigger than Fp.
(7) πv is unramified for v /∈ R ∪ Sstp .

(8) If v ∈ R ∪ Sstp , then πIwv
v 6= 0.

(9) If v ∈ Sstp , then π is ι-ordinary of weight 0 at v and rι(π)|GFv is non-
crystalline ordinary.

(10) If S = Sp ∪R, then ζp ∈ F .
(11) If S 6= Sp ∪R, then S − (Sp ∪R) contains at least two places with distinct

residue characteristics.
(12) If v ∈ S − (R ∪ Sp), then v /∈ Rc and H2(Fv, ad0rπ,ι) = 0.
(13) rπ,ι is decomposed generic and rπ,ι|GF (ζp)

is irreducible.

(14) rπ,ι|GFv is the trivial representation for v ∈ Sp ∪ R. (In particular, by
considering determinants, qv ≡ 1 mod p for v ∈ R.)

(15) If p = 5 and the projective image of rπ,ι(GF (ζ5)) is conjugate to PSL2(F5),
we assume further that the extension of F cut out by the projective image
of rπ,ι does not contain ζ5.

Proposition 5.6.1. With notation and assumptions as in (1)–(15), suppose given
a continuous representation ρ : GF → GL2(Qp) satisfying the following conditions:

(1) We have ρ ∼= rπ,ι and det(ρ) = ε−1
p .

(2) For each place v ∈ Scrp , ρ|GFv is Barsotti–Tate.
(3) For each place v ∈ Scrp , rι(π)|GFv is ordinary if and only if ρ|GFv is ordi-

nary.
(4) For each place v ∈ Sstp , ρ|GFv is a non-crystalline extension of ε−1

p by the
trivial character.

(5) For each finite place v /∈ S of F , ρ|GFv is unramified.
(6) For each place v ∈ R, ρ|GFv is unipotently ramified.

Then ρ is automorphic: there exists a cuspidal automorphic representation Π of
PGL2(AF ) of weight 0 such that ρ ∼= rι(Π).

Proof. We define a compact open subgroup K =
∏
vKv of PGL2(ÔF ) as follows:

• If v /∈ S or v ∈ Scrp , then Kv = PGL2(OFv ).

• If v ∈ R ∪ Sstp , then Kv = Iwv.
• If v ∈ S − (Sp ∪ R), then Kv = Iwv,1 is the pro-v Iwahori subgroup of

PGL2(OFv ).

If S − (Sp ∪R) non-empty, K is neat, by the same argument as [ACC+18, Lemma
6.5.2]. We set T = S ∪ Sc.

Recalling the unitary group G̃ from §2.1.11 (for n = 2), we need to define stan-

dard parabolic subgroups Qv̄ ⊂ G̃F+
v̄

for each v̄ ∈ Sp. For each v̄ we choose a place

of F , ṽ|v̄. We make this choice so that if at least one v|v̄ is in Sstp , then ṽ is in Sstp .

Then for each v̄ ∈ Sp we consider the following three cases:

(cr-ord) ṽ ∈ Sstp and ṽc ∈ Scrp . Then ιṽ(Qv̄) is the standard parabolic given by the
partition (2, 1, 1).
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(ord) ṽ ∈ Sstp and ṽc ∈ Sstp . Then ιṽ(Qv̄) = B4, the Borel subgroup.
(cr) ṽ ∈ Scrp and ṽc ∈ Scrp . Then Qv̄ = Pv̄, the Siegel parabolic.

We have a Hecke algebra T
QS̄p ,S̄p−ord

G
(C•(K,O)), defined as in §4.2.1 by adding

Hecke operators at places v|p to TT (C•(K,O)).

Then we can find a coefficient field E ⊂ Qp and a maximal ideal m ⊂ T
QS̄p ,S̄p−ord

G
(C•(K,O))

such that ρm : GF,T → GLn(Qp) satisfies ρm
∼= rι(π) (cf. [AKT19, Theorem 5.10]).

Moreover, for v ∈ Sstp , since π is ι-ordinary at v, the Hecke operators Uv :=

[Kvι
−1
v

(
$v 0
0 1

)
Kv] are not in m.

Enlarging E if necessary, we assume that the residue field of m is equal to k and
that k contains all eigenvalues of the elements of ρm(GF ).

We now describe the global deformation problems we will be working with. They
will depend on a choice of character χ =

∏
v∈R χv :

∏
v∈RO

×
Fv
→ O× which is

trivial modulo $.
For each χ, we have the global deformation problem with fixed determinant

Sχ = (ρ, ε−1
p , S, {Rε

−1
p ,BT
v }v∈Scrp ∪ {R

4
v }v∈Sstp ∪ {R

ε−1
p ,χv
v }v∈R ∪ {R

ε−1
p
v }v∈S−(Sp∪R)).

The character χv : O×Fv → O
× (which we note factors through k×v ) determines a

character

χv : Iwv → O×(
a b
c d

)
7→ χv(a/d).

We have an O[KS ]-module O(χ−1), where KS acts by the projection KS →
KR =

∏
v∈R Iwv

∏
v χv−−−−→ O×.

For each χ, there is a canonical, surjective, O-algebra map

T
QS̄p ,S̄p−ord

G
(C•(K,O(χ−1)))→ T

QS̄p ,S̄p−ord

G
(C•(K, k))

inducing a bijection on maximal ideals. So the maximal ideal m corresponds to

a maximal ideal of T
QS̄p ,S̄p−ord

G
(C•(K,O(χ−1))) for each χ. We abusively denote

all these ideals by m. The localisation C•(K,O(χ−1))m is a perfect complex of O-
modules (using Proposition 5.5.3 when K is not neat). We will also consider the

Hecke algebra T
S,QS̄p ,S̄p−ord

G
(C•(K,O(χ−1))m) obtained by adding in the spherical

Hecke operators at places in Sc − S to T
QS̄p ,S̄p−ord

G
(C•(K,O(χ−1))m).

Proposition 5.6.2. There exists an integer N ≥ 1, depending only on [F : Q],

an ideal J ⊂ T
S,QS̄p ,S̄p−ord

G
(C•(K,O(χ−1))m) such that JN = 0, and a continuous

surjective homomorphism

fSχ : RSχ → T
S,QS̄p ,S̄p−ord

G
(C•(K,O(χ−1))m)/J

such that for each finite place v /∈ S of F , the characteristic polynomial of fSχ ◦ρuniv
Sχ

equals the image of Pv(X) in T
S,QS̄p−ord

G
(C•(K,O(χ−1))m)/J .
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Proof. Proposition 5.5.2 already gives us a representation of GF,S∪Sc with the right
local properties at v /∈ S∪Sc, so it remains to check each prime v ∈ S∪Sc. As in the
proof of Proposition 5.5.2, we reduce to proving a similar local-global compatibility
statement for a neat level in GL2. For v ∈ Sp, we apply Theorem 4.2.15. For
the remaining v, we proceed as in the proof of [ACC+18, Proposition 6.5.3], using
[ACC+18, Theorem 3.1.1]. �

To complete the proof of Proposition 5.6.1 we need to show that the point of
Spec(RS1

) given by ρ is in the support of H∗(C•(K,O)m). Then [AKT19, Theorem
5.10] implies that ρ is automorphic of weight 0.

We need a local–global compatibility statement allowing ramification at Taylor–
Wiles primes. So we suppose we have a Taylor–Wiles datum (Q,N, (αv,1, αv,2)v∈Q)
for S1 (which is then also a Taylor–Wiles datum for every Sχ). We assume that
each place of Q has residue characteristic split in an imaginary quadratic subfield
of F . Now we define deformation problems

Sχ,Q = (ρ, ε−1
p , S∪Q, {Rε

−1
p ,BT
v }v∈Scrp ∪{R

4
v }v∈Sstp ∪{R

ε−1
p ,χv
v }v∈R∪{R

ε−1
p
v }v∈S∪Q−(Sp∪R)).

For v ∈ Q, let ∆v = k×v (p), the maximal p-power quotient of k×v . As in [AKT19,

§A.1.4], the local lifting ring R
ε−1
p
v is equipped with the structure of an O[∆v]-

algebra. Setting ∆Q =
∏
v∈Q ∆v, we obtain an O[∆Q]-algebra structure on RSχ,Q .

We define subgroups K1(Q) ⊂ K0(Q) ⊂ K, with K0(Q)/K1(Q) ∼= ∆Q as in
[ACC+18, §6.5] (taking the image in PGL2 of the subgroups defined there). From
this point, we follow loc. cit. very closely, so we just explain the key points of the
argument.

There is a direct summand C•(K0(Q)/K1(Q),O(χ−1))nQ1
of C•(K0(Q)/K1(Q),O(χ−1))

in D(O[∆Q]), defined using a maximal ideal in a Hecke algebra with operators Uv,i
at places v ∈ Q. It is a perfect complex, by [AKT19, Theorem 5.11].

