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1 Basics

A Riemannian metric g on an n-dimensional manifold M is a smooth section of
S2T ∗M which gives a positive definite quadratic form on each tangent space.
In local coordinates it can be written as

g =
∑

gijdxidxj .

We discuss two approaches to the foundations of Riemannian geometry.
1. Jets.
Given p ∈ M and integer k ≥ 0 we define an equivalence relation on smooth

maps from M to N : f ∼k g if f and g agree to order k at p: that is, in local
coordinates if the Taylor series up to order k are the same. One checks that
this is independent of local coordinates. The equivalence classes are the k-jets
of maps from M to N at p.

We want to consider Riemannian metrics up to the action of diffeomor-
phisms. To approach this we look at the jet version

Mk,p =
k − jetsofmetricsatp

(k + 1) − jetsofdiffeomorphismsfixingp
.

By the classification of forms M0,p is a point: we can choose coordinates centred
at p so that gij(0) = δij .

The fundamentals of Riemannian geometry are contained in the discussions
of k = 1, 2.

k = 1.
Suppose in coordinates xi we have

gij = δij +
∑

k

Pijkxk + O(x2).

Here Pijk is symmetric in ij. Change coordinates to x̃i with

xi = x̃i +
∑

aijkx̃j x̃k.

Here aijk is symmetric in jk. In the new coordinates the metric has first order
term

P̃ijk = Pijk + 2(aijk + ajik).
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So, writing v = TMp, we have to consider the map V ⊗ s2(V ) → s2(V ) ⊗ V
defined by the symmetrisation above. The basic fact is that this is an isomor-
phism, so M1,p is a point and there is a unique way to fix the 2-jet of local
coordinates to make P̃ijk = 0.

k = 2
Now we consider

gij = δij +
∑

kl

Qijklxkxl,

and the change of coordinates

xi = x̃i + bijklx̃j x̃kx̃l.

So Qijkl is symmetric in (ij) and (kl) while bijkl is symmetric (jkl). In the same
way we get

Q̃ijkl = Qijkl + 2(bijkl + bjikl),

and we have to consider the map

V ⊗ s3(V ) → s2(V ) ⊗ s2(V )

defined by this symmetrisation. The basic fact is that this map is an injection.
We define R to be the cokernel

R =
s2(V )] ⊗ s2(V )

V ⊗ s3(V )
,

and computing dimensions we find

dimR =
n2(n2 − 1)

12
.

So for example R is one dimensional if n = 2. We have

M2,p =
R

O(V )
.

Understanding Riemannian metrics to second order about a point is the same
as understanding the representation R of O(V ). We can also think of R as the
kernel of the adjoint map

R = {Qijkl ∈ S2 ⊗ s2 : Qijkl + Qjkil + Qkijl = 0}.

For the second discussion we begin with another fundamental notion in dif-
ferential geometry: the failure of integrability. Let N be a manifold and H a
p-dimensional sub-bundle of TM so for each p ∈ N we have Hp ⊂ TNp. In this
situation there is an invariant Φ which is a section of

Λ2H∗ ⊗ (TN/H) .
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This is defined using the observation that if v1, v2 are sections of H the Lie
bracket [v1, v2] reduced modulo Hp at a point p depends only on the values of
vi at p.

The Frobenius Theorem asserts that Φ = 0 if and only if H is integrable
which is to say that through there is a p-dimensional submanifold everywhere
tangent to H.

Now let G be a Lie group and recall the notion of a principle G-bundle
P → M (G acts freely on the right on P and M = P/G). A connection on P
is a subbundle H ⊂ TP which is G invariant and complementary to the fibres.
The tensor Φ above can be regarded as a section of a bundle over M called the
curvature F of the connection:

F ∈ Γ(M ; Λ2T ∗M ⊗ adP).

Here adP is vector bundle over M associated to P via the adjoint representation,
so the fibres of adP are copies of the Lie algebra Lie(G).

It is usually more convenient for us to work with the essentially equivalent
notion of a covariant derivative. Let P have a connection as above and let E
be a vector bundle over M associated to some representation ρ : G → GL(W ).
Then ρ induces Lie(G) → End(W ) and adP → EndE. For any ξ ∈ TMp the
connection gives a way to define the covariant derivative ∇ξs of a section s of
E. One way to define this is to choose a local trivialisation of P compatible
with H at the gives point p. This defines a local trivialisation of E so sections of
E are identified with W -valued functions and we define ∇ξs to be the ordinary
derivative, in this trivialisation. Obvious variants of this notation are: ∇Xs for
a vector field X on M and ∇ : Γ(E) → Γ(T ∗M ⊗ E).

From this point of view the curvature arises from the commutator of covari-
ant derivatives

[∇X ,∇Y ]s −∇[X,Y ]s = ρ(F (X,Y ))s,

for vector fields X,Y .
In this course we will mainly be concerned with the case when E = TM . A

covariant derivative on TM is called torsion free if

∇XY −∇Y X = [X,Y ]

for all vector fields X,Y . This is equivalent to saying that around each point
there are local co-ordinates such that ∇( ∂

∂xi
) vanishes at that point.

Let (M, g) be a Riemannian manifold, so there is a principle O(n)-bundle
P → M of orthonormal frames on M and the tangent bundle is associated to the
fundamental representation of O(n). The “fundamental lemma of Riemannian
geometry is that there is a unique connection, the Levi-Civita connection on P
which is torsion free. There are various points of view on this.

• The lemma is equivalent to our statement about 1-jets of metrics. In a
co-ordinate system adapted the metric at a point covariant differentiation,
at that point, is the ordinary derivative of vector valued functions.
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• The connection is characterised in terms of 2-vector fields X,Y, Z by

〈∇XY,Z〉 =
1
2

(∇X〈Y,Z〉 + ∇Y 〈X,Z〉 − ∇Z〈X,Y 〉 + 〈[X,Y ], Z〉 − 〈[Z,X ], Y 〉 − 〈[Y,Z], X〉) .

• In local co-ordinates a vector field is given by v =
∑

vi ∂
∂xi and

∇jv = vi
j +

∑

k

Γi
jkvk,

where the Christoffel symbols Γi
jk are

Γi
jk =

1
2

∑

a

gia (gaj,k + gak,j − gjk,a) ,

where the comma notation means partial derivative.

• We work with covariant derivative on T ∗M . This

∇ : Γ(T ∗M) → Γ(T ∗M ⊗ T ∗M).

Write
T ∗ ⊗ T ∗M = s2T ∗M ⊕ Λ2T ∗M.

Then

1. The component mapping to Λ2T ∗M is the exterior derivative d.

2. The component mapping to s2T ∗M is the Killing operator which
takes a vector field v to the Lie derivative Lvg. Here we use the
metric to identify TM and T ∗M .

The Riemann curvature tensor is the curvature of this Levi-Civita connec-
tion. Since the Lie algebra of O(n) can be identified with Λ2Rn the curvature
tensor is a section of Λ2T ∗M ⊗ Λ2T ∗M . In a local co-ordinate system adapted
to the metric at a point the curvature at that point is given by

Rijkl = Γi
jk,l − Γi

jl,k(∗)

Using the formula above for the Christoffel symbols this gives

Rijkl = gik,jl − gjk,il − gil,jk + gjl,ik.

