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Observables and Parameters

Key observables
Density profile ρ(~x)
Thermodynamic properties (grand potential, steric forces,
pressure. . . )
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Key ideas of classical DFT

Classical Density Functional Theory
Given a stable (metastable?) thermodynamic system . . .
. . . write down a (mock-) free energy (grand potential)
External potential is a unique functional of the density profile
Solve self-consistency equation (i.e. find root, minimise potential)
Microscopic theory, (can be) very hard to solve (numerics)
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Introduction
Key ideas of Phase Field Modelling

Phase Field Modelling of grain boundaries

Identify relevant interactions reproducing observations
Identify symmetries and write down (mock-) free energy

. . . in terms of an order parameter: the crystallinity φ

Derive dynamics minimising free energy

Integrate “equation of motion”
Not a microscopic theory
well established techniques

Idea: Provide solid thermodynamic foundation of phase field modelling
through DFT
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The key equation of DFT

DFT
Free energy functional F [ρ] of the system given.
Solution for
u(r) (one-body local potential) at given density profile ρ(r)
ρ(r) at given ũ(r)
is found by minimising the “non-equilibrium grand potential”

W̃ [ρ, ũ] = F [ρ] −

∫
dd r ũ(r)ρ(r)

with respect to ρ. Solve u(r)[ρ] = ũ(r) plus technicalities.

Different flavours of DFT have different methods of constructing grand
potential W̃ .
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The principles of Classical Density Functional Theory
Haymet and Oxtoby, 1981 and 1982
Classical Density Functional Theory

Functional Taylor series of effective one particle potential of
complicated liquid over reference (bulk) system

ln
(

ρ(r)
ρ0

)
=

∫
dd r ′ C(2)(r ′ − r)(ρ(r ′) − ρ0)

using direct correlation function C(2)(r), i.e. structure factor
To be solved with certain boundary conditions.
Re-parametrise ρ(r):

ρ(r) = ρ0

(
1 +

∑
n

µn(r)eıknr

)

Separation of length scales.g.pruessner@warwick.ac.uk (Warwick) From cDFT to PFM Strasbourg, 05/2007 9 / 24
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Separation of length scales

Full density profile:

ρ(r) = ρ0

(
1 +

∑
n

µn(r)eıknr

)
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The principles of Classical Density Functional Theory
Haymet and Oxtoby, 1981 and 1982

Classical Density Functional Theory

Expand µn(r ′) about r ′ = r and use Fourier coefficients of C(2):

ln

(
1 +

∑
n

µn(r)eıknr

)
=

∑
n

eıknrV ′′ρ0 (cnµn(r) − ı∇cn∇µn(r) − . . .)

Problem: All µn on both sides, need to decouple
Idea: Demand for all r̃:

ln

(
1 +

∑
n

µn(̃r)eıknr

)
=

∑
n

eıknrV ′′ρ0
(
cnµn(̃r) − ı∇cn∇µn(̃r) − . . .

)
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The principles of Classical Density Functional Theory
Haymet and Oxtoby, 1981 and 1982

Classical Density Functional Theory
Now Fourier transform

V −1
∫
dd r e−ıkmr ln

(
1 +

∑
n

µn(̃r)eıknr

)
=

V ′′ρ0
(
cmµm (̃r) − ı∇cm∇µm (̃r) − . . .

)
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Approximations and assumptions so far

Functional expansion of the effective one particle potential
Range V ′′ should be small
Taylor expansion of the Fourier coefficients µn(̃r)
Slow changes of µn(̃r) only and Fourier domain V small
Separation of length scales
Crystal structure must be known (choice of k-vectors)
Structure across the system constrained by set of k-vectors
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Constraints by assumed crystalline structure
Solid-liquid interface

Density profile:
ρ(r) = ρ0

(
1 +

∑
n µn(r)eıknr)

Boundary Condition:
Fix µn(r) on the far right.

Parametrisation of the right hand boundary condition does not
seriously constrain liquid, because

Density profile is an ensemble average
Set of k-vectors can be extended (completed)
Domain can be extended
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Constraints by assumed crystalline structure
Grain boundary

Density profile:
ρ(r) = ρ0

(
1 +

∑
n µn(r)eıknr)

Boundary Conditions:
Fix µn(r) on the far right and on

the far left.

