Self Organised Criticality in the third decade after BTW

Gunnar Pruessner

Department of Mathematics Imperial College London

Istanbul, 6 Sep 2011

Imperial College London

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Outline

2 More models

5 Any Answers?

More models Tools in SOC Some new ideas Any Answers?

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

Prelude: The physics of fractals

Question: Where does scale invariant behaviour in nature come from?

Answer: Due to a phase transition, self-organised to the critical point.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

More models Tools in SOC Some new ideas Any Answers?

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

Prelude: The physics of fractals

- Anderson, 1972: *More is different* Correlation, cooperation, emergence
- 1/f noise "everywhere" (van der Ziel, 1950; Dutta and Horn, 1981)
- Kadanoff, 1986: Fractals: Where's the Physics?
- Bak, Tang and Wiesenfeld, 1987: Self-Organized Criticality: An Explanation of 1/f Noise

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

More models Tools in SOC Some new ideas Any Answers? Prelude: The physics of fractals **The BTW model** 1/f noise — a red herring? Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics.

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

More models Tools in SOC Some new ideas Any Answers? Prelude: The physics of fractals **The BTW model** 1/f noise — a red herring? Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics.

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics.

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

More models Tools in SOC Some new ideas Any Answers? Prelude: The physics of fractals **The BTW model** 1/f noise — a red herring? Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics.

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

More models Tools in SOC Some new ideas Any Answers? Prelude: The physics of fractals **The BTW model** 1/f noise — a red herring? Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics.

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

More models Tools in SOC Some new ideas Any Answers? Prelude: The physics of fractals **The BTW model** 1/f noise — a red herring? Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics.

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

More models Tools in SOC Some new ideas Any Answers? Prelude: The physics of fractals **The BTW model** 1/f noise — a red herring? Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics.

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

4 / 23

London

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics.

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

4 / 23

London

More models Some new ideas Any Answers? Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \rightarrow avalanches.
- Intended as an explanation of 1/f noise. ۲
- Generates(?) scale invariant event statistics. •

The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

London

More models Tools in SOC Some new ideas Any Answers? Prelude: The physics of fractals **The BTW model** 1/f noise — a red herring? Why SOC? Experiments

The BTW Model

Key ingredients for SOC models:

- Separation of time scales.
- Interaction.
- Thresholds (non-linearity).
- Observables: Avalanche sizes and durations.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

4 / 23

SOC: The early programme More models

Some new ideas

Any Answers?

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

1/f noise — a red herring? I

FIG. 3. Distribution of lifetimes corresponding to Fig. 2. (a) For the 50×50 array, the slope $\alpha \approx 0.42$, yielding a "1/" noise spectrum $f^{-1.58}$, (b) $20 \times 20 \times 20$ array, $\alpha \approx 0.90$, yielding an f^{-1} . Spectrum

From: Bak, Tang, Wiesenfeld, 1987

• Power spectrum $P(f) \propto 1/f$, thus correlation function (via Wiener Khinchin)

g.pruessner@imperial.ac.uk (Imperial) SOC in the 3rd decade after BTW Istanbul, 09/2011 5 / 23

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

1/f noise — a red herring? II

Dimensional analysis:

$$\int df \, 1/f^{\alpha} e^{-2\pi i f t} = \ldots \propto t^{\alpha - 1} = \text{const}$$

- 1/f noise suggests long time correlations
- Initially, SOC was intended an explanation of 1/f noise.
- Initially the BTW model was thought to display 1/f noise.
- Jensen, Christensen and Fogedby: "Not quite."
- Today: Little interest in 1/f.
- Today: Power laws in other observables.
- Today: Scaling questioned.

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

Why is SOC important?

SOC today: Non-trivial scale invariance in avalanching (intermittent) systems as known from ordinary critical phenomena, but without the need of external tuning of a control parameter to a non-trivial value.

Emergence!

- Explanation of emergent,
- ...cooperative,
- ... long time and length scale
- ...phenomena,
- ... as signalled by power laws.

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

Why is SOC important?

SOC today: Non-trivial scale invariance in avalanching (intermittent) systems as known from ordinary critical phenomena, but without the need of external tuning of a control parameter to a non-trivial value.

Universality!

- Understanding and classifying natural phenomena
- ... using Micky Mouse Models
- ... on a small scale (in the lab or on the computer).
- (Triggering critical points?)
- But: Where is the evidence for scale invariance in nature (dirty power laws)?