We write Tχ,Q for the image of the map

T
S∪Q,QS̄p ,S̄p−ord

G
⊗O O[∆Q]→ EndD(O[∆Q])

(
C•(K0(Q)/K1(Q),O(χ−1))nQ1

)
.

Proposition 5.6.3. There exists an integer N ≥ 1, depending only on [F : Q],
an ideal J ⊂ Tχ,Q such that JN = 0, and a continuous surjective O[∆Q]-algebra
homomorphism

fSχ,Q : RSχ,Q → Tχ,Q/J

such that for each finite place v /∈ S ∪ Q of F , the characteristic polynomial of
fSχ,Q ◦ ρuniv

Sχ,Q equals the image of Pv(X) in Tχ,Q/J .

Proof. This is proved in the same way as Proposition 5.6.2, using [ACC+18, The-
orem 3.1.1] to show that fSχ,Q is an O[∆Q]-algebra homomorphism (cf. [ACC+18,
Proposition 6.5.11] and [AKT19, Proposition A.13]). �

It is convenient to patch complexes computing homology, so we define

Cχ,Q := RHomO[∆Q](C
•(K0(Q)/K1(Q),O(χ−1))nQ1

,O[∆Q])

and

Cχ := RHomO(C•(K,O(χ−1))m,O).
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Lemma 5.6.4. Cχ,Q is a perfect complex of O[∆Q]-modules, with a canonical
isomorphism

Cχ,Q ⊗L
O[∆Q] O ∼= Cχ

in D(O).

Proof. This follows from the fact that we can identify Cχ,Q and Cχ with the duals of

perfect complexes computing localisations (at nQ1 and m respectively) of equivariant
homology (see the second part of [AKT19, Theorem 5.11]). �

We now have everything we need to construct the objects required for §5.4, using
[ACC+18, §6.4] and [AKT19, Proposition A.6] (existence of Taylor–Wiles primes)
as in the proof of [AKT19, Theorem A.7]. In particular, we make use of two options
for the tuple of characters χ: firstly, χ = 1, and secondly a fixed tuple, denoted χ,
given by a choice of character χv : O×Fv → O

× with χ2
v 6= 1 which is trivial mod $

for each v ∈ R.
The rings R∞ and R′∞ are power series rings over Rloc = RS,loc

S1
and R′loc =

RS,loc
Sχ respectively, which come equipped with local Rloc-algebra (respectively R′loc-

algebra) surjections R∞ → RS1
(respectively R′∞ → RSχ). We can assume, extend-

ing O if necessary, that all of the irreducible components of the local lifting rings
appearing in the deformation problems S1 and Sχ are geometrically irreducible.

It follows from formal smoothness of R
�,ε−1

p
v for v ∈ S−(R∪Sp), [AKT19, Lemma

A.2], Proposition 5.3.2, Lemma 5.3.3 and [BLGHT11, Lemma 3.3] (which describes
irreducible components of completed tensor products in terms of their factors) that
R∞ and R′∞ satisfy Assumption 5.4.1. In particular, Spec(R′∞) has 2|Sp| irreducible

components, which biject with the irreducible components of R
Sp,loc
Sχ = R

Sp,loc
S1

.

We let Ca be an irreducible component of Spec(R∞) containing the point rπ,ι
with Ca ⊂ Spec(T∞). It exists by Proposition 5.4.2. We let C be an irreducible
component of Spec(R∞) containing the point given by ρ. It follows from conditions
(3) and (4), Proposition 5.3.2, Lemma 5.3.4 and [BLGHT11, Lemma 3.3] that
the generic points of C ∩ Spec(R∞/$) and Ca ∩ Spec(R∞/$) lie in the same
irreducible component of Spec(R′∞). Note that condition (4) ensure that both C
and Ca necessarily lie over the component Xst in Spec(R4v ) for v ∈ Sstp .

We will therefore be able to apply Corollary 5.4.3 to deduce automorphy of ρ.
This completes the proof of Proposition 5.6.1. �

The end of the proof of Theorem 5.2. We will use a variant of [DDT97, Lemma
4.11]:

Lemma 5.6.5. Suppose that G is a finite group with a representatation ρ : G →
GL2(Fp) for an odd prime p. Suppose that the character det ρ : G→ F×p has order
d > 1, and for all g with det ρ(g) 6= 1 we have

(5.6.1) (trρ(g))2 = (1 + det ρ(g))2.

Then ρ|ker(det ρ) is reducible.

Proof. This is an immediate consequence of [DDT97, Lemma 4.11], except when
d = 3. So we assume d = 3. We write Z ⊂ G for the subgroup Z = {g ∈ G :
ρ(g) scalar}. As in loc. cit., (5.6.1) implies that Z ⊂ ker det ρ, so det ρ induces a
surjective homomorphism G′ � Cd, where G′ is the projective image of ρ. Dickson’s
classification implies that ρ is reducible or G′ ∼= A4. In the latter case, set G1 =
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ker(det ρ). We have ρ(G1)/ρ(Z) ∼= Z/2 × Z/2, and it follows that ρ|ker(det ρ) is
reducible. �

It suffices to prove that ρ ∼= rι(Π) for a cuspidal automorphic representation
Π of GL2(AF ); then the fact that det(ρ) = ε−1

p implies that Π has trivial central
character. Let L/F (ζp) be the extension cut out by ρ|GF (ζp)

. If F ′/F is any finite

solvable extension, we denote the base change of π to F ′ by πF ′ .
We choose a finite set V of finite places of F exactly as in the proof of [AKT19,

Theorem A.14], so that:

• For any proper extension L′/F contained in L, there is some v ∈ V not
splitting in L′.
• There is a rational prime q 6= p such that ρ is decomposed generic for q and
V contains all q-adic places of K.
• For each v ∈ V , v - 2p and both ρ and π are unramified at v.

This ensures that if F ′/F is a finite Galois extension in which every place of V
splits, then ρ|GF ′ remains decomposed generic and ρ(GF ′(ζp)) = ρ(GF (ζp)).

Now we choose a solvable, Galois, CM extension F0/F such that:

• Every place of V splits in F0.
• For every finite place w of F0, πIww

F0
6= 0.

• For every finite place w - p of F0, either both πF0,w
and ρ|GF0,w

are un-

ramified, or ρ|GF0,w
is unipotently ramified, qw ≡ 1 mod p, and ρ|GF0,w

is

trivial.
• For each w̄|p in F+

0 , w̄ splits in F0, ρ|GF0,w
is trivial for w|w̄, the residue

field kw is strictly bigger than Fp and there exists a place w′ 6= w of F+
0

such that w′|p and∑
w′′ 6=w,w′

[F+
0,w′′ : Qp] >

1

2
[F+

0 : Q].

• If w lies over a place v of F with ρ|GFv potentially crystalline, then ρ|GF0,w

is crystalline and πF0,w
is unramified. Moreover, rι(π)|GF0,w

is crystalline

and it is ordinary if and only if ρ|GF0,w
is ordinary.

• If w lies over a place v of F with ρ|GFv not potentially crystalline, ρ|GF0,w

is a non-crystalline extension of ε−1
p by the trivial character.

With respect to the penultimate item, we note that it follows from Theorem 4.3.1
that when πF0,w

is unramified, rι(π)|GF0,w
is automatically crystalline with all la-

belled Hodge–Tate weights equal to (0, 1).
Making a further solvable extension F1/F0 by taking a composite with three

imaginary quadratic fields, as in the proof of [AKT19, Theorem A.14], we further-
more satisfy:

• Let R be the set of finite places w - p of F1 such that πF1,w or ρ|GF1,w
are

ramified. Let Sp denote the p-adic places of F1 and set S′ = Sp ∪R. If l is
a rational prime lying below an element of S′, or which is ramified in F1,
then F1 contains an imaginary quadratic field in which l splits.