The curvature satisfies the Bianchi identity

Rijkl + Riklj + Riljk = 0.

In invariant terms this expression defines a map

Λ2 ⊗ Λ2 → Λ1 ⊗ Λ3.

4



We write R′ ⊂ Λ2 ⊗ Λ2 for the kernel of this map: the space of curvature
tensors. This is compatible with the previous definition: the formula (*) gives
an isomorphism from R to R′. That is, the curvature is equivalent to the 2-jet
of the metric, modulo diffeomorphisms. In fact R′ lies in the symmetric part
s2Λ2 and can be identified with the kernel of the map

s2Λ2 → Λ4,

defined by the wedge product.
A basic fact is that a metric with Riem = 0 is locally Euclidean (or “flat”).

To see this we first use the Frobenius Theorem in the frame bundle to construct a
local orthonormal frame εi of cotangent vectors with ∇εi = 0. Then the torsion
free condition gives dεi = 0 so locally the εi are the derivatives of functions xi

and these give the desired Euclidean co-ordinates.
For a pair of vectors X,Y we put

K(X,Y ) = 〈R(X,Y )Y,X〉 = −〈R(X,Y )X,Y 〉.

For vector in a fixed plane this is proportional to |X∧Y |2 an in particular is the
same for all orthonormal pairs. It defines the sectional curvature in the plane.
If we think of the Plucker embedding

Gr2R
n → P(RN )

with RN = Λ2Rn, the sectional curvature is the function on Gr2 given in the
usual way by the quadratic functions on RN . This function uniquely determines
the curvature tensor, since the quadratic functions s2Λ2 which vanish on the
Grassmannian are exactly Λ4 ⊂ s2Λ2.

The Ricci curvature is obtained from the curvature tensor by the contraction

Λ2 ⊗ Λ2 → s2,

Rjk =
∑

i

Rijki.

So regarded as a quadratic function on tangent vectors the Ricci curvature in
the unit vector e1 is the sum of the sectional curvatures in the (n-1) planes
(e1, ei), where ei is an orthonormal basis. We have an orthogonal direct sum

R = s2 ⊕W

and the component of the curvature in W is the Weyl tensor. The Weyl tensor
depends only on the conformal class of the metric and if n > 3 a metric with zero
Weyl curvature is conformal to a flat metric. In dimension 3 we have R = s2,
the Ricci curvature determined the full curvature and there is no Weyl term.

The principle bundle approach is useful for studying other structures. For
a general Lie group G with a fixed representation on Rn a G-structure on a
manifold M is a principle G-bundle P → M and an isomorphism from TM to
the associated vector bundle. A torsion-free G-structure is a G-connection on P
which induces a torsion free covariant derivative. For example if G = GL(m,C)
with its standard action on R2m = Cm a torsion free G-structure makes M a
complex manifold.
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2 Constructions in a Riemannian manifold

Geodesics
The geodesic equation in a Riemannian manifold is the Euler-Lagraange

equation for the energy functional on paths γ : (a, b) → M :

E(γ) =
∫ b

a

|γ′|2dt.

It is equivalent to work with the length functional

L(γ) =
∫ b

a

|γ′|dt;

the difference is that the energy controls the parametrisation of the path. The
geodesic equation is ∇T T = 0 where T is the tangent vector regarded as a vector
field along the geodesic. (Note: More strictly we should think of T as a section
of the pull-back bundle γ∗(TM) over (a, b) and use the fact that connections
pull back in a natural way. But we will use a more informal notation. The
same applies at a number of points later where we shall be vague about exactly
where our vector fields are defined.) In local co-ordinates the geodesic equation
is given by

x′′
i = −

∑

jk

Γi
jkx′

jx
′
k.

A Riemannian metric on M gives a metric structure via the infimum of lengths
of paths between points. The manifold is called complete if it is so as a metric
space. This is equivalent to saying that geodesics are infinitely extendable, so
at each p ∈ M we have an exponential map

expp : TMp → M

. Examples

• The Riemannian manifold R2 \ {0} is not complete: of course the com-
pletion is R2.

• Let M be the quotient of the example above by the map x 7→ −x. Then
M is not complete and the metric space completion is a cone, which is not
a Riemannian manifold.

Submanifolds

Let E1, E2 be vector bundles over M and E = E1⊕E2. We have an inclusion
ι : E1 → E and projection p : E → E2. Given a covariant derivative ∇ on E
we have a map from sections of E1 to sections of E2 ⊗ T ∗M given by p ◦ ∇ ◦ ι.
This map is given by multiplication by a tensor

β ∈ Γ(E∗
1 ⊗ E2 ⊗ T ∗M);
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the second fundamental form of the sub-bundle.
In particular suppose M is a Riemannian manifold and S ⊂ M is a sub-

manifold. Then TM |S = TS ⊕ ν where ν is the normal bundle and we have
a connection on TM |S defined by the Levi-Civita connection. This gives the
second fundamental form B ∈ T ∗S⊗T ∗S⊗ν. The torsion-free condition implies
that this is symmetric. In particular if S has codimension 1 (and we choose a
orientation of ν) we just get B ∈ s2T ∗S. It is useful to think of this interchange-
ably as a bilinear form and a linear map B : TS → TS. In fact from the latter
point of view

B(ξ) = ∇ξN

for a vector field ξ on S and unit normal vector field N .
Extend the unit normal vector field N to a neighbourhood of S in M . Given

vector fields ξ, η on S we use the flow generated by N to extend these over a
neighbourhood, with [ξ,N ] = [η,N ] = 0. Then

∇N 〈ξ, η〉 = 2〈B(ξ), eta〉.

In other words if we use the flow to define a 1-parameter family of maps It from
S to M , extending the inclusion, and thenget a 1-parameter family of metrics
I∗t g on S we have

∂g

∂t
|t=0 = 2B.

A submanifold is called totally geodesic if the second fundamental form van-
ishes. In that case sectional curvature of S are the same as the correspond-
ing sectional curvatures in M . Note that geodesics are 1-dimensional totally
geodesic submanifolds.

The Laplace operator
For a function f on (M, g) we can define the gradient as the vector field

corresponding to the 1-form df via the isomorphism TM = T ∗M given by g.
(Note that we will often write ∇f for the vector field or the 1-form.)

For a vector field v on M we define the divergence via the Lie derivative of
the volume form Ω induced by the metric: LvΩ = divvΩ. So divv = 0 if and
only if the flow generated by v is volume-preserving.

The Laplace operator is Δf = div gradf . In local coordinates this is

Δf = g−1/2
∑

ij

∂i(g
1/2gij∂jf),

where gij is the inverse of gij and g = det(gij).

3 Symmetric spaces

In dimension two the Riemann curvature reduces to a scalar: the Gauss cur-
vature. The reader is probably familiar with the simply connected spaces of
constant curvature: +1, the round sphere; -1 the hyperbolic plane. Also that
formulae from one case “analytically continue” to the other. (Both geometries
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can be seen as real forms of the complex projective plane with a fixed conic.)
The natural higher dimensional generalisation is provided by the theory of Rie-
mannian symmetric spaces.

