Towards Improved Prediction of Compressor Flow by Uncertainty Quantification of Spalart-Allmaras Turbulence Model

Xiao He*, Fanzhou Zhao, and Mehdi Vahdati
Department of Mechanical Engineering, Imperial College London (*xiao.he2014@imperial.ac.uk)

Motivation

Reynolds-Averaged Navier-Stokes (RANS) simulation with the Spalart-Allmaras (SA) turbulence model is a conventional approach to analyze compressor stall. However, it falls short of predicting the compressor stall boundary especially at off-design speeds. This research explores the uncertainty and the sensitivity of SA model coefficients on predicting compressor flow features. It aims to guide future modifications of the SA model for improved compressor stall prediction.

Methodology

Compressor flows are simplified by backstep and bump flows.

The in-house solver AU3D is then verified in both backstep and bump flows against NASA’s simulation and experiment results.

496 sets of SA coefficients are generated within physical bounds by Latin hypercube sampling, then simulated by AU3D.

An artificial neural network is built and trained on the database, serving as a surrogate model of the AU3D solver.

Reynolds Stress. SA models fail to reproduce the Reynolds stress in separated region. Coefficients σ, κ, c_{μ_1}, c_{μ_2}, and c_{λ} are important to Reynolds stress prediction.

Results

Shock. SA models predict a delayed shock front with a smaller pressure. Coefficients σ, κ, c_{μ_1}, c_{μ_2}, and c_{λ} are found important to shock prediction.

Separation. SA models predict a smaller size of separation. Coefficients σ, κ, c_{μ_1}, c_{μ_2}, and c_{λ} are found important to separation prediction.

Conclusion

- The SA model fails to reproduce shock, separation and Reynolds stress, thus inducing uncertainties on compressor stall prediction.
- σ, κ, c_{μ_1}, and c_{μ_2} are most influential on compressor flow features. Physics-informed modifications on these terms are recommended in future research.

Acknowledgement

Xiao He gratefully acknowledges the Imperial College President PhD Scholarship for funding this research.