More models Tools in SOC Some new ideas Any Answers? Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

Experiments:

Sandpiles, ricepiles and superconductors

Photograph courtesy of V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang and P. Meakin.

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Sandpile experiments by Jaeger, Liu and Nagel (PRL, 1989).
- Superconductors experiments by Pla and Nori (PRL, 1991).
- Ricepiles experiments by Frette et al. (Nature, 1996)

Imperial College London

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

More models Some new ideas Any Answers?

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

Experiments:

Sandpiles, ricepiles and superconductors

Photograph courtesy of V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang and P. Meakin.

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld. ۲
- Sandpile experiments by Jaeger, Liu and Nagel (PRL, 1989). ۲

Imperial College London

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Istanbul, 09/2011

8/23

More models Tools in SOC Some new ideas Any Answers? Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

Experiments:

Sandpiles, ricepiles and superconductors

Photograph courtesy of V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang and P. Meakin.

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Sandpile experiments by Jaeger, Liu and Nagel (PRL, 1989).
- Superconductors experiments by Pla and Nori (PRL, 1991).

• Ricepiles experiments by Frette *et al.* (Nature, 1996).

Imperial College London

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Istanbul, 09/2011 8

8 / 23

More models Tools in SOC Some new ideas Any Answers? Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

Experiments:

Sandpiles, ricepiles and superconductors

Photograph courtesy of V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang and P. Meakin.

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Sandpile experiments by Jaeger, Liu and Nagel (PRL, 1989).
- Superconductors experiments by Pla and Nori (PRL, 1991).
- Ricepiles experiments by Frette *et al.* (Nature, 1996).

Better Models: The Manna model

Outline

More models

• Better Models: The Manna model

3 Tools in SOC

4 Some new ideas

5 Any Answers?

Better Models: The Manna model

More models

- Initial intention for more models: Expand BTW universality class.
- Later: Provide more evidence for SOC as a whole.
- More models...

SOC: The early programme More models Tools in SOC Some new ideas Any Answers? Better Models: The Manna model

More models

The failure of SOC?

- Zhang Model (1989) [scaling questioned]
- Dhar-Ramaswamy Model (1989) [solved, directed]
- Forest Fire Model (1990, 1992) [no proper scaling]
- Manna Model (1991) [solid!]
- Olami-Feder-Christensen Model (1992) [scaling questioned, $\alpha \approx 0.05$ (localisation), $\alpha = 0.22$ (jump)]
- Bak-Sneppen Model (1993) [scaling questioned]
- Zaitsev Model (1992)
- Sneppen Model (1992)
- Oslo Model (1996) [solid!]
- Directed Models: Exactly solvable (lack of correlations)

Better Models: The Manna model

Manna Model

Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Istanbul, 09/2011

11/23

Better Models: The Manna model

Manna Model

Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Istanbul, 09/2011

11 / 23

Better Models: The Manna model

Manna Model

Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Istanbul, 09/2011

11/23

Better Models: The Manna model

Manna Model

Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Istanbul, 09/2011

11/23

Better Models: The Manna model

Manna Model

Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Istanbul, 09/2011

11/23

Better Models: The Manna model

Manna Model

dissipation

Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Istanbul, 09/2011

11/23

Better Models: The Manna model

Collapse with Oslo

The Manna Model is in the same universality class as the Oslo model.

Better Models: The Manna model

Manna on different lattices

From: Huynh, G P, Chew, 2011

The Manna Model has been investigated numerically in great detail.

Imperial College London

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Better Models: The Manna model

Manna on different lattices

From: Huynh, G P, Chew, 2011

The Manna Model has been investigated numerically in great detaile

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Better Models: The Manna model

