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Introduction

Introduction

Avalanche size in the totally asymmetric Oslo model maps to the area
inscribed by annihilating random walkers.

Recent interest in this process from another perspective: Extreme
value statistics, in particular Majumdar and Comtet PRL 92, 225501
(2004).
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Scaling arguments

Scaling arguments

Fluctuations f , time t , diffusion constant D (Brownian motion!), initial
gap x0.
Characteristic area sc ∝ ft ∝ (Dt)1/2t ∝ t3/2
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Scaling arguments

Scaling arguments

First moment: N walkers cover area Nx0t plus error independent of N,
when large enough.
Surprise: Error vanishes like 1/N, rather than 1/

√
N for independent

areas.
This latter term is cancelled by short-lived anticorrelations, as seen in the
variance of the estimated average area:

1
N2

N∑
ij

(〈
sisj
〉

− 〈si〉
〈
sj
〉)

=
σ2(s)

N
+

N∑
i,j=1
i 6=j

(〈
sisj
〉

− 〈si〉
〈
sj
〉)

=
2

3N2 Dt3 + . . .

g.pruessner@imperial.ac.uk (Imperial) Coalescing random walkers Warwick 01/2010 4 / 9



Scaling arguments

Scaling arguments

First moment: N walkers cover area Nx0t plus error independent of N,
when large enough.
Surprise: Error vanishes like 1/N, rather than 1/

√
N for independent

areas.
This latter term is cancelled by short-lived anticorrelations, as seen in the
variance of the estimated average area:

1
N2

N∑
ij

(〈
sisj
〉

− 〈si〉
〈
sj
〉)

=
σ2(s)

N
+

N∑
i,j=1
i 6=j

(〈
sisj
〉

− 〈si〉
〈
sj
〉)

=
2

3N2 Dt3 + . . .

g.pruessner@imperial.ac.uk (Imperial) Coalescing random walkers Warwick 01/2010 4 / 9



Scaling arguments

Scaling arguments

Assume simple scaling of cluster size distribution
P(s) = s−τG(s/tdf ).
Moments thus go like 〈sn〉 ∝ tdf (1−τ+n).
Characteristic size scales like sc ∝

√
D t3/2, i.e. df = 3/2.

First moment goes like 〈s〉 = x0t , so that τ = 4/3.
Higher moments thus go like 〈sn〉 = Anx0D(1−τ+n)/2t(3n−1)/2.
All moments (precisely: their leading orders in t) linear in x0?!?
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Scaling with initial gap

Moment scaling with initial gap

〈sn〉 = (x0t)n 〈sn〉 = Anx0D(1−τ+n)/2t(3n−1)/2

As long as characteristic size does not involve x0, all moments are
linear in x0.
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Perturbative approach

Perturbation theory

Calculation of moments in closed form is difficult.
Perturbation theory in powers of t actually not possible (integrals violate
assumptions about small and large parameters). Overlooking that and
ignoring divergent coefficients, gives〈

s2
〉

= c0t5/2 + c1t3/2 + c2t1/2 + c3t−1/2 + . . . .

Series expansion of the exact result:〈
s2
〉

= c0t5/2 + c1t3/2−d0t + c2t1/2−d1 + c3t−1/2 + . . . .
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Exact results

Exact results

Exact second moment is messy:
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Correlation functions

Correlation functions

How to calculate the correlation function 〈sisi+1〉?

(Idea by Alan Bray)
Observation:〈
(si + si+1)

2
〉

=
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s2

i

〉
+
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s2

i+1

〉
+ 2 〈sisi+1〉.〈
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〉
known from above.〈

(si + si+1)
2
〉

is the second moment of the area for the initial gap
doubled, x0 → 2x0.
Thus:

〈sisi+1〉 =
1
2

〈
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(2x0) −
〈

s2
〉

(x0) .

Similar for higher correlation functions
〈
sisi+j

〉
.

Note: Leading order terms, linear in x0, cancel.
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Summary

Summary

Area between coalescing random walkers.
Scaling arguments suggest the right behaviour.
Anti-correlations visible when estimating first moment.
All moments linear in initial gap (to leading order in t).
Perturbation theory fails.
First and second moment known exactly.
Correlation function can be calculated by merging areas.

Published in:
Peter Welinder, Gunnar Pruessner and Kim Christensen Multiscaling
in the sequence of areas enclosed by coalescing random walkers,
New J. Phys. 9, 149-1–18 (2007).

Thank you!
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