We can now describe the data we need to apply Proposition 5.6.1 with F = F1,
ρ = ρ|GF1

and π = πF1
. We have already defined the set of places R. We let

Scrp be the set of places w|p where ρ|GF0,w
is crystalline and let Sstp be the set of
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places w|p where ρ|GF0,w
is non-crystalline. For w ∈ Sstp , we know (by assumption)

that rι(π)|GF0,w
is not crystalline, whilst it follows from Theorem 4.2.15 that it is

ordinary.
If ζp ∈ F , we set S = S′ = Sp ∪ R. If ζp /∈ F (which entails ζp /∈ F1),

Lemma 5.6.5 shows that we can find an element g ∈ ρ(GF1
) such that det(g) 6= 1,

and the ratio of the eigenvalues of g does not equal det(g)±1. Using Chebotarev
density, we can find infinitely many finite places v0 of F1 of degree 1 over Q such
that v0 /∈ S′ ∪ Rc, qv0 6≡ 1 mod p, and the ratio of the eigenvalues of ρ(Frobv0)
does not equal q±1

v0
. For such a place, H2(F1,v0

, ad0ρ) = 0 and the rational prime
below v0 splits in any quadratic subfield of F . We choose two such places v0, v

′
0 of

distinct residue characteristic and set S = S′ ∪ {v0, v
′
0}. We are now in a situation

where all the assumptions of Proposition 5.6.1 are satisfied. We deduce that ρ|GF1

is automorphic, and solvable descent [ACC+18, Proposition 6.5.13] completes the
job. �

6. Modularity of elliptic curves over CM fields

In this section, our goal is to combine Theorem 5.2 with the results of [AKT19]
to prove the following:

Theorem 6.1. Let F be an imaginary CM number field with ζ5 /∈ F . Let E/F be
an elliptic curve satisfying one of the following two conditions:

(1) rE,3 is decomposed generic and rE,3|GF (ζ3)
is absolutely irreducible.

(2) rE,5 is decomposed generic and rE,5|GF (ζ5)
is absolutely ireducible.

Then E is modular.

By ‘E is modular’, we mean that either E has CM, or there is a cuspidal, regular
algebraic automorphic representation π of GL2(AF ) which is regular algebraic of
weight 0, with rπ,ι ∼= r∨E,p for a prime p and an isomorphism ι : Qp → C.

Before proving the theorem, we give some corollaries. These will be improved
further in the next section in the special case when F is imaginary quadratic.

Corollary 6.1.1. Let F be an imaginary quadratic field. Let E/F be an elliptic
curve satisfying one of the following two conditions:

(1) rE,3|GF (ζ3)
is absolutely irreducible.

(2) rE,5|GF (ζ5)
is absolutely ireducible.

Them E is modular.

Proof. Combine Theorem 6.1 and Lemma 6.2.2. �

Corollary 6.1.2. Let F be an imaginary CM field that is Galois over Q and such
that ζ5 /∈ F . Then 100% of Weierstrass equations over F , ordered by their height,
define a modular elliptic curve.

Proof. It follows from [AN20, Lemma 2.3] that, if F/Q is finite Galois and E/F
is an elliptic curve such that the image of rE,5 contains SL2(F5), then rE,5 is
decomposed generic. Note than the decomposed generic condition used in loc. cit.
is more restrictive than and therefore implies the one we are using. When the image
of rE,5 contains SL2(F5), we also have that rE,5|GF (ζ5)

is absolutely ireducible, so
the hypotheses of the second part of Theorem 6.1 are satisfied.
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To conclude, we observe that a quantitative version of Hilbert irreducibility, see
for example [Zyw10, Prop. 5.2], implies that 100% of elliptic curves E over a fixed
number field F have the property that the image of rE,5 contains SL2(F5). �

We recall a useful lemma from [AKT19], which is proved using Varma’s results
on local-global compatibility [Var14].

Lemma 6.1.3. Let F be a CM field and let E/F be a modular elliptic curve without
CM, with rπ,ι ∼= r∨E,p for some choice of prime p and isomorphism ι : Qp → C.
Then:

(1) π has trivial central character and weight 0, and is uniquely determined by
E.

(2) For every prime p and isomorphism ι : Qp → C, there is an isomorphism
rπ,ι ∼= r∨E,p.

(3) For every isomorphism ι : Qp → C and finite place v - p of F , there is an

isomorphism WD(r∨E,p|GFv )F−ss ∼= recTFv (πv).

(4) Suppose v|p is a place where E has potentially multiplicative reduction.
Then π is ι-ordinary of weight 0 at v for any ι : Qp → C.

Proof. The first three parts are contained in [AKT19, Lemma 9.1]. The final part
is proved in the same way as [AKT19, Corollary 9.2]: applying the third part to
r∨E,l for some l 6= p, we see that πv is a twist of the Steinberg representation by a

quadratic character (quadratic since the central character of πv is trivial). Then
the proof of [Ger19, Lemma 5.6] shows that πv is ι-ordinary at v. �

Here is another useful lemma, taken from the proof of [AKT19, Corollary 9.14].

Lemma 6.1.4. Let F be a CM field with ζ5 /∈ F and let E/F be an elliptic curve
such that the projective image of rE,5(GF (ζ5)) is conjugate to PSL2(F5). Then the
extension of F cut out by the projective image of rE,5(GF ) does not contain ζ5.

Proof. The group rE,5(GF (ζ5)) is a subgroup of SL2(F5) surjecting onto PSL2(F5),
so it is equal to SL2(F5). We let G be the kernel of the map from GF to the
projective image of rE,5(GF ) and let H ⊂ G be the kernel of the map from GF (ζ5)

to the projective image of rE,5(GF (ζ5)). The extension of F cut out by the projective
image of rE,5(GF ) contains ζ5 if and only if H = G. Since ζ5 /∈ F , det ρ has order
2 or 4. In the first case, the projective image of rE,5(GF ) is again PSL2(F5) so
[G : H] = [F (ζ5) : F ] > 1. In the second case, [F (ζ5) : F ] > [PGL2(F5) : PSL2(F5)]
which again means H 6= G. �

Now we state a variant of [AKT19, Proposition 9.13]:

Proposition 6.1.5. Let F be an imaginary CM number field, and let

ρ : GF → GL2(F5)

be a continuous homomorphism with determinant ε̄5. We assume ρ is decomposed
generic.

Suppose we have a decomposition S5 = Sst5

∐
Sord

5

∐
Sss

5 of the set of places in
F dividing 5.

Let F avoid/F be a finite Galois extension. Then we can find a solvable CM
extension L/F and an elliptic curve E/L satisfying the following conditions:

(1) E is modular.
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(2) The extension L/F is linearly disjoint from F avoid/F
(3) For each place v|5 in F and w|v in L, EFw has good ordinary reduction if

v ∈ Sord
5 , good supersingular reduction if v ∈ Sss

5 and (split) multiplicative
reduction if v ∈ Sst5 .

(4) There is an isomorphism ρ|GL ∼= rE,5.
(5) ρ|GL is decomposed generic.

Proof. We choose L/F to be a solvable CM extension such that:

• For each place w|2, 3, 5 of L, ρ|GLw is trivial and w is split over L+.

• For w|5, there are elliptic curves Eord/Lw, Ess/Lw with good ordinary
and good supersingular reduction respectively, and trivial action of GLw on
their 5-torsion.
• For each place w|2 of L, the extension Lw(

√
−1)/Lw is unramified.

• L/F is linearly disjoint from F avoid/F .
• There is a prime q > 5 which is decomposed generic for ρ and splits in L.

Now we apply [AKT19, Lemma 9.7] in the same way as in the proof of [AKT19,
Proposition 9.13] to find an L-rational point of the modular curve Yρ corresponding
to a modular elliptic curve E/L. The curve Yρ is isomorphic to an open subset of
the projective line over F . Combining Hilbert irreducibility, in the form of [Ser08,
Theorem 3.5.3], and weak approximation for the projective line, we can find points
in Yρ(L) that avoid a thin subset ([Ser08, Definition 3.1.1]) and lie in specified non-
empty w-adically open subsets Ωw ⊂ Yρ(Lw) for a finite set of places w. Compared
to [AKT19, Proposition 9.13], we replace the condition that ELw is a Tate curve
for each place w|5 with the condition that for w lying over a place in Sord

5 , ELw has
good ordinary reduction, for w lying over a place in Sss

5 , ELw has good supersingular
reduction and for w lying over a place in Sst5 , ELw is a Tate curve. Note that the
modularity of E is then proved by applying [AKT19, Proposition 9.12], which is
not sensitive to the 5-adic properties of E. �

We have a similar statement for mod 3 representations, which can be proved in
the same way as [AKT19, Proposition 9.15]:

Proposition 6.1.6. Let F be an imaginary CM number field with ζ5 /∈ F , and let

ρ : GF → GL2(F3)

be a continuous homomorphism with determinant ε̄3. We assume ρ is decomposed
generic.

Suppose we have a decomposition S3 = Sst3

∐
Sord

3

∐
Sss

3 of the set of places in
F dividing 3.

Let F avoid/F be a finite Galois extension. Then we can find a solvable CM
extension L/F and an elliptic curve E/L satisfying the following conditions:

(1) E is modular.
(2) The extension L/F is linearly disjoint from F avoid/F
(3) For each place v|3 in F and w|v in L, EFw has good ordinary reduction if

v ∈ Sord
3 , good supersingular reduction if v ∈ Sss

3 and and (split) multiplica-
tive reduction if v ∈ Sst3 .