Manna on different lattices

lattice	d D	τ	z	α	D_a	τ_a	$\mu_1^{(s)}$	$-\Sigma_s$	$-\Sigma_t$	$-\Sigma_a$
simple chain	1 2.27(2)	1.117(8)	1.450(12)	1.19(2)	0.998(4)	1.260(13)	2.000(4)	0.27(2)	0.27(3)	0.259(14)
rope ladder	1 2.24(2)	1.108(9)	1.44(2)	1.18(3)	0.998(7)	1.26(2)	1.989(5)	0.24(2)	0.26(5)	0.26(2)
nnn chain	$1 \ 2.33(11)$	1.14(4)	1.48(11)	1.22(14)	0.997(15)	1.27(5)	1.991(11)	0.33(11)	0.3(2)	0.27(5)
Futatsubishi	1 2.24(3)	1.105(14)	1.43(3)	1.16(6)	0.999(15)	1.24(5)	2.008(11)	0.24(3)	0.23(9)	0.24(5)
square	2 2.748(13)	1.272(3)	1.52(2)	1.48(2)	1.992(8)	1.380(8)	1.9975(11)	0.748(13)	0.73(4)	0.76(2)
jagged	2 2.764(15)	1.276(4)	1.54(2)	1.49(3)	1.995(7)	1.384(8)	2.0007(12)	0.764(15)	0.76(5)	0.77(2)
Archimedes	2 2.76(2)	1.275(6)	1.54(3)	1.50(3)	1.997(10)	1.382(11)	2.001(2)	0.76(2)	0.78(6)	0.76(3)
nc diagonal square	2 2.750(14)	1.273(4)	1.53(2)	1.49(2)	1.992(7)	1.381(8)	2.0005(12)	0.750(14)	0.75(4)	0.76(2)
triangular	$2\ 2.76(2)$	1.275(5)	1.51(2)	1.47(3)	2.003(11)	1.388(12)	1.997(2)	0.76(2)	0.71(6)	0.78(3)
Kagomé	2 2.741(13)	1.270(4)	1.53(2)	1.49(2)	1.993(8)	1.381(9)	1.9994(12)	0.741(13)	0.75(5)	0.76(2)
honeycomb	2 2.73(2)	1.268(6)	1.55(4)	1.51(4)	1.990(13)	1.376(14)	2.000(2)	0.73(2)	0.79(8)	0.75(3)
Mitsubishi	2 2.75(2)	1.273(6)	1.54(3)	1.50(4)	1.999(12)	1.387(12)	1.998(2)	0.75(2)	0.77(7)	0.77(3)

From: Huynh, G P, Chew, 2011

The Manna Model has been investigated numerically in great detail.

Imperial College London

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Istanbul, 09/2011 13 / 23

The Absorbing State Mechanism

Outline

2 More models

- 3 Tools in SOC
 - The Absorbing State Mechanism
- Some new ideas

5 Any Answers?

The Absorbing State Mechanism

Tools in SOC

- (Extensive) numerics (BTW, FFM, BS, Manna, Oslo).
- Analytical tools:
 - Exact solutions (so far: directed models only).
 - Mappings to known (understood?) phenomena.
 - Growth processes and field theories.

The Absorbing State Mechanism

Link to growth phenomena

Generic scale invariance Stochastic evolution of sandpile surface.

$$\partial_t \phi(\mathbf{r}, t) = (\mathbf{v}_{\parallel} \partial_{\parallel}^2 + \mathbf{v}_{\perp} \partial_{\perp}^2) \phi + \eta(\mathbf{r}, t)$$

- *Generic* scale invariance (Hwa and Kardar, 1989, and Grinstein, Lee and Sachdev 1990)
- No mass term $-\epsilon \phi$ on the right \longrightarrow conservative dynamics (finiteness generates ϵ).
- Anisotropy (boundaries?) required in the presence of conserved noise.
- Non-trivial exponents in the presence of non-linearities and Imperial College non-conserved noise.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

The Absorbing State Mechanism

Effect of a mass term

Mass term

$$\partial_t \phi = \nu \nabla^2 \phi - \epsilon \phi + \ldots + \eta$$
 (1)

represents disspation

$$\partial_t \int_V \mathrm{d}^d x \, \phi = \mathrm{surface \ terms} - \epsilon \int_V \mathrm{d}^d x \, \phi$$
 (2)

and correlation length

$$\Phi = \dots e^{-|x|\sqrt{\epsilon/\nu}} . \tag{3}$$

But: How can a renormalised $\epsilon = 0$ be maintained without trivialising the phenomenon?

g.pruessner@imperial.ac.uk (Imperial) SOC in the 3rd decade after BTW

London

The Absorbing State Mechanism

Field theories for Manna and Oslo Number of charges interpreted as an interface.