There are a number of different notions (local, global, simply-connected. . . ).
We say (M, g) is a locally symmetric space if it satisfies either of the following
equivalent conditions:

• ∇Riem = 0;

• For each p ∈ M , the map ep(ξ) 7→ ep(−ξ) defines an isometry of a neigh-
bourhood of p.

The conclusion of the theory is that such are locally isometric to manifolds
obtained in the following way. First we can reduce to the “irreducible” case
when the metric is not locally a product and we can alwayd rescale our metric.
Let G be a simple Lie group and σ : G → G an involution. Let M be the
identity component of

{h ∈ G : σ(h) = h−1}.

Then G acts transitively on M by g(h) = σ(g)hg−1 and M = G/K where
K = {g ∈ G : σ(g) = g}. To get a metric on M recall that the Killing form of
the Lie algebra g is

−Tr(adξ)2.

A fundamental result from Lie theory is that if g is simple this is nondegenerate.
It defines a bi-invariant possibly indefinite metric on the Lie group G and we
require that this be positive or negative definite on M ⊂ G. So either way get a
Riemannian metric on M , as desired. M is the fixed point set of the involutive
isometry τ(h) = σ(h)−1 so M is totally geodesic in G and to compute the
sectional curvature we can reduce to the case of a Lie group.

With its bi-invariant metric the Levi-Civita connection on G can be defined
by ∇XY = 1

2 [X,Y ] for left invariant vector fields X,Y . One finds that the
sectional curvature is

K(X,Y ) =
1
4
|[X,Y ]|2.

These symmetric spaces come in “dual pairs”. Suppose G is noncompact and let
K be a maximal compact subgroup. Then the Killing form is positive definite
on k and we take the orthogonal complement

g = k ⊕ p.

The map σ acting as +1 on k and −1 on p is an involution, which is the same
as saying that [p,p] ⊂ k. The space p is the tangent space of M = G/K at the
identity and the sectional curvature is (weakly) negative. We define a new Lie
algebra structure on the vector space g by reversing the sign of the component
p × p → k so we get a Lie algebra g′ and Lie group G′ which is compact. The
tangent space of M ′ = G′/K at the identity is p and the sectional curvature is
(weakly) positive. In sum, there is one dual pair for each noncompact simple
Lie algebra.
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Examples.
1. G = SL(n,R),K = SO(n), G′ = SU(n).
G/K is the set of Euclidean structures on bRn with fixed determinant. G′/K

is the set of special Lagrangian subspaces in Cn.
2. G = SO(n, 1),K = SO(n), G′ = SO(n + 1)
G/K is the hyperbolic n space and G′/K is Sn.
3. G = Sp(n,R),K = U(n), G′ = Sp(n) G/K is the space of complex struc-

tures on R2n compatible with a fixed symplectic form. This can be identified
with the Siegel upper half space: the set of n × n complex symmetric matrices
with positive definite imaginary part.

4. G = SU(n, 1),K = U(n), G′ = SU(n + 1)
G′/K is CPn and G/K is complex hyperbolic n-space.
One finds that the sectional curvatures of CPn lie between 1 and 1/4.
The sphere theorem (Berger, Klingenberg) A complete, simply connected

Riemannian manifold with sectional curvature 1 ≥ K > 1/4 is homeomorphic
to a sphere.

Improved to “diffeomorphic” much later by Brendle and Schoen.

4 Comparison geometry

The Jacobi equation is the linearisation of the geodesic equation. Let γ(t, s) be
a map from R2 (or an open subset) to M such that for each fixed s γ( , s) is a
geodesic. Let V, T be the images of ∂s, ∂t. So we have [V, T ] = 0. The geodesic
equation is ∇T T = 0 so ∇V ∇T T = 0. Thus

∇T∇T V = ∇T∇V T = −R(V, T )T.

This is a second order linear ODE for the vector field V along the geodesic. For
a symmetric space ∇Riem = 0 and the equation has constant co-efficients.

Points p, q on a geodesic segment γ are conjugate if there is a non-trivial
solution of the Jacobi equation which vanishes at p, q. A basic fact is that a
geodesic ceases to minimise length past the first conjugate point. To see this one
uses the second variation formula for length.

This gives a good general picture of the exponential map expp : TMp → M
of a complete manifold. There is an open set U ⊂ TMp which is star-shaped
about the origin such that expp is a diffeomorphism from U to a dense open set
in M . There are two reasons why we can meet the boundary of U .

• We reach a conjugate point.

• The image of U starts to “overlap” itself.

Using the exponential map we get standard “geodesic coordinates” on a
neighbourhood of p. For simplicity we suppose that the R-ball is contained in
U . The metric is represented by a 1-parameter family of metrics gr, for r < R on
the sphere Sn−1 and this is determined by the solutions of the Jacobi equation
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along radial geodesics. In a manifold of constant curvature ±1 these metric are
sin2 r, sinh2 r respectively times the standard metric.

Rauch comparison Suppose all sectional curvatures of M are ≥ c. Let
M̃ be the manifold of constant curvature c then gr ≤ g̃r. Symmetrically for
sectional curvature ≤ c.

This can be viewed as a statement about second order linear ODE. From
another point of view we consider the second fundamental forms of the spheres
in M . In general let S be a codimension-1 submanifold in M with unit normal
N . Let St be the family of hypersurfaces obtained by moving at unit speed in
the normal direction. The normal geodesics give a diffeomorphism from St to
S, so we can regard the induced metrics as a 1-parameter family gt of metrics
on S. The first fact is that

∂gt∂t = 2Bt

where Bt is the second fundamental form. To see this let X be a vector field on S
and extend over a neighbourhood in M using the normal flow. Then [N,X ] = 0
and

∇N 〈X,X〉 = 2〈∇NX,X〉 = 2〈∇XN,X〉 = 2〈B(X), X〉.

Now we compute the derivative of the second fundamental form. This time
we choose a vector field ξ on S and propogate by parallel transport along the
normals.

∇NB(ξ) = ∇N∇ξN = R(N, ξ)N −∇[N,ξ]N.

Now [N, ξ] = ∇Nξ −∇ξN = −B(ξ), so we get

∇NB(ξ) = R(N, ξ)N − B2(ξ).

Write R(N, ξ)N = −κ(ξ), so κ is a self-adjoint map on TS and the hypothesis
that the sectional curvatures are ≥ c says that κ ≥ c.

From the point of view of the Jacobi equation the nonlinear equation above
is the associated Ricatti equation. If we have an ODE x′′ = −κx where x is
an m-vector and the matrix κ is self-adjoint we consider the matrix equation
Z ′′ = −κZ. Put B = Z ′Z−1 then we get B′ = −κ − B2.