Parametrisation must capture both right hand boundary condition and
left hand boundary condition

Amorphous region easily represented
“Conflicting” boundary conditions, requiring different sets of
k-vectors.
Σ-boundaries can be handled naturally, tan(α/2) ∈ Q
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General considerations
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Crystalline structure

Intermediate Summary

DFT by Haymet and Oxtoby can be adapted to grain boundaries
Systematic approximations
Set of k-vectors to be chosen carefully
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The Allen Cahn phase field model

Free energy functional by symmetry and conservation arguments

W̃[φ] =

∫
Ω

dd r w(φ) +
ε2

2
(∇φ)2

Grain boundaries: φ is the crystallinity
Minimal dynamics:

φ̇ = −Mφ
δ

δφ
W̃ = −Mφ

(
∂w
∂φ

− ε2∇2φ

)
Can DFT explain the physics of φ?
Can DFT help to determine the coupling ε?
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The Allen Cahn phase field model
Re-parametrisation of DFT
The Allen-Cahn equation from DFT

Rewriting Haymet and Oxtoby’s DFT
Step 1

Originally: Separation of length scales applied to self-consistency
equation

ln

(
1 +

∑
n

µn(̃r)eıknr

)
=

∑
n

eıknrV ′′ρ0
(
cnµn(̃r) − ı∇cn∇µn(̃r) − . . .

)
Instead: Separation of length scales on the level of the grand

potential:
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Rewriting Haymet and Oxtoby’s DFT
Step 1

Originally: Separation of length scales applied to self-consistency
equation

ln

(
1 +

∑
n

µn (̃r)eıknr
)

=
∑

n
eıknrV ′′ρ0

(
cnµn (̃r) − ı∇cn∇µn (̃r) − . . .

)
Instead: Separation of length scales on the level of the grand

potential:

W̃([ρi ], [ui ≡ βµ])

=

∫
Ω

dd r̃ V−1
∫
V(r̃)

dd r ′
(

ln

(
1 +

∑
n

µn (̃r)eıknr′
)

− 1

)
ρ0

(
1 +

∑
n

µn (̃r)eıknr′
)

−Φ0 +

∫
Ω

dd r ′ C0ρ0

−
1
2

ρ2
0V ′′

∫
Ω

dd r̃
∑

n
µ−n (̃r)

[
µn (̃r)c(kn) − ı(∇r · ∇k)µn (̃r)c(kn) −

1
2

(∇r · ∇k)2µn (̃r)c(kn) + . . .

]
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Rewriting Haymet and Oxtoby’s DFT
Step 2

Re-parametrisation: φ(̃r) is the amplitude of a set of µn associated
with the k-vectors of the solid phases:

µn(̃r) = φ(̃r)µ0
n

Use in non-equilibrium grand potential W̃:

W̃AC([φ]) =

∫
Ω

dd r
(

w(φ(r))

+
1
4
ρ2

0V ′′
(
εlµ

l 2
0 + εrµ

r 2
0 − 2εIµ

l
0µ

r
0

)
φ∇2φ

)
All physics in couplings εl , εr and εI to be calculated for closed set of
k-vectors.
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The Allen Cahn phase field model
Re-parametrisation of DFT
The Allen-Cahn equation from DFT

Couplings

εl and εr is proportional to the order of the symmetry group of the
solid in the boundary condition. Here εl = εr ∼ 4
εI is proportional to the number of k-vectors common to both
lattices. Here εI ∼ 4
Another set of k-vectors, εI ∼ 0
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The Allen Cahn phase field model
Re-parametrisation of DFT
The Allen-Cahn equation from DFT

Finally: Use “non-equilibrium grand potential”

W̃AC([φ]) =

∫
Ω

dd r
(

w(φ(r))

+
1
4
ρ2

0V ′′
(
εlµ

l 2
0 + εrµ

r 2
0 − 2εIµ

l
0µ

r
0

)
φ∇2φ

)
for minimal dynamics

φ̇ = −Mφ
δ

δφ
W̃

= −Mφ

( ∂

∂φ
w(φ) −

1
2
ρ2

0V ′′
(
εlµ

l 2
0 + εrµ

r 2
0 − 2εIµ

l
0µ

r
0

)
∇2φ

)
Couplings depend on order of underlying symmetry

g.pruessner@warwick.ac.uk (Warwick) From cDFT to PFM Strasbourg, 05/2007 22 / 24



Introduction
classical DFT in general

From DFT to Phase Field Modelling
Summary

Summary

Density Functional Theory by Haymet and Oxtoby extended to
grain boundaries
Key ingredient: Direct correlation function (+ thermodynamics)
Key step: Separation of length scales
Instead of self-consistency, grand potential can be derived using
the same approximations
Introduction of phase field variable φ as common amplitude
Couplings proportional to order of underlying point symmetry
group
Amounts to first microscopic derivation of phase field model for
grain boundaries
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