(4) There is an isomorphism ρ|GL ∼= rE,3.
(5) ρ|GL is decomposed generic.
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Lemma 6.1.7. Let E be the modular elliptic curve produced by Proposition 6.1.5
or Proposition 6.1.6 with r∨E,p

∼= rι(π) for p = 3 or 5 respectively. Let w|p be a

place of L, lying over the place v of F . Then π is ι-ordinary at w if v ∈ Sstp . The

local factor πw is unramified if v ∈ Sord
p

∐
Sss
p .

Proof. This follows from Lemma 6.1.3. �

Proof of Theorem 6.1. Choose p ∈ {3, 5} so that rE,p is decomposed generic and
rE,p|GF (ζp)

is absolutely irreducible. Now we apply Proposition 6.1.5 or 6.1.6 with

ρ = rE,p, S
ord
p the set of places above p where E has potentially good ordinary re-

duction, Sss
p the set of places where E has potentially good supersingular reduction

and Sstp the set of places where E has potentially multiplicative reduction. The
appropriate proposition gives us a solvable extension L/F and a modular elliptic
curve A/L with rE,p|GL ∼= rA,p, such that the hypotheses of Theorem 5.2 apply to
ρ = r∨E,p|GL (we use Lemma 6.1.7 here). The assumption that ζ5 /∈ F is sufficient
to check the condition on the projective image of ρ in the theorem, by Lemma
6.1.4. We deduce that EL is modular, and the modularity of E follows by solvable
descent. �

6.2. Group theory. We now do a little bit of group theory to optimise the state-
ment of Theorem 6.1 when F is quadratic (cf. Corollary 6.1.1). Our main tool will
be the following well-known lemma:

Lemma 6.2.1 (Goursat’s lemma). Let G1, G2 be finite groups and suppose H ⊂
G1 × G2 is a subgroup with the projection map pi : H → Gi surjective for i = 1
and 2. Then we have normal subgroups Ni = H ∩ Gi ⊂ Gi and an isomorphism
φ : G1/N1

∼= G2/N2 such that

H = {(g1, g2) : φ(g1N1) = g2N2}.

Lemma 6.2.2. Let F/Q be a quadratic field, let p be an odd prime, and let ρ :
GF → GL2(Fp) be a homomorphism. Suppose that ρ|GF (ζp)

is absolutely irreducible.

Then ρ is decomposed generic.

Proof. We consider the homomorphism P = Proj(ρ) : GF → PGL2(Fp). Set

L = F
kerP

, so P factors through an embedding P : Gal(L/F ) ↪→ PGL2(Fp). We

also set L1 = F
kerP∩GF (ζp)

= L(ζp).

Let L̃ be the Galois closure of L over Q in F . Fixing a lift c ∈ Gal(L̃/Q) of the
non-trivial element in Gal(F/Q), we have an injective map:

Gal(L̃/F ) ↪→ Gal(L/F )×Gal(L/F )

σ 7→ (σ|L, (c−1σc)|L)

whose composition with each of the two projection maps to Gal(L/F ) is surjective.

Injectivity follows from the fact that L̃ is the composite of L and c(L).

The Galois closure L̃1 of L1 over Q is L̃(ζp), and restricting the above map to

the subgroup Gal(L̃1/F (ζp)) = Gal(L̃/L̃ ∩ F (ζp)) gives an injective map

Gal(L̃1/F (ζp)) ↪→ Gal(L1/F (ζp))×Gal(L1/F (ζp))

whose composition with each of the two projection maps to Gal(L1/F (ζp)) is sur-
jective.
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We are going to show that there is an element τ ∈ Gal(L̃1/F (ζp)) whose im-
age under each projection map to Gal(L1/F (ζp)) is a non-identity element of or-
der prime to p. First we need to show that Gal(L1/F (ζp)) itself contains a non-
identity element of order prime to p. This group contains the image of ρ(GF (ζp))
in PGL2(Fp). The irreducibility of ρ|GF (ζp)

implies that ρ(GF (ζp)) either has

order prime to p or contains SL2(Fp) (by Dickson’s classification, or, more sim-
ply, [Ser72, Proposition 15]). It follows that we can find a non-identity element
T ∈ Gal(L1/F (ζp)) of order prime to p.

We now denote Gal(L̃1/F (ζp)) by H and Gal(L1/F (ζp)) by G. Goursat’s lemma
tells us that there are normal subgroups N1, N2/G and an isomorphism φ : G/N1

∼=
G/N2 such that H = {(g1, g2) : φ(g1N1) = g2N2}. Note that N1 and N2 are
necessarily of the same order. We separate into two cases:

• The Ni are p-groups (we include the possibility that the Ni are trivial). In
this case, we fix a lift T ′ ∈ G of φ(TN1) ∈ G/N2. The order of φ(TN1)
is equal to the order of T , and is equal to the order of T ′ up to a p-power
factor. So, replacing T and T ′ by a sufficiently large pth power if necessary,
we have (T, T ′) ∈ H with T and T ′ non-identity elements with order prime
to p.
• The Ni are not p-groups. Then we can let T1 be a non-identity element of
N1 of order prime to p and T2 a non-identity element of N2 of order prime
to p. The element (T1, T2) is contained in H.

We have now constructed the desired element τ ∈ Gal(L̃1/F (ζp)). By Cheb-

otarev density, we can choose a rational prime l, unramified in L̃1, such that Frobl
is the conjugacy class of τ in Gal(L̃1/Q). Since τ fixes F (ζp), we have l ≡ 1
mod p and l splits completely in F . The Frobenius elements Frobv for v|l in F

are given by the Gal(L̃1/F )-conjugacy classes contained in Frobl. These are the

Gal(L̃1/F )-conjugacy classes of τ and c−1τc (which could coincide).
By construction, ρ(τ) and ρ(c−1τc) have image in PGL2(Fp) a non-identity ele-

ment of order prime to p. It follows that they are both regular semisimple elements
of GL2(Fp). Since l ≡ 1 mod p, we have shown that l is a decomposed generic
prime for ρ. �

7. Quadratic points on modular curves and modularity over
quadratic fields

In this section, inspired by the proof of modularity of elliptic curves over real
quadratic fields [FLHS15], our goal is to extend Corollary 6.1.1 to cover many of
the excluded cases where rE,p|GF (ζp)

is absolutely reducible for p = 3 and 5. We

first state the main theorem of this section.

Theorem 7.1. Let F be an imaginary quadratic field, and let E/F be an elliptic
curve such that one of the following conditions holds:

(1) The action of GF on E[5] is irreducible (not necessarily absolutely irre-
ducible).

(2) The action of GF on E[3] is irreducible and the image of GF in Aut(E[3])
is not the normalizer of a split Cartan subgroup.

Then E is modular.
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The following lemma helps explicate the condition that rE,p|GF (ζp)
is absolutely

reducible for p = 3 and 5.

Lemma 7.1.1. Let F be a number field and ρ : GF → GL2(Fp) an irreducible
representation with determinant εp and ρ|GF (ζp)

absolutely reducible.

(1) ρ(GF ) is a subgroup of the normalizer of a Cartan subgroup.
(2) If p = 3, ρ(GF ) is conjugate to C+

s (3) (the normalizer of a split Cartan
subgroup of GL2(F3)) or to a subgroup of Cns(3) (a non-split Cartan).

(3) If p = 5 and [F (ζ5) : F ] = 4, then ρ(GF ) is conjugate to a subgroup of
C+

ns(5) (the normalizer of a non-split Cartan).

Proof. Let G = ρ(GF ). If G acts absolutely reducibly on F2
p then it is a subgroup

of a Cartan subgroup (G acts semisimply, because it acts irreducibly). Suppose G
acts absolutely irreducibly. We show that G is a subgroup of the normalizer of a
Cartan subgroup. We have G′ = G∩SL2(Fp) = ρ(GF (ζp)), and we apply [FLHS15,
Lemma 2.2] to conclude the proof of the first part.

Now assume that G is absolutely irreducible and det(G) = F×p . It follows from

[FLHS15, Lemma 2.2] that, if GL+
2 (Fp) is the subgroup of GL2(Fp) consisting of

matrices with square determinant, then G+ = G∩GL+
2 (Fp) is contained in a Cartan

subgroup C with G contained in the normalizer of C.
For the second part, if F = Q(ζ3), then G = G′ is absolutely reducible and is

therefore a subgroup of a non-split Cartan. We can now assume G is absolutely
irreducible and det(G) = F×3 . Suppose G′ is contained in a non-split Cartan Cns

and G is contained in its normalizer C+
ns. After conjugation, we can assume that

Cns = {
(
x −y
y x

)
: (x, y) ∈ F2

3 − {(0, 0)}.

