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Abstract
The Langevin formulation of a number of well-known stochastic processes
involves multiplicative noise. In this work we present a systematic mapping
of a process with multiplicative noise to a related process with additive noise,
which may often be easier to analyse. The mapping is easily understood in
the example of the branching process. In a second example we study the
random neighbour (or infinite range) contact process which is mapped to an
Ornstein–Uhlenbeck process with absorbing wall. The present work might shed
some light on absorbing state phase transitions in general, such as the role of
conditional expectation values and finite size scaling, and elucidate the meaning
of the noise amplitude. While we focus on the physical interpretation of the
mapping, we also provide a mathematical derivation.

Keywords: multiplicative noise, phase transitions, non-equilibrium
PACS numbers: 74.40.Gh, 68.35.rh

1. Introduction

In many stochastic processes, activity cannot recover once it has ceased. This feature is at
the centre of absorbing state phase transitions [1] which in turn makes a significant part of
the wider field of non-equilibrium phase transitions [2]. In an equation of motion of a single
degree of freedom ψ(g) as a function of time g, the feature enters as a multiplicative noise,
such as

∂gψ(g) = f (ψ(g)) +
√

ψ(g)η(g), (1)

where f (ψ) is a generic function with the property f (0) = 0 and η(g) is a noise process, to
be specified below. Crucially, if ψ vanishes at any time g∗ it will remain 0 for all future times.
This is exactly the feature expected in an absorbing state phase transition and, closely related,
in Reggeon field theory [1, 3].

In this paper we will consider the case where η(g) represents standard white noise and
we will consider the Itō interpretation of the stochastic term in (1). This equation can be
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solved either numerically (or even analytically in special cases), or the corresponding Fokker–
Planck equation that governs the evolution of the transition probability density can be studied.
In the following, we will trace the origin of the multiplicative noise which will provide an
alternative formulation of the process with additive noise; as an added benefit, nonlinearities
may simplify significantly, making a direct solution of the stochastic differential equation
(SDE) more feasible.

It should be emphasized that a SDE of the form (1), which we rewrite here for a
multiplicative noise that is an arbitrary function of ψ

dψ(g) = f (ψ(g)) dt +
√

σ (ψ(g)) dW (g), (2)

where W (g) denotes standard one-dimensional Brownian motion, does not provide us with
a complete description of the dynamics, since noise in this equation (or, equivalently, the
stochastic integral when writing it as an integral equation) can be interpreted in different
ways, including the well known Itō and Stratonovich interpretations [4]. This is a modelling
issue and it has to be addressed separately. The Wong–Zakai theorem [5] suggests that when
thinking of white noise as an idealization of a noise process with a non-zero correlation time,
then the noise in (2) should be interpreted in the Stratonovich sense. On the other hand, it is
by now well known that for stochastic systems with more than one fast time scale (one being
the correlation time of the approximation to white noise, the other being, e.g. a timescale
measuring the inertia of the system), in the limit as these timescales tending to zero, we obtain
a SDE that can be of Itō or Stratonovich type, or neither [6, 7]. Making the physically correct
choice of the type of noise in (2) is crucial, since different interpretations of the noise lead to
SDEs with qualitatively different features. A standard example is geometric Brownian motion:
the long time behaviour of solutions to this equation (for fixed values of the parameters in the
SDE) can be different for the Itō and Stratonovich SDEs [8]. In this paper we will choose the
Itō interpretation of noise. It is well known that it is possible to switch between different
interpretations of the noise by adding an appropriate drift (which, of course, changes generally
the qualitative properties of solutions to the SDE).

SDEs with multiplicative noise exhibit a very rich dynamical behaviour including
intermittency and noise induced transitions [9]. On the other hand, state-dependent noise leads
to analytical, numerical and even statistical difficulties, i.e. it is more difficult to estimate state-
dependent noise from observations as opposed to estimating a constant diffusion coefficient;
see, e.g. [10]. It is natural, therefore, to ask whether it is possible to find an appropriate
transformation that maps SDEs with multiplicative noise to SDEs with additive noise. This
is possible in one dimension: an application of Itō’s formula to the function (assuming, of
course, that this function exists)

h(x) =
∫ x 1√

σ (ψ)
dψ, (3)

enables us to transform (2) into an SDE with additive noise for the new process

z(g) = h(ψ(g)), (4)

see, e.g. [4]. This transformation can also be performed at the level of the corresponding
Fokker–Planck equation, see e.g. [11]. Such a transformation mapping multiplicative to
additive noise does not generally exist in dimensions greater than one, unless the diffusion
matrix satisfies appropriate compatibility conditions [10].