Now go back to the case when submanifolds are the spheres in M .
The Rauch theorem follows easily from the corresponding statement for the

second fundamental forms. Let B(t) solve B′ = −κ − B2 where κ ≥ c and B̃
solve B̃′ = −c − B̃2. The behaviour for small t is given by

B = t−1 −
1
3
κ0t + . . .

and similarly for B̃. Then the statement is B ≤ B̃. To see this reduce to the case
when Bt does not have multiple eigenvalues. Let ei be an evolving orthonormal
frame of eigenvectors. The eigenvalues λi(t) evolve by

λ′
i = 〈κei, ei〉 − λ2

i ≤ −c − λ2
i ,

then we can use an elementary comparison argument.
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The Bishop comparison theorem involves volumes and the Ricci curva-
ture. It is a one-sided result, under the hypothesis that in the manifold M we
have Ric ≥ (n−1)c—the Ricci curvature of the comparison space with sectional
curvature c. Let A(r) be the volume form on the sphere of radius r–we can also
think of A(r) as a function by comparig with the standard volume form on
Sn−1. Then we have

A′(r) = HA(r),

where A = TrB is the mean curvature. Now

d

dr
TrB = −TrB2 − Trκ.

The term Trκ is the Ricci curvature in the radial direction. For the quadratic
term we have

TrB2 ≥
1

n − 1
(TrB)2 .

For the model space this is an equality. So

d

dr
H +

H2

n − 1
≤

d

dr
H̃ +

H̃2

n − 1
.

From this one deduces that H ≤ H̃ and then A ≤ Ã. In fact one obtains more,
that A/Ã is decreasing. Let

V (r) =
∫ r

0

A(t)dt,

and likewise for Ṽ . It follows that V/Ṽ is decreasing.
Some conclusions from this discussion.
Myers Theorem If Ricci ≥ (n−1)c > 0 then the diameter of M is at most

πc−1/2.
Bishop-Gromov volume monotonicity If Ricci ≥ (n − 1)c then the

volume ratio
VolB(r)

Ṽ (r)

is decreasing. This is a global theorem: we do not need to assume that the r-ball
lies in U : conjugate points or overlapping only help in the inequality.

There is an important identity related to the discussion above involving the
Laplace operator Δ. For a function f on M

1
2
Δ|∇f |2 = |∇∇f |2 + Ric(∇f,∇f) + 〈∇Δf,∇f〉.

If we take f to be the distance from a fixed point p then

• |∇f | = 1;

• ∇∇f can be identified with the second fundamental form of the sphere;

• Δf is the mean curvature and 〈∇Δf,∇f〉 is dH
dr .

So we get the formula for d
H dr, as before.
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5 The Gauss-Bonnet formula

Readers are probable familiar with the fact that for a compact Riemannian
surface M2:

2πχ(M) =
∫

M

KdA,

where K is the Gauss curvature and χ(M) is the Euler characteristic—a topo-
logical invariant. In this section we discuss the extension to higher dimensions.

For a closed manifold M we take as the definition of the Euler characteristic
the signed count of zeros of a generic vector field. Otherwise said, this is the
self-intersection number of M regarded either as the diagonal in M × M or as
the zero section in TM . For simple reasons, this vanishes if the dimension of
M is odd.

Our discussion goes through the notion of the Thom class of an oriented
vector bundle. If E → M is an oriented bundle with fibre Rd this is a class in
the compactly supported cohomology Hd

c (E) which restricts to the generator on
each fibre. In de Rham theory it is represented by a closed compactly supported
d-form τ with integral 1 over the fibre. Suppose for simplicity that d = n =
dimM (as for the case when E = TM . Then the Euler number of E is given
by evaluating τ on the zero section. So if we have a way to write down a
representative τ for the Thom class we get an integral formula for the Euler
number. The theory of equivariant cohomology gives a machinery for writing
down such a representative.

Suppose that a compact Lie group G acts on a manifold X. Write g for the
Lie algebra of G and S(g∗) for the polynomial functions on g. Let

CG(X) = (Ω∗
X ⊗ s∗(g∗)G,

where Ω∗
X is the set of forms on X, the factor s∗(g∗) is the symmetric product

and ( )G denotes the G-invariants. Here G acts in the obvious way on Ω∗
X and

by the co-adjoint action on the other factor. At a point x ∈ X we have the
infinitesimal action ρx : g → TXx which we view as in g∗ ⊗ TXx. This defines

Ix : ΛqT ∗Xx ⊗ sp(g∗) → Λq−1T ∗X ⊗ sp+1(g∗)

and hence
I : CG(X) → CG(X).

We define a grading on CG(X) so that elements of g∗ have degree 2. Then I
has degree +1. The first basic fact is that (d + I)2 = 0 on CG(X) (where d
is defined in the obvious way acting trivially on s∗(g∗)). So we can define the
equivariant cohomology H∗

G,dR as the cohomology of (CG(X), d + I). We have
obvious maps

s∗(g∗) → H∗
G,dR(X) → H∗

dR(X),

where H∗
dR is de Rham cohomology.

For example suppose that G = S1 and the action on X is generated by a
vector field v. Then s∗(g∗) can be viewed as the polynomial ring R[t] and d+ I
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can be written as d + tiv. The statement that (d + I)2 = 0 is the fact that
div + ivd vanishes on the invariant forms, since it gives the Lie derivative in v.

Another point of view is to regard elements of CG(X) as equivariant poly-
nomial maps f : g → Ω∗

X . Then the differential of the map f is the map Df
given by

Df(ξ) = d(f(ξ)) + iρ(ξ)(f(ξ)).

Now change direction and consider a general differentiable bundle π : X →
M with fibre a manifold X. Suppose that we have a “connection” on this
bundle, in the sense of a family of horizontal subspaces H ⊂ TX . Recall that
this gives a tensor

Φ ∈ Λ2H∗ ⊗ V.

We can decompose the forms on X in the familiar way Ω∗
X =

⊕
Ωp,q (with “q

factors in the fibre direction”). The exterior derivative on Ωp,q has components
dV mapping to Ωp,q+1,dH mapping to Ωp+1,q and ˜Phi mapping to Ωp+2,q−1

where Φ̃ is the algebraic action of Φ by wedge product and contraction.
Specialise the above to the case when P → M is a principal G-bundle and

X → M is the bundle associated to the action of G on X. Fix a connection
on P ; the curvature F is a section of adP ⊗ Λ2T ∗M . At a point m in M
choose a trivialisation of the fibre of P so the fibre of X is identified with
X and the curvature with an element of Λ2T ∗Mm ⊗ g. Then we get a map
from Ω∗(X) ⊗ s∗(g∗) to sections of Λ∗TX restricted to the fibre by evaluating
a polynomial on the curvature and using the wedge product on Λ2T ∗M . For
the invariant elements, in CG(X) the result is independent of the choice of
trivialisation so we get a map

CG(X) → Ω∗(X )

and one checks that this is a cochain map with respect to d+I and the ordinary
exterior derivative on Ω∗(T X ). This comes down to the fact that the component
Φ̃ corresponds to I.

The conclusion is that if we can extend an ordinary closed form to an “equiv-
ariantly closed” form in C∗

G(X) then we can extend over the total space of any
bundle X .