Manna model has a Langevin equation

$$\partial_t \phi(\mathbf{r}, t) = v \nabla^2 \phi - \mu \phi + \lambda \phi^2 + \omega \rho \phi + \sqrt{2\Gamma^2 \phi} \eta(\mathbf{r}, t)$$

and

$$\partial_t \rho(\mathbf{r}, t) = \mathbf{v}_{\rho} \nabla^2 \phi$$

similar to directed percolation (C-DP).

- Oslo model implements guenched Edwards Wilkinson

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Istanbul, 09/2011

18/23

Field theories for Manna and Oslo Number of charges interpreted as an interface.

- Manna model has a Langevin equation similar to directed percolation (C-DP).
- Oslo model implements quenched Edwards Wilkinson equation → interfaces!

$$\partial_t \Phi(\mathbf{r}, t) = \nu \nabla^2 \Phi + \sqrt{2\Gamma^2} \eta(\mathbf{r}, \Phi)$$

- Field theories for both still unclear.
- Mechanism of self-organisation still unclear.
- Link to known universality classes
- Link to directed percolation?

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Imperial College London

18/23

Istanbul, 09/2011

The Absorbing State Mechanism

Field theories for Manna and Oslo Number of charges interpreted as an interface.

- Manna model has a Langevin equation similar to directed percolation (C-DP).
- Oslo model implements quenched Edwards Wilkinson equation → interfaces!
- Field theories for both still unclear.
- Mechanism of self-organisation still unclear.
- Link to known universality classes.
- Link to directed percolation?

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Istanbul, 09/2011 18

18 / 23

London

The Absorbing State Mechanism

The Absorbing State Mechanism

Dickman, Vespignani, Zapperi 1998

- SOC model: activity ρ_a leads to dissipation
- dissipation reduces particle density ζ
- density is reduced until system is inactive
 → absorbing phase
- external drive increases particle density

 \longrightarrow back to active phase

An SOC model can be seen as an AS model that drives itself into the inactive phase by dissipation ϵ and is pushed back into the active phase by external drive *h*.

$$\dot{\zeta} = h - \epsilon
ho_a \xrightarrow{\text{stationarity}}
ho_a = h/\epsilon$$

The Absorbing State Mechanism

The Absorbing State Mechanism

Idea: SOC drives $h/\epsilon = \rho_a$ to 0 as $L \to \infty$ Leading orders: $h(L) = h_0 L^{-\omega}$ and $\epsilon(L) = \epsilon_0 L^{-\kappa}$

The Absorbing State Mechanism

The Absorbing State Mechanism

Problem: SOC exponents would be affected by the way how driving and dissipation are implemented \rightarrow no universality. Fey, Levine and Wilson suggest that critical point is not reached.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Istanbul, 09/2011 20

20 / 23

Outline

2 More models

3 Tools in SOC

Any Answers?

Some new ideas

- The exponents of the Manna universality class seem to have an $\epsilon = 4 d$ expansion.
- There *must* be a field theory!
- Take the reaction-diffusion route. Issues: Fermionic, surfaces.
- Symmetries (Ward identities) will maintain the system at the critical point.
- Mapping to ordinary critical phenomena should be straight forward.
- All features must be visible at tree level.
- Note that mean field theories so far were effective theories.

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Possibly, superconductors and granular media.
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Maybe, AS Mechanism suggested, but has problems.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Possibly, superconductors and granular media.
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Maybe, AS Mechanism suggested, but has problems.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Possibly, superconductors and granular media.
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Maybe, AS Mechanism suggested, but has problems.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Possibly, superconductors and granular media.
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Maybe, AS Mechanism suggested, but has problems.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

g.pruessner@imperial.ac.uk (Imperial)

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Possibly, superconductors and granular media.
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Maybe, AS Mechanism suggested, but has problems.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

g.pruessner@imperial.ac.uk (Imperial)

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Possibly, superconductors and granular media.
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Maybe, AS Mechanism suggested, but has problems.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

g.pruessner@imperial.ac.uk (Imperial)

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Possibly, superconductors and granular media.
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Maybe, AS Mechanism suggested, but has problems.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

g.pruessner@imperial.ac.uk (Imperial)

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Possibly, superconductors and granular media.
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Maybe, AS Mechanism suggested, but has problems.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Possibly, superconductors and granular media.
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Maybe, AS Mechanism suggested, but has problems.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

g.pruessner@imperial.ac.uk (Imperial)

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Possibly, superconductors and granular media.
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Maybe, AS Mechanism suggested, but has problems.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

Imperial College London

23/23