In this paper, we adopt a different approach: we introduce a new clock, so that, when
measuring time with respect to this new time scale, noise becomes additive. Clearly, in order
for this to be possible, the transformation to the new time must involve the actual solution of
the SDE. The theoretical basis for this random time change is the Dambis–Dubins–Schwarz
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Figure 1. Example of a BP evolving over three generations. The last generation has not
yet been updated. The last individual which produced any offspring is the one labelled
t = 6. (a) BP as a tree. (b) Mapping of generational time g and individual time t via the
generation size ψ(g) = φ(t(g)).

theorem [4, theorem 3.4.6], which states that continuous local martingales in one dimension
can be expressed as time changed Brownian motions, with the new time being the quadratic
variation of the process. For the purposes of this paper, we can state this result as follows:
we can find a new Brownian motion W̃ (g), such that the stochastic integral in (the integrated
version of (2)) can be written∫ t

0

√
σ (ψ(g)) dW (g) = W̃

(∫ t

0
σ (ψ(g)) dg

)
. (5)

By construction, this change of the clock works only in one dimension.
Just as with the Lamperti transformation (3), this transformation can also be performed at

the level of the Fokker–Planck equation. Even though the Dambis–Dubins–Schwarz theorem
is a standard result in stochastic analysis that has been used for the theoretical analysis of SDEs
in one dimension (and also for the proof of homogenization theorems with error estimates
[12]) it has not been used, to our knowledge, in the calculation of statistical quantities of
interest for SDEs with multiplicative noise, in particular when boundary conditions have to
be taken into account. More precisely, the connection between the change of the clock at the
level of the SDE and the study of branching processes (BPs) is not known. It is the goal of
this paper to study precisely this problem and apply our insight to the analysis of the random
neighbour contact process.

The following section motivates the mapping and (for illustrative purposes) exemplifies it
using a continuum formulation of the branching process. In that case essentially all results are
known in closed form. In section 3 we proceed to apply the mapping to the random neighbour
contact process, which will be turned into an Ornstein–Uhlenbeck process with absorbing
wall. Section 4 contains a discussion of the results.

2. Branching process

The mapping employed in the following between a random walk (RW) and a Watson–Galton
BP, is very well established in the literature [13–16]. We adopt the language of a (family)
tree, such as the one shown in figure 1. The BP can be studied at two different time scales,
the slow generational time g (as the one indicated on the axis in figure 1(a)) and the fast
individual time t which corresponds to the labelling of the nodes shown in figure 1(a). Using
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the mapping as described below, the labelling within a generation and thus the fast time scale
remain somewhat arbitrary, which is irrelevant for the argument.

A branching tree can be considered as having ‘grown’ generation by generation by
allowing each individual within a generation to reproduce. In figure 1(a) this is indicated
by the labels of the nodes. If ψ(g) is the number of individuals in generation g, the fast
(microscopic) time scale t may be defined as

t(g) =
g−1∑
g′=0

ψ(g), (6)

namely the total number of reproduction attempts that occurred up to (but excluding) generation
g, the slow (macroscopic) time scale. With obvious generalizations in mind, the following
discussion is restricted to a BP with two reproduction attempts for each node, implemented
by two independent Bernoulli trials with probability p, i.e. two offspring are produced with
probability p2, a single one with 2p(1− p) and none with (1− p)2. In this setup, the evolution
of the BP can be guided by a RW of φ(t) which may change by at most 1 at two consecutive
times. The population size ψ(g + 1) of generation g + 1 is then determined by φ(t(g + 1))

which has taken ψ(g) time steps since t(g), so that φ(t(g)) = ψ(g). No further evolution can
take place once ψ(g), or, for that matter, φ(t), has vanished. In other words, the RWs to be
considered are those along an absorbing wall.

Each time step t of the random walker corresponds to a reproduction attempt of an
individual in the previous generation, as indicated by the labelling in figure 1(a), which is not
unique, yet can be interpreted as a particular realization of the partial reproduction attempt of
a generation. This picture therefore affords a bijection between RW and BP.

2.1. Continuum formulation

To make further progress, the mapping is re-formulated in the continuum on the basis of the
definition

t(g) =
∫ g

0
dg′ψ(g′) (7)

and φ(t(g)) = ψ(g). Since t(0) = 0 the initial conditions used below will be ψ0 = φ0. To
make equation (7) a bijection, ψ(g) and thus φ(t) may not vanish. Equation (7) is then easily
inverted,

g(t) =
∫ t

0
dt ′

1

φ(t ′)
. (8)

If φ(t) has the equation of motion of a random walker along an absorbing wall with drift
ε, we have

d

dt
φ(t) ≡ φ̇(t) = ε + ξ (t) (9)

where ξ (t) is a noise with correlator

〈ξ (t)ξ (t ′)〉 = 2	2δ(t − t ′), (10)

with 〈·〉 denoting the ensemble average. From equation (9) follows
d

dg
ψ(g) = dt

dg
φ̇(t) = ψ(g)(ε + ξ (t(g))) (11)

because dt
dg = ψ(g) from equation (7). The equation of motion (11) for ψ(g) can be further

simplified by introducing the noise

〈η(g)η(g′)〉 = 2	2δ(g − g′) = 2	2δ(t − t ′)
dt

dg
, (12)
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or, equivalently,

η(g) =
√

ψ(g)ξ (t(g)) (13)

which results in the final continuum version of the equation of motion of the branching process1

d

dg
ψ(g) = ψ(g)ε +

√
ψ(g)η(g). (14)

The term
√

ψ(g)η(g) reflects the fact that the variance of the size of each generation is
linear in its previous size (where the term ‘previous’ reminds us of the Itō interpretation of
equation (14)).