With this background in place we return to the Thom class. Take X = Rn

and G = SON(n). We identify the Lie algebra g with Λ2Rn and define f : g →
Ω∗(X) by

f(ξ) = ∗e−r2/2 exp(ξ),

where the exponential is defined in the algebra Λeven. This the Matthai-Quillen
form. One checks that Df = 0 in the sense above. So if E → M is an oriented
Euclidean rank n vector bundle with connection the discussion above gives a
closed n-form τ0 in the total space of E. Strictly this is not a Thom form
since it is not compactly supported. One can get around that by choosing a
suitable diffeomorphism g : Bn → Rn equal to the identity near the origin and
considering g∗(τ0), extended by zero over the complement of Bn. The very rapid
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decay of e−r2/2 implies that this is a smooth form and nothing is changed over
the zero section.

The upshot is a formula, with n even and for an oriented Rn bundle with
connection over an oriented n-manifold M

Euler(E) = c

∫

M

Pfaff(F ),

where the Pfaffian Pfaff is the polynomial of degree n on Λ2 given by ξn/n!.
Specialising to the tangent bundle of a Riemannian n-manifold (n even) this is
the Gauss-Bonnet formula

χ(M) = c

∫

M

Pfaff(Riem).

Here we take Riem ∈ Λ2 ⊗ Λ2 and

n!Pfaff(Riem) = (Riem)n ∈ Λ2n ⊗ Λ2n = R.

The curvature tensor in dimension 4
Let M be an oriented Riemannian 4-manifold. We decompose the 2-forms

into self-dual and anti-self-dual parts Λ2+Λ+⊕Λ−. The curvature lies in s2(Λ2)
so it has components

V± ∈ s2(Λ±), Z ∈ Λ+ ⊗ Λ−.

The component Z can be identified with the trace-free part Ric0 of the Ricci
curvature under an isomorphism of representations of SO(4):

Λ+ ⊗ Λ− = s2
0(R

4).

Recall that in general the space of curvature tensors can be viewed as the kernel
of the wedge product map s2(Λ2) → Λ4. In 4 dimensions this gives the condition
that the traces of V± are equal: they are both a multiple of the scalar curvature
S. The trace-free parts W± of V± are components of the Weyl tensor. So
the curvature tensor has four pieces S, Ric0,W+,W−. When M is compact the
Gauss-Bonnet formula becomes

χ(M) =
1

8π2

∫

M

1
24

|s|2 + |W 2
+ + |W−|

2 −
1
2
|Ric0|

2,

(take the some of the constants here with a grain of salt, there is some depen-
dence on conventions in defining the norms).

A manifold with Ric0 = 0 is called Einstein. We see that if M is Einstein
then χ(M) ≥ 0 with equality if and only if M is flat. For example the only
Einstein metrics on a 4-torus are flat.

Another topological invariant of a (compact, oriented) 4-manifold is the
signature σ(M). This is the signature of the quadratic form on H2(M,R)
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given by cup product. A substantially deeper theorem ( of Hirzebruch) gives an
integral formula for the signature:

σ(M) =
1

12π2

∫

M

|W+|2 − |W−|
2.

Assuming this we get the Hitchin-Thorpe inequality, for an Einstein manifold

|σ(M)| ≤
2
3
χ(M),

with equality holding if and only if S = 0 and one of W+,W− is everywhere
zero. If M is simply connected, such metrics are hyperkähler. For example a K3
surface, which admits such a metric by a theorem of Yau, has χ = 24, σ = −16.

Further remarks on equivariant cohomology
An algebraic topology point of view on the question of extending a class in

H∗(X) over a bundle X with structure group G is to consider the universal
case. We have a universal principal bundle EG → BG and associated bundle
XU = EG ×G X → BG with fibre X. Any bundle X → M as above is pulled
back by a map X → BG, so a class in H∗(XU pulls back to a class in H∗(X ).
In algebraic topology one defines equivariant cohomology by H∗

G(X) = H∗(XU )
and the “equivariant de Rham theorem” asserts that this agrees with H∗

G,dR(X)
in the case of a smooth manifold X and compact Lie group G.

From the definition, we have obvious maps

HBG → H∗
G(X) → H∗(X).

This connects with the previous discussion by the Chern-Weil isomorphism

H∗(BG) = s∗(g∗)G,

the invariant polynomials on the Lie algebra. Characteristic classes of G bundles
are given by elements of H∗(BG) and are represented by differential forms
obtained by applying the corresponding invariant polynomial to the curvature.
The formula for the σ(M) above is a composite of the Chern-Weil description of
the first Pontrayagin class p1 and the Hirzebruch signature which (in dimension
4) identifies the signature of a 4-manifold with p1/3.

6 Introduction to PDE and analysis techniques

Linear theory
Let (M, g) be a compact Riemannian manifold of dimension n. We consider

an operator of the form

Lf = Δf + ∇Xf + V f,

where X is a fixed vector field and V a fixed smooth function. More generally the
following discussion applies to elliptic linear operators but we will not pause to
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define this condition. The adjoint operator L∗ is characterised by the condition
that

Lf, g〉 = 〈f, L∗g〉,

for all functions f, g and the L2 inner product. In the case at hand

L∗f = Δf −∇Xf + (V + divX)f.

The fundamental result ( the “Fredholm alternative”) is that we can solve the
equation Lf = ρ for f if any only if ρ is orthogonal to the kernel of L∗. For
example if L = L∗ = Δ we can solve the equation if and only if the integral of
ρ is zero.

We also want solutions with estimates and for these we introduce standard
function spaces:

• For p > 1; Lp
k: functions with the first k derivatives in Lp,

• For 0 < α < 1 the Hölder spaces Cr,α with the first r derivatives α-Hölder
continuous.

Let E denote one of these function spaces. There are inclusions between
these spaces which are governed by two numbers ν(E),W (E). The number
ν(E) is the “number of derivatives” k or r + α respectively. The number W (E)
is the scaling weight with respect to scaling the metric g. Thus W (Lp

k) = k−n/p
and W (Cr,α) = r + α. Then if W (E) ≥ W (E′) and ν(E) ≥ ν(E′) there is an
inclusion E ⊂ E′. These inclusions are related to isoperimetric inequalities.
For example in the case of functions of compact support on Rn we have an
inequality

‖f‖Ln/n−1 ≤ Cn‖∇f‖L1 ,

and by considering smoothings of the characteristic function of a bounded do-
main Ω one sees that

Vol(Ω)(n−1)/n ≤ CnArea(∂Ω).

Our operator L defines a bounded map Lp
k+2 → Lp

k and Ck+2,α → Ck,α.
The force of ellipticity is that we get estimates, for example in the Lp

k case

‖f‖Lp
k+2

≤ C
(
‖Lf‖Lp

k
+‖f‖L1

)
.

Remarks

• . The theory is simpler for the case p = 2 and very often this is all one
needs.

• The inequality holds in the sense that if the right hand side is finite then
so is the left hand side: i.e. a function which a priori lies in some weaker
space is actually in Lp

k+2. This is elliptic regularity.

