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This is not a new problem, it has been well-known to 4-manifold specialists for the 20
years since the paper [1] of Fintushel and Stern , which is our basic reference. (Other
good background references include [2] and [4].) The question involves a simple topological
construction, knot surgery, introduced by Fintushel and Stern, involving a compact 4-
manifold M and a knot K (i.e. an embedded circle in the 3-sphere S3). We assume that
there is an embedded 2-dimensional torus T in M with trivial normal bundle. We fix an
identification of a neighbourhood N of T in M with a product D2 × T , where D2 is the
2-dimensional disc . Thus the boundary of N is identified with the 3-dimensional torus
T 3 = S1 × T = S1 × S1 × S1. Likewise, a tubular neighbourhood ν of the knot K in
S3 can be identified with D2 × K, with boundary S1 × K = S1 × S1. Thus the product
YK = (S3 \ ν) × S1 has the same boundary, a 3-torus, as the complement M \ N and we
define a new compact 4-manifold

MK,φ = (M \ N) ∪φ YK ,

where the notation means that the two spaces are glued along their common boundary
using a diffeomorphism φ : ∂N → ∂YK . This map φ is chosen to take the circle ∂D2 in
the boundary of N , which bounds a disc in N , to the “longitude” in the boundary of ν,
which is distinguished by the fact that it bounds a surface in the complement S3 \ ν. This
condition does not completely fix φ but for the case of main interest here it is known that
the resulting manifold is independent of the choice of φ, so we just write MK . For the
trivial knot K0 the complement S3 \ ν is diffeomorphic to S1 × D2, so YK0 is the same as
N and MK0 is the same as M—-the construction just cuts out N and then puts it back
again.

The general problem is: for two knots K1,K2 , when is the 4-manifold MK1 diffeomorphic
to MK2? But there is no need to be so ambitious so we can ask: can we find interesting
examples of M,K1,K2 such that MK1 and MK2 either are, or are not, diffeomorphic?

The simplest way in which one might detect the effect of this knot surgery is through the
fundamental group. For a non-trivial knot K, the fundamental group of the complement
S3 \ ν is a complicated nonabelian group, but it has the property that it is normally
generated by the loops in the boundary 2-torus. That is, the only normal subgroup of
π1(S3 \ ν) which contains π1(∂ν) is the whole group. It follows that if the complement
M \ T is simply connected then the same is true of MK . In particular, this will be true
if M is simply connected and there is a 2-sphere Σ in M which meets T transversely in a
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single point. From now on we restrict attention to the case when the 4-manifold M is the
4-manifold underlying a complex K3 surface X and T ⊂ K is a complex curve. Regarded
as complex manifolds there is a huge moduli space of K3 surfaces (only some of which
contain complex curves) but it is known that all such pairs (X,T ) are equivalent up to
diffeomorphism. For one explicit model we could take X to be the quartic surface in CP3

defined by the equation
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0 + z4

1 + z4
2 + z4

3 = 0.

If κ ∈ C is a fourth root of −1 then the line L defined by the equations z1 = κz0, z3 = κz2

lies in X and for a generic plane Π through L the intersection of X with Π is the union of
L and a smooth plane curve of degree 3. It is well-known that smooth plane cubics are (as
differentiable manifolds) 2-dimensional tori, so this gives our torus T ⊂ X, which one can
check has trivial normal bundle. Using the manifest symmetries of X we can find another
line L′ in X which is skew to L , and then L′ meets T in just one point. A standard
general result in complex algebraic geometry (the Lefschetz hyperplane theorem) shows
that X is simply connected and since L′ is a 2-sphere (as a differentiable manifold) we see
that X \T is simply connected. There are many other possible models for (X,T ) that one
can take, for example using the “Kummer construction” via the quotient of a 4-torus by
an involution.