Note that Cns ∩ SL2(F3) = 〈
(

0 −1
1 0

)
〉 is cyclic of order 4 and is also contained in

the normalizer of the diagonal split Cartan Cs(3). If G′ is contained in the scalars,
then G is the pre-image of a single order 2 element in PGL2(Fp) and is therefore
absolutely reducible. So G′ = Cns ∩ SL2(F3). Considering the possibilities for
G ⊂ C+

ns with G ( Cns which contain G′ with index 2, we can see that G must also
be contained in the normalizer C+

s (3) of Cs(3). The irreducible proper subgroups
of C+

s (3) are also contained in Cns(3).
Finally, suppose p = 5 and that G+ is contained in the diagonal split Cartan

Cs(5) with G contained in C+
s (5). We assume that G is irreducible (not necessarily

absolutely irreducible). If G+ contains an element with eigenvalues 1 and −1, then
we are in the situation of (the proof of) [FLHS15, Proposition 4.1(b)], which shows
that G is a subgroup (of index 3) in the normalizer of a non-split Cartan. So we
assume that G+ does not contain such an element. It follows that G+ is equal to the
subgroup of scalar matrices in GL2(Fp), so G is the pre-image of an order 2 element
in PGL2(Fp). We conclude that G is absolutely reducible, hence a subgroup of a
non-split Cartan. �

At this point we need to introduce modular curves with special level structures at
3 and 5. We follow the notation of [FLHS15, §2.2], so for a subgroup H ⊂ GL2(Fp)
containing −I and with det(H) = F×p , we have a modular curve X(H)/Q equipped
with its j-invariant map X(H) → X(1). If H1 ⊂ GL2(Fp1

) and H2 ⊂ GL2(Fp2
)

with p1 6= p2, X(H1, H2) is the modular curve given by the normalization of the
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fibre product X(H1) ×X(1) X(H2). The cuspidal points of X(H1, H2) are those
lying over ∞ ∈ X(1).

If F ⊂ Q is a number field, the non-cuspidal F -rational points of X(H1, H2)
correspond to Q-isomorphism classes of pairs (E, [η]), where E is an elliptic curve
over F and [η] is an (H1 ×H2)-orbit of isomorphisms

η :

2∏
i=1

F2
pi
∼=

2∏
i=1

E[pi](Q)

such that η−1rE,p(GF )η is contained in Hi for i = 1, 2.
We will be concerned with the subgroups bp, sp, nsp which are respectively the

upper triangular Borel, C+
s (p) and C+

ns(p) in GL2(Fp). We will also need the Cartan
subgroups themselves: sp◦ := Cs(p) and nsp◦ := Cns(p).

Before proving Theorem 7.1, we give a corollary. Recall that X0(15) = X(b3,b5)
is an elliptic curve of rank zero over Q. It is the curve with Cremona label 15A1
(see [FLHS15, Lemma 5.6]).

Corollary 7.1.2. Let F be an imaginary quadratic field such that X0(15)(F ) is
finite. Then every elliptic curve E/F is modular.

Proof. By Theorem 7.1, we only need to consider E/F giving rise to an F -rational
point P of X0(15) = X(b3,b5) or X(s3,b5). We can assume that E does not have
CM (otherwise it would be modular), so if (E′, [η]) also gives the point P then E′ is
isomorphic to E or a quadratic twist of E. Now it suffices to show that each of the
j-invariants coming from points of X0(15)(F ) and X(s3,b5)(F ) are modular. The
curve X(s3,b5) is an ellipic curve, with Cremona label 15A3 ([FLHS15, Lemma
5.7]), and is isogenous to X0(15). We are assuming that X0(15)(F ) is finite, so
X(s3,b5)(F ) is also finite. It remains to check modularity for the non-cuspidal
torsion points defined over imaginary quadratic fields.

We have X0(15)(Q) ∼= Z/2Z × Z/4Z. A Legendre form for X0(15)/Q is y2 =
x(x+16)(x+25). It follows from [Kwo97, Theorem 1] that the only quadratic fields

F with X0(15)(Q) ( X0(15)(F )tors are F = Q(
√
−1) and Q(

√
5). This information

is also contained in the LMFDB. It remains to show that elliptic curves giving rise to
the 8 points in X0(15)(Q(

√
−1))\X0(15)(Q) are modular. This reduces to checking

modularity of a single elliptic curve (isogenous and conjugate curves give the other
points), and its modularity can be verified using the Faltings–Serre method [DGP10]
which has been carried out as part of the LMFDB project [LMF22, Elliptic curve
4050.1-c3 over number field Q(

√
−1)].

We also have X(s3,b5)(Q) ∼= Z/2Z × Z/4Z. A Legendre form for X(s3,b5)/Q
is y2 = x(x + 1)(x + 16), and it follows from [Kwo97, Theorem 1] that the only

quadratic field F with X0(15)(Q) ( X0(15)(F )tors is F = Q(
√

5) (again, this
information is contained in the LMFDB). �

Combining Theorem 6.1 with Lemma 7.1.1, to prove Theorem 7.1 we need to
show modularity of the elliptic curves defined over imaginary quadratic fields giving
rise to points of the following modular curves:

(1) X(ns3◦,b5)
(2) X(b3,ns5)
(3) X(ns3◦,ns5)
(4) X(s3,ns5)

https://www.lmfdb.org/EllipticCurve/2.0.4.1/4050.1/c/3
https://www.lmfdb.org/EllipticCurve/2.0.4.1/4050.1/c/3
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We will do this is the following subsections. We used Magma to do the computa-
tions [BCP97], and there are associated Magma files available at https://github.
com/jjmnewton/modularity-iqf.

To help us find equations for these curves, we use the following well-known facts
about ‘small’ modular curves:

Proposition 7.1.3. (1) The curve X(b3) is isomorphic to P1
Q with co-ordinate

x and j-invariant (x+27)(x+3)3

x .

(2) The curve X(b5) is isomorphic to P1
Q with co-ordinate x and j-invariant

(x2+250x+55)3

x5 . The Fricke involution w5 is given by x 7→ 53/x.

(3) The curve X(ns3) is isomorphic P1
Q with co-ordinate x and j-invariant x3.

(4) The curve X(ns5) is isomorphic to P1
Q with co-ordinate x and j-invariant

53x(2x+1)3(2x2+7x+8)3

(x2+x−1)5 .

(5) The curve X(ns3,ns5) is an elliptic curve over Q, isomorphic to the curve
with Cremona label 225A1, with Mordell–Weil group X(ns3,ns5)(Q) ∼= Z.

(6) The curve X(s3) is isomorphic to P1
Q with co-ordinate x and j-invariant

33(x+1)3(x−3)3

x3

Proof. For the first and last part, see [SZ17, Table 1]. For the second part, see
[McM04, Table 3]. For the third and fourth parts, see [Che99, Proposition 5.1,
Corollary 6.3]. For the fifth part, it follows from the third and fourth parts that a

singular model for X(ns3,ns5) is given by the equation x3 = 53y(2y+1)3(2y2+7y+8)3

(y2+y−1)5 .

Some simple manipulations show that this is birational to the elliptic curve y2−y =
x3 + 1, which has Cremona label 225A1 as claimed. This is also checked in the
Magma file ns3ns5-elliptic.m. �

7.2. Quadratic points on X(ns3◦,b5). We begin by specifying an equation for
the modular curve X(ns3◦,b5), together with the properties we will need to show
modularity of quadratic points.

Proposition 7.2.1. (1) A model for X(ns3◦,b5) is given by the genus one
curve

C : y2 = −3(x4 + 2x3 − x2 + 10x+ 25),

where (the homogeneization of) this equation defines a smooth curve in the
weighted projective space P(1, 2, 1).

(2) With the above equation, w5 transforms x-co-ordinates by x 7→ 5/x.
(3) The Jacobian JacC is isomorphic to the elliptic curve with Cremona label

45A2, and in particular has JacC(Q) ∼= Z/2Z⊕ Z/2Z.

Proof. For the first part, we proceed in a similar way to the proof of [Zyw15,
Lemma 4.4]. It follows from Proposition 7.1.3 that X(ns3,b5) is isomorphic to P1

Q,

with j-invariant given by j(x) = (x6+250x3+55)3

x15 and w5 given by x 7→ 5/x. The
map X(ns3◦,b5) → X(ns3,b5) has degree two, and is ramified at 4 points with
j-invariant 1728. The fibre of the j-invariant map on X(ns3,b5) at 1728 is cut out
by the vanishing of the polynomial

(x6 + 250x3 + 55)3 − 1728x15

= (x2−5x−25)2(x2−2x+5)(x4+2x3−x2+10x+25)(x4+5x3+50x2−125x+625)2.

https://github.com/jjmnewton/modularity-iqf
https://github.com/jjmnewton/modularity-iqf
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It follows that the ramification locus is cut out by either (x2 − 5x − 25)2 or x4 +
2x3−x2 +10x+25. We claim that it is the latter. If we are in the former case, then
we have an elliptic curve E/Q(

√
5) with j-invariant 1728 and image of GQ(

√
5) on

Aut(E[3]) contained in a non-split Cartan subgroup. Since Q(
√

5) is totally real,
this image also contains an element conjugate to diag(1,−1) but non-split Cartans
mod 3 contain no such elements.