The inverse and implicit functions theorems apply to smooth maps be-
tween Banach spaces (such as those above). This means that we can often
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study small deformations of a nonlinear problem by applying these results
in suitable functions spaces and then invoking elliptic regularity. For ex-
ample if there is a closed geodesic γ : S1 → M for the metric g and if
there are no Jacobi fields along γ then arguments of this kind show that for
small perturbations g̃ of g we can find a corresponding perturbed closed
geodesic γ̃.

More substantial results are typically proved by combing these techniques
with a priori estimates, as in the following examples.

Example 1: Constant negative curvature surfaces

We suppose given a compact 2-manifold with Euler characteristic χ < 0
and some metric g. The problem is to find a conformally equivalent metric
= eug with curvature K() equal to −1. One finds that

K() = e−u(K(g) − Δu).

As a preliminary step it is easy (exercise) to find a conformal change
making the curvature negative, so we may as well suppose that K(g) = −F
with F > 0. The equation to be solved is

−Δu + eu = F,

in other words if T is the nonlinear operator T (u) = −Δu+eu we want to
show that T maps onto the set of poistive functions. We solve this using
the continuity method: choose a path Ft of positive functions from F0 = 1
to F1 = F . When t = 0 there is a solution u = 0. Let S ⊂ [0, 1] be the
set of parameters t for which a solution exists: we need to show that S is
open and closed. The openness follows from the open mapping theorem:
the derivative of T at u0 is the linear map v 7→ −Δv + eu0v and this is
surjective by the Fredholm alternative. To establish closedness we obtain
a priori estimates on solutions, starting with the C0 norm. This is done
very easily using the maximum principle. Then we have L2 bounds on eu

and hence an L2
2 bound on u. Using the embedding theorems and elliptic

estimates repeatedly one gets estimates on all derivatives of u.

Example 2: isometric embedding of positively curved surfaces

For this problem we are given a metric g on a manifold M , diffeomorphic
to the 2-sphere, with curvature K > 0 and we seek an isometric embedding
(M, g) → R3. This problem was studied by Weyl in 1916 and the solution
completed by Nirenberg and Pogerolov in the 1950’s. (The conclusion is
that such an isometric embedding exists and is unique up to Euclidean
motions of R3. Note that this result is special to dimension 2: for n > 2
a generic Riemannian n-manifold cannot be isometrically embedded in
Rn+1, even locally.)

The problem can be set up as a PDE for a map f : M → R3. Alter-
natively, by classical results from surface theory, the existence of such a
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map is equivalent to finding the second fundamental form B ∈ Γ(s2T ∗M)
satisfying the conditions

det(B) = K B = 0,

where is the linear operator which is the composite of teh covriant deriva-
tive

∇ : Γ(T ∗ ⊗ T ∗) → Γ(T ∗ ⊗ T ∗ ⊗ T ∗),

with the skew-symmetrisation map

T ∗ ⊗ T ∗ ⊗ T ∗ → T ∗ ⊗ Λ2T ∗ = T ∗.

The strategy is to first check (using the uniformisation theorem) that the
space of metrics of positive curvature is connected. Then we can apply
the continuity method to a 1-parameter family gt with K(gt) > 0. The
pair of equations det B = K,B = 0 make up an elliptic equation for B
(a notion we have not defined in this course) but there are subtleties in
proving the “openness”. We will not go into that here but move on to
the “closedness”. The key step here is to derive an a priori bound for the
mean curvature H = TrB. For this one uses an identity

∑

ij

(Hgij − Bij)∇i∇jH = ΔK + |∇B|2 − |∇H|2 + K(H2 − 4K).

The quadratic form Hgij − Bij is positive definite so at a point where H
attains its maximum we have

ΔK + |∇B|2 + K(H2 − 4K) ≤ 0,

(since ∇H vanishes at this point). This gives an upper bound on H. The
“bootstrapping” arguments to obtain bounds on higher derivatives are
also more delicate but we will not go into further details here.

The identity above can be understood in the following way.

7 The spectrum of a Riemannian manifold

For (Mn, g) we consider the eigenvalue equation Δφ = −λφ so λ ≥ 0 and
λ = 0 corresponds to the constants. The eigenfunctions φλ give an L2

orthonormal basis.

There are many results on the first eigenvalue λ1 > 0, it is the optimal
constant in teh Poincare inequality

‖∇f‖2 ≥ λ1‖f‖
2,

for functions of integral zero.
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For example:

(Obata) If Ricci ≥ (n − 1) then λ1 ≥ n withe equality if and only if M is
the standard sphere.

(Cheeger) Let h be the best constant such that for all domains Ω ⊂ M
with Vol(Ω) ≤ Vol(M \ Ω we have

Area(∂Ω) ≥ hVol(Ω).

Then λ1 ≥ h2/4.

To prove the Obata theorem recall the identity

1
2
Δ|∇f |2 = |∇∇f |2(∇Δf,∇f) + Ric(∇f,∇f).

Let ∇2
0f be the trace-free part of the ∇∇f . Then

|∇∇f |2 = |∇2
0f |

2 + n−1|Δf |2.

Suppose Δf = −λf and integrate this identity over M . We get

‖∇2
0f‖

2 + (n − 1)λ‖f‖2 ≤ λ2(1 − n−1)‖f‖2,

so if λ > 0 we get λ ≥ n.

In the case of equality ∇2
0f = 0. This implies that the vector field gradf

is a conformal Killing field. We also have ∇2f = −g which implies that
along any geodesic γ(t) we have f ′′ = −f . Using these observations it is
not hard to show that M is the standard sphere.

The proof of the Cheeger result uses the co-area formula. Let g be any
positive function which vanishes on ∂Ω and let Ωc ⊂ Ω be the set where
g ≥ c. Then ∫

Ω

g =
∫

Vol(Ωc)dc,

and ∫

Ω

|∇g| =
∫

Area(∂Ωc)dc.

Suppose that Δf = −λf on M and f has integral zero. We can suppose
that the volume of the set Ω = {f ≥ 0} is at most half the volume of M .
Since f vanishes on ∂Ω we have

∫

Ω

|∇f |2 = λ

∫

Ω

f2.

Now set g = f2 on Ω, so
∫

Ω

|∇g| = 2
∫

Ω

f∇f ≤ 2‖f‖‖∇‖ ≤ 2λ1/2‖f‖2
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where the norms are L2 over Ω. Using the co-area formula and the defi-
nition of h, applied to the Ωc, we get

‖f‖2 =
∫

Ω

g ≤ h−1

∫

Ω

|∇g|,

and the result follows.

The heat kernel

The heat equation is ∂tf = Δf . For initial data f0 we can write the
solution as ft = Htf0 where Ht is an operator on C∞(M). This has a
spectral description

Htφλ = e−λtφλ,

and an integral description

Htf(x) =
∫

M

Kt(x, y)f0(y)dy.

So
Kt(x, y) =

∑

λ

φλ(x)φlambda(y)e−λt,

and the trace of Ht has two descriptions

∑

λ

e−λt =
∫

M

Kt(x, x)dx.