To set our problem in context we recall that, in 1982, Freedman obtained a complete
classification of simply connected 4-manifolds up to homeomorphism: everything is deter-
mined by the homology. At the level of homology all knot complements looks the same
and it follows that all the manifolds XK are homeomorphic to the K3 surface X. By
contrast the classification up to diffeomorphism, which is the setting for our problem, is a
complete mystery. The only tools available come from the Seiberg-Witten equations which
yield the Seiberg-Witten invariants. Ignoring some significant technicalities, these invari-
ants of a smooth 4-manifold M take the form of a finite number of distinguished classes
(“basic classes”) in the homology H2(M), with for each basic class β a non-zero integer
SW (β). So there is a way to show that 4-manifolds are not diffeomorphic, by showing
that their Seiberg-Witten invariants are different, but if the Seiberg-Witten invariants are
the same one has no technique to decide if the manifolds are in fact diffeomorphic, ex-
cept for constructing a diffeomorphism by hand, if such exists. The special importance
of the K3 surface X appears here in the fact that it has the simplest possible non-trivial
Seiberg-Witten invariant: there is just one basic class 0 ∈ H2(X) and SW (0) = 1.

The main result of Fintushel and Stern in [1] is a calculation of the Seiberg-Witten
invariants of the knot-surgered manifolds XK .To explain their result we need to recall the
Alexander polynomial of a knot K. While the knotting is invisible in the homology of the
complement S3 \ν we get something interesting by passing to the infinite cyclic cover. The
action of the covering transformations makes the 1-dimensional homology of this covering
space a module over the group ring of Z , which is the ring Λ = Z[t, t−1] of Laurent series
with integer co-efficients. One finds that this is a torsion module Λ/I, for a principal ideal
I ⊂ Λ and the generator of this ideal I gives the Alexander polynomial pK ∈ Λ. From
this point of view pK is defined up to multiplication by a unit in Λ but there is a way to
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normalise so that

pK(t) = a0 +
g∑

i=1

ai(t
i + t−i),

for integers ai with a0 + 2
∑g

i=1 ai = 1.
Fintushel and Stern show that XK has basic classes ±2i[T ], where [T ] is the homol-

ogy class of a “parallel” copy of T in the complement X \ N (which is contained in all
XK) and SW (2i[T ]) = ai. In other words, the Seiberg-Witten invariants capture exactly
the Alexander polynomial of K. It is easy to construct distinct knots with same Alexan-
der polynomial, so our question becomes: if K1,K2 are knots with the same Alexander
polynomial are the 4-manifolds XK1 , XK2 diffeomorphic?

As we have outlined, this question is a prototype—in an explicit and elementary setting—
for the fundamental mystery of four-dimensional differential topology. There are also im-
portant connections with symplectic topology. A knot is called “fibred” if there is a fibration
π : S3 \ ν → S1, extending the standard fibration on the 2-torus boundary. The fibre S is
the complement of a disc in a compact surface of genus g and in this case the Alexander
polynomial is just t−g times the characteristic polynomial of the action of the monodromy
on H1(S). In particular the polynomial is “monic”, with leading co-efficent ag equal to
±1. On the other hand there are knots K with monic Alexander polynomial which are
not fibred and distinct fibred knots may have the same Alexander polynomial. If K is
fibred then one can construct a symplectic structure ωK on XK . Conversely if XK has a
symplectic structure then results of Taubes on Seiberg-Witten invariants, combined with
the calculation of Fintushel and Stern, show that pK must be monic. So we have further
questions such as

(1) If pK is monic but K is not fibred, does XK admit a symplectic structure?
(2) If K1,K2 are fibred knots and (XK1 , ωK1) is symplectomorphic to (XK2 , ωK2) are

K1,K2 equivalent ?

Another question in the same vein as (1) is whether a 4-manifold S1×Z3 admits a symplec-
tic structure if and only if the 3-manifold Z3 fibres over the circle. This was proved by Friedl
and Vidussi [3] and by Kutluhan and Taubes [5] (with an extra technical assumption).

If we take the product XK × S2 we move into the realm of high-dimensional geometric
topology: the subtleties of 4-dimensions disappear and all the manifolds are diffeomorphic.
But in the symplectic theory there are still interesting questions:

• For which fibred knots K1,K2 are (XKi × S2, ωKi + ωS2) symplectomorphic?

It seems likely that the Alexander polynomials must be the same, using Taubes’ result
relating the Seiberg-Witten and Gromov-Witten invariants.
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