We conclude that X(ns3◦,b5) is defined by an equation

y2 = c(x4 + 2x3 − x2 + 10x+ 25)

for some squarefree c ∈ Z. We claim that c = −3. We see from the equation
(since the constant term 25 is a square) that Q(

√
c) is the field of definition of

the cusps of X(ns3◦,b5), or equivalently the field of definition of the cusps of
X(ns3◦). It is well-known that this field is Q(

√
−3). Here is one justification: by

ramification considerations as above, the double cover X(ns3◦)→ X(ns3) is given
by y2 = d(x2 + 12x + 144) for a squarefree d ∈ Z. The unique rational point of
X(ns3) with j-invariant 1728 is x = 12. The fibre over this point in X(ns3◦) is

given by y2 = 432d, so Q(
√

3d) is determined by the image of GQ(
√

3d) in Aut(E[3])

being contained in a non-split Cartan, where E/Q has j-invariant 1728 (hence CM

by Z[
√
−1]). It follows that Q(

√
3d) = Q(

√
−1) and we deduce that d = −3.

Having computed a model for our genus one curve, the Jacobian can be identified
using classical invariant theory and the Mordell–Weil group determined with the
help of a two-descent (see [AKM+01] for equations for the Jacobian, we did the
calculations using Magma as documented in the file ns3ob5.m). �

We will make use of the following points in C(Q(
√
−3)):

∞+ = (1 :
√
−3 : 0)

∞− = (1 : −
√
−3 : 0)

0+ = (0 : 5
√
−3 : 1)

P1 = (−2 : −
√
−3 : 1)

P2 = (−5/2 : 5
√
−3/4 : 1).

We have C(Q) = ∅, as can be checked 3-adically. Using the isomorphism between
CQ(
√
−3) and JacC,Q(

√
−3) given by P 7→ [P ]− [∞−], we can match up the order 2

rational points of JacC with the equivalence classes of the divisors:

D0 = 0+ −∞−

D1 = P1 −∞−

D2 = P2 −∞−.
At this point, we want to compute which points of JacC(Q) are representented

by rational divisors, not just rational equivalence classes. We denote the group of
degree 0 rational divisors modulo linear equivalence by Pic0(C).

Proposition 7.2.2. Pic0(C) ∼= Z/2Z, with generator [0+ −∞−].

Proof. Our computations here are again documented in the file ns3ob5.m. There
is an injective map Pic0(C) ↪→ JacC(Q), so we need to determine which of the
divisors Di (for i = 0, 1, 2) are linearly equivalent to a rational divisor. For this,
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we essentially follow the procedure outlined in [BF04]. Translating by the rational
divisor∞+ +∞−, we consider the degree 2 divisors Ei = Di+∞+ +∞−. For each
divisor, we compute a basis {1, fi} for each of the two-dimensional Riemann–Roch
spaces L(Ei) defined over Q(

√
−3). We get:

f0 =
y + (

√
−3x2 + 5

√
−3)y

x

f1 =
y + (

√
−3x2 − 5

√
−3)y

x+ 2

f2 =
y + (

√
−3x2 − 5

√
−3)y

x+ 5/2
.

A divisor class [Ei] contains a rational divisor if and only if there is an effective
degree 2 rational divisor D′i = P + σ(P ) linearly equivalent to Ei, with P ∈ C(F )
for a quadratic field F and σ the non-trivial element of Gal(F/Q). If this is the
case, then D′i is the divisor of zeroes of a meromorphic function fi − α for some
α ∈ Q(

√
−3). For i = 0, 1, 2 respectively this gives us equations:

y = αx− (
√
−3x2 + 5

√
−3)

y = α(x+ 2)− (
√
−3x2 − 5

√
−3)

y = α(x+ 5/2)− (
√
−3x2 − 5

√
−3).

Squaring both sides, using the equation for C, and dividing out by the linear factor
in x (which doesn’t correspond to a zero of fi − α) gives us equations:

(7.2.1) (6− 2
√
−3α)x2 + (α2 − 33)x+ (30− 10

√
−3α) = 0

(7.2.2) (6− 2
√
−3α)x2 + (α2 + 15)x+ (2α2 + 10

√
−3α) = 0

(7.2.3) (6− 2
√
−3α)x2 + (α2 + 12)x+ (5α2/2 + 10

√
−3α) = 0.

Equation (7.2.1) has the solution x = 1 + 2i, α = 3 + 2
√
−3, and E0 is linearly

equivalent to P +σ(P ) for P = (1 + 2i : 3 + 6i : 1). Note that, since (7.2.1) rescales
to x2 + · · · + 5 = 0, we have x(P )x(σ(P )) = 5 for any P defined over a quadratic
field with E0 ∼ P + σ(P ).

For the zeroes of Equation (7.2.2) to come from a rational divisor, we must have
α2+15

6−2
√
−3α

∈ Q. Writing α = α0 + α1

√
−3, with αi ∈ Q, we deduce that α0 = 0

or α2
0 + 3α2

1 + 6α1 + 15 = 0. The case α0 = 0 can be excluded by considering
the equation for y in terms of x. The equation α2

0 + 3α2
1 + 6α1 + 15 = 0 has

no rational solutions (check 3-adically). The associated conic is the Brauer–Severi
variety associated to the divisor class [E1], as described in [BF04].

Similarly, from Equation (7.2.3) we get the conic equation α2
0+3α2

1+6α1+12 = 0,
which again has no rational points (check 3-adically). �

Remark 7.2.3. The conic associated to the divisor E0 has equation α2
0 +3α2

1 +6α1−
33 = 0, which does have rational points (for example (3, 2), which corresponds to
α = 3 + 2

√
−3).

Proposition 7.2.4. Suppose P ∈ C(F ) for a quadratic field F . We assume P is
not one of the two points at infinity. Then either x(P ) ∈ Q or x(P )x(σ(P )) = 5,
where σ is the non-trivial element of Gal(F/Q).
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Proof. We have [P +σ(P )−∞+−∞−] = 0 or [0+−∞−] in Pic0(C), so we deduce
that [P + σ(P )] = [∞+ +∞−] or [0+ +∞+]. In the second case, the proof of
the previous proposition shows that x(P )x(σ(P )) = 5. In the first case, we have
P +σ(P ) =∞+ +∞−+ div(f), where f ∈ L(∞+ +∞−) is a Q-linear combination
of 1 and x. In particular, P is a zero of x− α for some α ∈ Q, so x(P ) ∈ Q. �

Corollary 7.2.5. Let F be a quadratic field and E/F elliptic curve such that E is
the elliptic curve underlying an F -point P ∈ X((ns3)◦,b5)(F ). Then E is modular.

Proof. According to Proposition 7.2.4 we have two cases. In the first case, P
maps to a point in X(ns3,b5)(Q). In particular, E has rational j-invariant and is
therefore modular.

In the second case, P maps to a Q-point of the Atkin–Lehner quotientX(ns3,b5)/w5.
This shows that E and Eσ are 5-isogenous over Q, where σ is the non-trivial element
of Gal(F/Q). In particular, E is a Q-curve, and is therefore modular (cf. [FLHS15,
§12]). �

7.3. Quadratic points on X(b3,ns5). For this curve, our approach is similar
to that of [FLHS15, Lemma 5.1]. Our computations are documented in the file
b3ns5.m.

Proposition 7.3.1. (1) X(b3,ns5) is a curve of genus 2, with hyperelliptic
equation

C : y2 = 9x6 − 6x5 − 35x4 + 40x2 + 12x− 8.

(2) The hyperelliptic involution on X(b3,ns5) is equal to the Atkin–Lehner in-
volution w3.

(3) The Mordell–Weil group Jac(C)(Q) of the Jacobian of C is isomorphic to
Z/2Z⊕ Z/10Z.

Proof. We used our description for X(b3) and X(ns5) to write down (an affine
patch of) the fibre product X(b3) ×X(1) X(ns5) and then used the Magma rou-
tines IsHyperelliptic and SimplifiedModel to find the displayed equation for
X(b3,ns5), together with a birational map from X(b3)×X(1) X(ns5) to C.