We want to get an asymptotic expansion for Kt(x, y) as t → 0 and close
to the diagonal x = y. For fixed y0 ∈ M the function Kt( , y0) can
be characterised as the solution of the heat equation which tends to the
δ-function at y0 as t → 0.

On Rn the heat kernel is (4πt)−n/2e−r2/4t. Fixing a point y0 ∈ M this
makes sense on M with r = d(x, y0); let Ψ be the resulting function. Write

Δr2 = n + 4S,

so S vanishes at y0 and has a Taylor series expansion about y0 (with first
term given by the Ricci tensor at y0). Now we have

(∂t − Δ)Ψ = t−1SΨ.

Our strategy is to find functions a0(x), a1(x) . . . so that for each k

(∂t − Δ)
(
Ψ(a0 + a1t . . . + aktk)

)
= O(tk),

and a0(y0) = 1. If we have done this then some fairly straightfoward
analysis shows that indeed an asymptotic expansion of the true heat kernel
Kt(x, y0). In particular

Kt(y0, y0) ∼ (4π)−n/2
∑

ai(y0)t
−n/2+i.
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To find the ai we compute

(∂t − Δ)(a(x)tpΨ) =

(
1
4
r∂ra + pa + Ea

)

tp−1Ψ + ΔaΨtp.

The discussion is a bit different for p = 0 and p > 0. For p = 0 we set
a0 = ef so we want to solve the equation

r∂rf = −2S.

Since E vanishes at y0 there is a unique solution to this ODE with f(y0) =
0. In fact since

r2qe−r2/4t ≤ Cqt
q,

the whole discussion only requires solving the equation as a Taylor series
and everything can be done entirely algebraically. The point is that r∂r
acts as multiplication by d on polynomials of degree d.

Now we have found a0 so at the beginning of the step p = 1 we have an
error term

(∂t − Δ)(a0Φ) = E1Φ + O(t)Φ.

We want to choose a1 so that

(∂t − Δ)a1(x)tΦ) = E1Φ + O(t)Φ,

which is to say
1
2
r∂ra1 + a1 + Sa1 = E1.

We write a1 = ef b1 and the equation for b becomes

1
2
r∂rb1 + b1 = e−fE1.

The operator on the left acts as multiplication by d/2 + 1 on polynomials
of degree d so we can solve this equation to complete the step p = 1, and
so on.

The conclusion is that
∑

λ

e−λt ∼ (4πt)−n/2(
∑

Apt
p),

where Ap =
∫

M
ap(y, y)dy.

Applications

– The Weyl asymptotic formula.
From the leading term of the asymptotic expansion we get

∑

λ

e−λt ∼ (4π)−n/2Vol(M)t−n/2,
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as t → 0. From this a general Tauberian Theorem from analysis
shows that

N(μ) ∼ (4π)−n/2 Vol(M)
Γ(n/2 + 1)

mun/2,

where N(μ) is the number of eigenvalues ≤ μ. For example let Λ be
a lattice in Rn and M = Rn/Λ. The (complex) eigenfunctions are
exp(2πiμ(x)) where μ is in the dual lattice Λ∗, with eigenvalue |μ|2.
The volume of Rn/Λ∗ is Vol(M)−1 and Γ(n/2 + 1) is the volume of
the unit ball in Rn. So the formula becomes the standard asymptotic
result counting lattice points in a large ball.

– Zeta functions
For <(s) large we can define

ζM (s) =
∑

λ>0

λ−s.

This can be expressed as

ζM (s) =
∫ ∞

0

∑

λ>0

e−λtts−1dt.

The asymptotic expansion for the trace of the heat kernel implies that
ζM has a meromorphic continuation over C with no pole at s = 0.
For a similar finite sum

ζ0(s) =
∑

λ−s =
∑

exp(−s log λ)

we would have

ζ ′0(s) = −
∑

log lambda exp(−s log λ),

so
ζ ′0(0) = −

∑
log λ

and
exp(−ζ ′0(0)) = Πλ.

For the infinite set of eigenvalues the product is wildly divergent
but ζ ′M (0) is defined, via analytic continuation. We can regard
exp(−ζ ′M (0)) as the regularised determinant of the Laplace opera-
tor (on functions of integral 0).

– Index formulae (Assuming some knowledge of Hodge Theory)
The same discussion applies if we add lower order terms to the Lapla-
cian, for example Δ + V . Similarly it applies to operators of Laplace
type acting on vector bundles. Suppose that n = 2 so M is a sur-
face and consider the Laplace operator Δ1 = −(dd∗ + d∗d) acting on
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1-forms. If φ is a eigenfunction of the scalar Laplacian Δ on func-
tions with eigenvalue λ > 0 then dφ is an eigenfunction of Δ1, with
the same eigenvalue. Similarly if ψ is an eigenfunction of Δ1 with
nonzero eigenvalue then d∗ψ is an eigenfunction of Δ, with the same
eigenvalue. From this one sees that the non-zero spectrum of Δ1 is
two copies of that of Δ. By the Hodge Theorem the dimension of the
zero eigenspace of Δ1 is the Betti number b1. We conclude that for
any t

2TretΔ − TretΔ1 = 2 − b1,

the Euler characteristic χ(M). Taking the t0 term in the asymptotic
expansions we see that χ(M) can be written as the integral of a
computable expression constructed from the curvature tensor of M
and this turns out to be the Gauss-Bonnet formula.
The same applies much more generally. For example on an oriented
manifold of dimension 4k we decompose the 2k forms into self-dual
and anti-self dual parts. This commutes with the Laplacian so we
can write Δ+, Δ− for the Laplace operator on the ± self dual forms.
Simple Hodge theory arguments show that the nonzero spectra of
these operators agree and the difference of the zero eigenspaces is the
signature σ(M) of M . So we get

σ(M) = TretΔ+

− TretΔ−

,

for all t and for t → 0 this is given by a computable formula involving
the curvature tensor.
What is harder is to identify the formula which arises, for example
in dimension 4

σ(M) = (12π2)−1

∫
|W+|2 − |W−|2,

as we mentioned in Section 5.

8 The Selberg Trace formula

In this section we consider a compact hyperbolic surface M = H2/G where
G ⊂ PSL(2,R) and H2 is the upper half space with metric

y−2(dx2 + dy2).

To begin with we work with the heat kernel exp(tΔ) but later we will
extend to other operators. The trace formula is an exact formula of the
shape

TretΔ =
∫

M

W (t) +
∑

γ

F (l(γ)),
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where γ runs over primitive closed geodesics l(γ) is the length of γ and
W,F are functions of one real variable to be found later. (A closed geodesic
is primitive if it does not factor through a map S1 → S1 of degree d > 1.)

The proof has a “topological” component which shows that there is a
formula of this shape and a “calculus” component to identify the exact
functions which arise. We begin with the topological part and we assume
that we have found the heat kernel κt(x, y) on H2. Clearly for each t this
should be a function kt(d(x, y)) of the hyperbolic distance d(x, y) between
x, y. Now (ignoring convergence questions)

∑

g∈G

κt(x, gy),

is preserved by G acting on x, y so descends to M ×M and this is the first
formula for the heat kernel Kt on M .

Let M̃ be the space of pairs (x, [δ]) where x ∈ M and [δ] ∈ π1(M,x).
Equivalently we can this to be the set of pairs (x, δ) where δ is a geodesic
loop based at x. We have an obvious covering map p : M̃ → M so M̃ is
also a hyperbolic surface. We also have a map L̃ : M̃ → R given by the
length of δ. Now one sees that for x ∈ M

Kt(x, x) =
∑

x̃ ∈ p−1(x)kt(L(x̃)),

which implies that ∫

M

Kt(x, x) =
∫

M̃

kt(L̃).

The set M̃ is not connected. Let Ω be the set of free homotopy classes
of maps S1 → M . If we fix any base point x0 ∈ M these correspond
to conjugacy classes in π1(M,x0). Then M̃ splits into components corre-
sponding to elements of Ω. The trivial homotopy class gives a copy of M
in M̃ . The contribution from this to the integral above above is

∫

M

Wt

where t = kt(0).

The non-trivial free homotopy classes correspond to (non-constant) closed
geodesics in M . Let γ be closed geodesic of length L(γ) > 0, ω the free
homotopy class and M̃ω the corresponding component. Choosing a base
point and a representative g ∈ G = π1(M,x0) for ω. One sees that M̃ω can
be identified with H2/Z where Z ⊂ G is the centraliser of g ∈ G. From
the structure of PSL(2,R) one sees that Z is infinite cyclic. To simplify
suppose first that γ is primitive, which implies that Z is generated by g.
Then as a hyperbolic surface H2/Z is determined entirely by the length
L = L(γ) so let us call it ΣL. Topologically, this is a cylinder R × S1.
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The contribution from this component is given as follows. For z ∈ ΣL let
δ be the geodesic loop based at z which represents the fixed generator of
π1(ΣL), of length L(δ). Then the contribution is

∫

M̃ω

kt(L̃) =
∫

ΣL

kt(L(δ)).

A little thought shows that the imprimitive classes can be handled as
follows. For primitive γ of length L(γ) as above and integer m ≥ 1 and
z ∈ ΣL let δm be the geodesic loop based at z which represents m times
the generator of π1. Let fm(z) be the length of δm. Then we set

F (L) =
∞∑

m=1

∫

ΣL

kt(fm(z))dz,

and we obtain the formula (*) (using the fact that an imprimitive class is
a multiple of a primitive class).

This completes the “topological” part of the discussion.

The calculus part involves two questions.

– Find the heat kernel function kt for H2.

– Find a more explicit formula for F (L).

Changing point of view, we choose an arbitrary function k (with suitable
decay properties etc) and consider the integral operator I on H2 defined
by the kernel k(d(x, y)). We claim that for each λ there is a P (λ) with
the following property: if φ is a solution of Δφ = −λφ on H2 then I(φ) =
P (λ)φ. This follows from the fact that there for each y in H there is a
unique solution of Δψ = −λψ with ψ(y) = 1 and with ψ(x) a function of
the distance d(x, y). It follows from this observation that if we construct
an integral operator on M by summing as before it acts as P (λ) on the λ
eigenspace over M . In other words the operator is P (−ΔM ) and we get a
formula for

Tr(P (−Δ) =
∑

λ

P (λ).

So for any k we get a P but what we want is to find k given P . The anal-
ogous situation in Rn is given by the Fourier transform, on rotationally
invariant functions.

First we find an explicit formula for P in terms of k.

For z, w ∈ H2 set

D(z, w) =
|z − w|2

ImzImw
.

One finds that D(z, w) = cosh d(z, w) − 1. It is easier to work with the
function κ(D) corresponding to k(d). The Laplace operator on H2 is

y−2(∂2
x + ∂2

y).
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So for any s ∈ C the function ys is an eigenfunction with λ = −s(s − 1).
Put s = 1

2 + ir so λ = r2 + 1
4 and write P (r2 + 1

4 ) = h(r). We have to
evaluate

h(r) =
∫

H2

κ(D(z, i))y1/2+iry−2dxdy,

which is ∫

H2

κ(
x2 + (y − 1)2

y
)y1/2+iry−2dxdy.

Writing x = y1/2u and y = et this is

h(r) =
∫ ∞

−∞

∫ ∞

−∞
κ(e−t(et − 1)2 + u2)eirtdudt.

Define an operator A on functions on R by

(Af)(v) =
∫ ∞

−∞
f(v + u2)du.

So the procedure to go from κ to h is:

– Apply A to κ;

– Make the change of variable v = e−t(et − 1)2 = 2(cosh t − 1);

– Take the Fourier transform.

We can invert the operator A. Let D denote the operation of differentia-
tion. Then A commutes with D and one finds that ADA is 2π times the
identity (on functions vanishing at infinity), so A−1 = (2π)−1AD. Using
Fourier inversion we get an inversion formula expressing κ in terms of h.

– Take the inverse Fourier transform

g(t) = (2π)−1

∫ ∞

−∞
h(r)e−irtdr.

– Change variable so g(t) = Q(2(cosh t − 1))

– Then

κ(D) =
∫ ∞

−∞
Q′(D + p2)dp.

The expression for κ(0) is simpler. We get

κ(0) =
∫ ∞

0

rh(r)dr

∫ ∞

−∞

sin rt

sinh(t/2)
dt.

The t integral can be evaluated:
∫ ∞

−∞

sin rt

sinh tt/2
= tanh r.
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Thus

κ(0) = (2π)−1

∫ ∞

0

h(r)r tanh rdr.

Now we consider the contribution from closed geodesics. Take L > 0 and
the action on H2 generated by z 7→ eLz. The quotient is a model for ΣL.
A fundamental domain is given by {z : 1 ≤ Imz ≤ eL. The contribution
from geodesic loops representing the mth multiple of the generator is

∫ ∞

−∞
dx

∫ eL

1

κ(
(emL − 1)2(x2 + y2)

emLy2
y−2dxdy.

Making a change of variables this becomes

1
2 sinh mL/2)

∫ ∞

−∞
dx

∫ L

0

κ(u2 +
(emL − 1)2

emL
dt.

The t integral is trivial and by comparing with the previous calculation
we can express things directly in terms of the Fourier transform g of h:
the integral is

L

2 sinh L/2
g(mL).

In conclusion we get the Selberg trace formula.

– Start with a function P so we can define P (−ΔM ) on M and set
h(r) = P (r2 + 1/4).

– Let g be the Fourier transform g(t) =
∫∞
−∞ h(r)eirtdr.

– Then

TrP (−ΔM ) = (4π)−1Area(M)
∫ ∞

−∞
h(r)r tanh rdr+

∑

γ

l(γ)
∞∑

m=1

g(ml(γ))
sinh ml(γ)/2

.

This can be related to at least two other subjects.

– On a general Riemannian manifold we do not an exact formula but
asuymptotic relations between the spectrum and closed geodesics, in
the same vein as quasi-classical approimation in qunatum mechnaics.

– The theory can be developed from the point of view of infinite di-
mensional representations of SL(2,R). The parameter r labels the
principle series representations and r tanh rdr is the Plancherel mea-
sure.
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