To show that w3 is the hyperelliptic involution, it suffices to show that it has
(at least) 6 fixed points. Alternatively, we can compute the automorphism group
of X(b3,ns5) [LSR21] and note that it has order two, so the only non-trivial au-
tomorphism is the hyperelliptic involution. The fixed points of w3 come from the
elliptic curves E0 = C/OQ(

√
−3) and E1 = C/Z[

√
−3] with b3 level structure com-

ing from the kernel of the multiplication by
√
−3 map; using the moduli description

of [KP16] we can check that there are indeed 6 fixed points for w3, 2 from E0 and
4 from E1.

We computed the Mordell–Weil group using the Magma routine MordellWeilGroupGenus2.
For our curve, a two-descent suffices to prove that the Jacobian has rank 0. We
understand that this routine was created by Michael Stoll, see also [Sto01]. To
double check that the torsion subgroup has size at most 20, we can compute that
JacC(F7) ∼= Z/2Z ⊕ Z/20Z and Jac(C)(Q)[2] has size 4 (Jac(C)(Q)[2] is given by
(x1, 0)− (x2, 0) where the xi are roots of 9x6 − 6x5 − 35x4 + 40x2 + 12x− 8; this
polynomial has 3 rational roots and an irreducible cubic factor over Q, whence it
follows that there are 4 rational 2-torsion points). �

We write D∞ for the degree two (hyperelliptic) divisor at ∞ for C.
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Lemma 7.3.2. Let P be a quadratic point of C, with conjugate σ(P ). Then we
are in one of the two following cases:

(1) [P + σ(P )] = [D∞] in Pic(C). Then P = (x,±
√
f(x)) where f(x) is the

polynomial defining C, with x ∈ Q.
(2) [P +σ(P )−D∞] is non-zero in Pic(C). The divisor P +σ(P ) is the unique

degree 2 effective divisor representing its divisor class.

Proof. Note that [D∞] is the canonical divisor class. In the first case we have
L(D∞) = 〈1, x〉 so P and σ(P ) are zeroes of x − α for α ∈ Q. In the second case,
by Riemann–Roch we have dimL(P + σ(P )) = 1. �

Proposition 7.3.3. Suppose P ∈ C(F ) for an imaginary quadratic field F . We
assume P is not one of the two points at infinity. Then x(P ) ∈ Q or F = Q(

√
−11)

and, up to complex conjugation, P = (−5+
√
−11

6 ,± 17−
√
−11

6 ).

Proof. By the previous lemma, it suffices to determine the non-zero elements A ∈
Jac(C)(Q) with A + [D∞] represented by an effective divisor with points in its
support defined over an imaginary quadratic field. Magma returns elements of
Jac(C)(Q) using the Mumford representation, which in particular gives a minimal
polynomial for the x co-ordinate. So it is easy to see which points may be imaginary
quadratic. There are 9 non-zero divisor classes supported on points with rational
x co-ordinate, 2 supported at ∞, 2 supported on the imaginary quadratic points
specified in the statement of this proposition (and their conjugates); the remaining
6 are supported on real quadratic points. �

Corollary 7.3.4. Let F be a quadratic field and E/F an elliptic curve such that E
is the elliptic curve underlying an F -point P ∈ X(b3,ns5)(F ). Then E is modular.

Proof. The points P ∈ C(F ) with x(P ) ∈ Q (and the points at infinity) have
σ(P ) = w3(P ). So in this case, E is a Q-curve. We are now only concerned with
the Q(

√
−11) points identified in Proposition 7.3.3. They are related by conjugation

and w3, so it suffices to show modularity of one of them. We conside the elliptic
curve E0/Q(

√
−11) described by [LMF22, Elliptic curve 8100.2-a2 over number

field Q(
√
−11)]. On the one hand, it is modular, because the data in loc. cit. shows

that the image of GQ(
√
−11) on Aut(E0[5]) is the full normalizer of a non-split

Cartan, and therefore E0 satisfies the hypotheses of Corollary 6.1.1 (modularity
was also checked explicitly by LMFDB using the Faltings–Serre method). On the
other hand, we can write down a Q(

√
−11)-rational point of X(b3) ×X(1) X(ns5)

with the same j-invariant as E0, map it to C, and verify that we obtain one of our
points of interest. We deduce that these points are also modular. �

7.4. Quadratic points on X(s3,ns5) and X(ns3◦,ns5). Both curves X(s3,ns5)
and X(ns3◦,ns5) are bi-elliptic, admitting degree two maps to X(ns3,ns5). The
quadratic points with image a rational point in X(ns3,ns5) are modular, so we need
to understand quadratic points which are not pulled back from rational points. To
do this, we use Siksek’s relative symmetric power Chabauty method [Sik09]. We
can closely follow the implementation of this method by Box for some modular
curves X0(N) [Box21]. Our computations here are documented in the Magma files
ns3ons5.m and s3ns5.m.

We outline Box’s method, following [Box21, §2.4]. We consider a smooth ge-
ometrically irreducible projective curve X/Q with Jacobian J , equipped with a

https://www.lmfdb.org/EllipticCurve/2.0.11.1/8100.2/a/2
https://www.lmfdb.org/EllipticCurve/2.0.11.1/8100.2/a/2
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degree two map π : X → C to another smooth curve C/Q. Our goal is to describe
the rational points of the symmetric square X(2), which include pairs of conjugate
quadratic points (P, P ) of X.

We will use the following input:

(1) Primes p1, . . . , pr of good reduction for C and X.
(2) Divisors D1, . . . , Dn generating a subgroup G of J(Q) of finite index. We

have an associated surjective homomorphism φ : Zn → G.
(3) A positive integer I such that I · J(Q) ⊂ G.
(4) A finite non-empty set L ⊂ X(2)(Q), with a fixed element∞ ∈ L. We have

a partition L = Lpb
∐
Lnpb, with x ∈ Lpb if and only if it is pulled back

from a point in C(Q).

For each i = 1, . . . , r we have a subset Lgood
i ⊂ L of known points where the

(relative) Chabauty pi-adic criterion applies. So x ∈ Lgood
i if [Box21, Theorem 2.1]

applies to x (which entails that x is the unique point of X(2)(Q) in its residue class
mod pi) or x = π∗(P ) for P ∈ C(Q) and [Box21, Theorem 2.4] applies to x (which
entails that every point in the residue class of x mod pi is pulled back from a point
in C(Q)). The following proposition is immediate from the definition.

Proposition 7.4.1. Suppose x ∈ X(2)(Q) and redpi(x) ∈ redpi(L
good
i ) for at least

one i = 1, . . . , r. Then x ∈ L ∪ π∗C(Q).

In practice, we will use a version of this proposition which lends itself to explicit
computation. Consider the commutative diagram

X(2)(Q)
ι //

redp

��

G

redp

��

X(2)(Fp)
ιp
// J(Fp)

where ι(x) = I([x] − ∞) and ιp is the same map on the reduction mod p. For
i = 1, . . . , r, let Mbad

i be the subset

Mbad
i := ι−1

pi (redpi(G))− redpi(L
good
i ) ⊂ X(2)(Fpi).

It follows from Proposition 7.4.1 that if x is a rational point in X(2)(Q) which is
not in L ∪ π∗C(Q), then redpi(x) ∈Mbad

i for each i = 1 . . . r.

Theorem 7.4.2. [Box21, Theorem 2.6] If the set
r⋂
i=1

red−1
pi (ιpi(Mbad

i )) ⊂ G

is empty, then X(2)(Q) = L ∪ π∗C(Q).

Proof. Suppose x ∈ X(2)(Q) − (L ∪ π∗C(Q)). We have already observed that
redpi(x) ∈ Mbad

i for each i. Then ι(x) ∈ G and we have redpi(ι(x)) ∈ ιpi(Mbad
i )

for each i. �

For each i, red−1
pi (ιpi(Mbad

i )) will give us a union of cosets of ker(redpi) in G

(possibly an empty union, if Mbad
i = ∅).

To get started applying this method in practice, we need equations for the curves
and a formula for the bi-elliptic involution with quotient X = X(ns3,ns5). It turns
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out that both curves have automorphism groups of order two, so the non-trivial
automorphism must be the bi-elliptic involution.

Proposition 7.4.3. (1) X(ns3◦,ns5) is isomorphic to the plane quartic C1

with equation

9x4+19x2y2+y4+9x3+19x2y+22xy2+2y3+10x2+22xy+13y2+7x+12y+11 = 0.

It has a unique automorphism w1 of order 2 defined over Q, given by
(x, y) 7→ (x,−y − 1).

(2) X(s3,ns5) is isomorphic to the plane quartic C2 with equation

−x4 + 2x3y + x2y2 + 8x3 + 2x2y − 2xy2 − y3 − 3x2 − 3xy + 3y2 + 2x− 3y + 1.

It has a unique automorphism w2 of order 2 defined over Q, given by
(x, y) 7→ ( 3x+y+2

4x−2y+1 ,
8x+y−8
4x−2y+1 ).

(3) The Q(
√
−55) points

P1 = (
1 +
√
−55

28
,

27−
√
−55

56
), P2 = (

3−
√
−55

4
,

3 + 3
√
−55

4
)

of C2 have j-invariant −32768.

Proof. We determined a model y2 = −3(x2 + 12x + 144) for the conic X(ns3◦)
in Proposition 7.2.1. Together with our model for X(ns5) this gives us a sin-
gular model for X(ns3◦,ns5). Using Magma, we determined a model for the
desingularization and checked it was isomorphic to the plane quartic C1 with the
given equation. The automorphisms of C1 can be computed using the function
AutomorphismGroupOfPlaneQuartic written by Lercier, Sijsling and Ritzenthaler
[LSR21]. The same procedure was used for X(s3,ns5). We also wrote down the
points in the singular model (where the j-invariant is easy to compute) which map
to P1 and P2. �

We write πi : Ci → X := X(ns3,ns5) for the bi-elliptic quotient map.

Proposition 7.4.4. (1) We have rk(JacCi(Q)) = rk(JacX(Q)) = 1 for i = 1
and 2.

(2) The torsion subgroups JacCi(Q)tors satisfy
• JacC1

(Q)tors is isomorphic to a subgroup of Z/2Z⊕ Z/2Z
• JacC2

(Q)tors ∼= Z/2Z⊕Z/10Z (explicit generators will be identified in
the proof).

(3) Pick a generator D ∈ JacX(Q) ∼= Z. Set Gi = 〈π∗iD〉 ⊂ JacCi(Q). Then
4(JacC1

(Q)) ⊂ 2G1 and 10(JacC2
(Q)) ⊂ 〈5G1, JacC2

(Q)[2]〉.

Proof. Using Chen’s isogeny (in the form of [dSE00, Théoréme 2]) and the fact that
X(ns3◦) and X(ns5) have genus 0, we see that JacC1

is isogenous to the new part of
the Jacobian ofX0(225)/w25. The relevant space of cuspforms S2(Γ0(225))w25=1,new

has dimension 3. It has a basis of Hecke eigenforms with rational q-expansions, with
LMFDB labels 225.2.a.b, 225.2.a.c and 225.2.a.e. The associated isogeny classes of
elliptic curves are those with Cremona labels 225c, 225a and 225d respectively. They
have Mordell–Weil rank 0, 1 and 0 respectively, so we deduce that rk(JacC1(Q)) = 1.

Similarly, JacC2
is isogenous to the 5-new part of the Jacobian ofX0(225)/〈w9, w25〉.

The relevant space of cuspforms is now S2(Γ0(225))w9=1,w25=1,5−new. The newform
225.2.a.c, with associated rank 1 elliptic curve 225a, still contributes (as it should,
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since C2 maps to X(ns3,ns5)). We also get contributions from the 2 rational eigen-
forms in S2(Γ0(75))w25=1,5−new, labels 75.2.a.a and 75.2.a.b in the LMFDB (w9

has characteristic polynomial X2 − 1 on the oldspaces generated by each eigen-
form). The associated isogeny classes of elliptic curves (Cremona labels 75c and
75a respectively) both have rank 0.

It now follows from [Box21, Proposition 3.1] that 2(JacCi(Q)) ⊂ 〈Gi, JacCi(Q)tors〉
for i = 1, 2. We claim that

(1) 2(JacC1(Q)tors) = 0
(2) 10(JacC2(Q)tors) = 0.

In the first case, the orders of JacC1(Fp) for p = 7, 11 and 13 have gcd 4, so
JacC1

(Q)tors has order dividing 4. Moreover, JacC1
(F13) ∼= Z/2Z ⊕ Z/1710Z, so

JacC1
(Q)tors must be isomorphic to a subgroup of Z/2Z⊕ Z/2Z.

In the second case, the orders of JacC2
(Fp) for p = 7, 11 and 13 have gcd 20,

so JacC2
(Q)tors has order dividing 20. On the other hand, we can write down a

subgroup of JacC2(Q)tors isomorphic to Z/2Z ⊕ Z/10Z, so we deduce that this is
the full torsion subgroup. Generators for the torsion subgroup are given by D1 of
order 10 and D2 of order 2, for

D1 = [(0, 1, 1)]− [(−3, 7, 1)], D2 = 5([(0, 1, 0)] + [(−1/2,−1/2, 1)] + [P2] + [P 2]− 2[P1]− 2[P 1]),

where P1 = ( 5+
√

21
2 ,−

√
21 − 4), P2 = (−1−

√
5

2 , 3
√

5+9
2 ) and P i denotes the Galois

conjugate of Pi.
We deduce from this that 4(JacC1(Q)) ⊂ 〈2G1〉 and 10(JacC2(Q)) ⊂ 〈5G1, JacC2(Q)[2]〉.

�

This gives us all the inputs we need to apply the relative symmetric power
Chabauty method. The description of vanishing differentials and their reduction
goes through exactly as in [Box21, §3.4], replacing the Atkin–Lehner involution of
X0(N) which appears there with our bi-elliptic involutions. We used Box’s code,
available at https://github.com/joshabox/quadraticpoints/, to carry out the
computations. This also includes code written by Ozman and Siksek to search for
rational points in X(2)(Q).

Proposition 7.4.5. (1) Let X = X(ns3◦,ns5), C = X(ns3,ns5) and π : X →
C the natural quotient map. We have X(2)(Q) = π∗C(Q).

(2) Let X = X(s3,ns5), C = X(ns3,ns5) and π : X → C the natural quotient
map. There are eight conjugate pairs of quadratic points of X which do not
have image in C(Q). Two are defined over an imaginary quadratic field,
corresponding to the points P1, P2 identified in Proposition 7.4.3.

Proof. For the first part, it turns out that we just need to apply the relative
Chabauty criterion of [Box21, Theorem 2.4] for p = 43 and with L consisting of 8
degree two divisors (all pulled back from C(Q)). Digging in to what’s happening,
it turns out that red43(G) is cyclic of order 7 and ι−1

43 (red43(G)) also has size 7.
The divisiors in L cover all these possibilities, and they all satisfy the hypotheses
of [Box21, Theorem 2.4].

For the second part, we run Box’s Mordell–Weil sieve for the primes 11, 43,
G = 〈5G1, JacC2(Q)[2]〉 and I = 10. The set L includes 16 rational degree two
divisors which are not pulled back from C(Q), 8 of which are sums of two points in
X(Q) (not interchanged by the bi-elliptic involution). �

https://github.com/joshabox/quadraticpoints/
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This proposition has the immediate corollary:

Corollary 7.4.6. (1) Let F be a quadratic field and E/F an elliptic curve such
that E is the elliptic curve underlying an F -point P ∈ X(ns3◦,ns5)(F ).
Then E is modular.

(2) Let F be an imaginary quadratic field and E/F an elliptic curve such that
E is the elliptic curve underlying an F -point P ∈ X(s3,ns5)(F ). Then E
is modular.

Proof. We have shown that all relevant quadratic points map to rational points of
X(ns3,ns5), with the exception of the points P1, P2 ∈ X(s3,ns5)(Q(

√
−55)) and

their conjugates. The latter points have rational j-invariant so we are done in all
cases. �

We have now completed the proof of Theorem 7.1!
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[BT65] Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ.
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Breuil–Mézard conjecture for two-dimensional potentially Barsotti–Tate Galois rep-

resentations, available online at https://arxiv.org/abs/2207.05235.

[CG18] Frank Calegari and David Geraghty, Modularity lifting beyond the Taylor–Wiles
method, Invent. Math. 211 (2018), no. 1, 297–433.

[CGH+20] Ana Caraiani, Daniel R. Gulotta, Chi-Yun Hsu, Christian Johansson, Lucia Mocz,

Emanuel Reinecke, and Sheng-Chi Shih, Shimura varieties at level Γ1(p∞) and Ga-
lois representations, Compos. Math. 156 (2020), no. 6, 1152–1230.

[CGJ19] Ana Caraiani, Daniel R. Gulotta, and Christian Johansson, Vanishing theorems for

Shimura varieties at unipotent level, 2019.
[Che99] Imin Chen, On Siegel’s modular curve of level 5 and the class number one problem,

J. Number Theory 74 (1999), no. 2, 278–297.
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conjecture, J. Inst. Math. Jussieu 13 (2014), no. 1, 183–223.

[Eme10a] Matthew Emerton, Ordinary parts of admissible representations of p-adic reductive
groups I. Definition and first properties, Astérisque (2010), no. 331, 355–402.
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