The derivation of the SDE (14) involving multiplicative noise from the one involving
additive noise, equation (9), is invertible, i.e. (7) implies (9) given (14).

Mathematically, the construction above on the level of a Langevin equation is at best
handwaving: Because the random variable ψ(g) enters into the definition (7) of time t, time
itself becomes a random variable. Worse, the definition of the noise via its correlator in
equation (12) involves the random variable dt/dg.

At the level of a Fokker–Planck equation, the transform amounts to a change of variables,
yet unlike, say, [17, appendix A], one of the time variable, involving the entire history of the
random variable, equation (7).

2.2. Generalization of the mapping

The mapping performed above can be generalized as follows: a Langevin equation of the form

d

dg
ψ(g) = μ(ψ(g)) + σ (ψ(g))η(g) (15)

with white noise η(g) as defined in equation (12), is equivalent to

d

dt
φ(t) = μ(φ(t))

σ 2(φ(t))
+ ξ (t) (16)

for φ(t(g)) = ψ(g) along an absorbing wall,

t(g) =
∫ g

0
dg′σ 2(ψ(g′)) (17)

and white noise ξ (t) as defined in equation (10). However, the distribution of ψ(g) at fixed g
does not equal the distribution of φ(t) at fixed t, because the map t(g) involves the history of
ψ . Some observables, however, do not change under the mapping and can be used to identify
a transition, which is illustrated in section 2.4.

2.3. Fokker–Planck equations and solutions

To understand the meaning and the consequences of the mapping introduced above, we obtain
solutions for the Fokker–Planck equations of both, the RW along an absorbing wall with
additive noise (9) and the BP with multiplicative noise (14). Because for the latter the case
ε = 0 can be recovered from the general solution with ε �= 0 only in the form of a limit,
and because ε < 0 is qualitatively different from ε > 0, these three cases will be discussed
separately.

1 The continuum version of the BP retains some crucial features of the discrete counterpart, so that, for example,
asymptotic population sizes in the latter can be calculated on the basis of the former using suitable effective parameters
	2 and ε. This carries through even to the total population sizes, �, calculated below.
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It is a textbook exercise to find the Fokker–Planck equation for the random walker along
an absorbing wall, equation (9), which is

∂tP (φ)(φ, t;φ0;	2, ε) = 	2∂2
φP (φ) − ε∂φP (φ), (18)

with P (φ)(φ, t;φ0;	2, ε) the probability of finding the walker at φ at time t, given it started
from φ0 at t = 0,

lim
t→0

P (φ)(φ, t;φ0;	2, ε) = δ(φ − φ0) (19)

and given the amplitude of the noise 	2, equation (10), and the drift ε. The absorbing wall
implies a Dirichlet boundary condition

P (φ)(0, t;φ0;	2, ε) = 0 (20)

and φ0 > 0. The solution

P (φ)(φ, t;φ0;	2, ε) = 1√
4π	2t

(
e− (φ−εt−φ0 )2

4	2t − e− (φ−εt+φ0 )2

4	2t e− φ0ε

	2

)
(21)

is easily obtained using a mirror charge to find the solution of equation (18) whose ε is gauged
away using a function γ (say, γ (φ, t) = exp{ ε

2	2 (x − εt/2)}) and writing P (φ) = γ P̃ (φ), or
other methods, e.g. [18].

The Fokker–Planck equation of the continuous BP, equation (14), is

∂gP (ψ)(ψ, g;ψ0;	2, ε) = 	2∂2
ψ (ψP (ψ)) − ε∂ψ (ψP (ψ)) (22)

for ψ > 0, with initial condition, ψ0 = ψ(0) = φ0,

lim
g→0

P (ψ)(ψ, g;ψ0;	2, ε) = δ(ψ − ψ0) . (23)

Its solution is

P (ψ)(ψ, g;ψ0;	2, ε) =
√

ψ0

ψ

εexp(−εg/2)

	2(1 − exp(−εg))
I1

(
2ε

√
ψψ0exp(−εg)

	2(1 − exp(−εg))

)

×exp

(
− ψexp(−εψ) + ψ0

	2(1 − exp(−εg))
ε

)
, (24)

where I1 denotes the modified Bessel function of the first kind. The prefactor ε/(1−exp(−εg))

has two important properties. Firstly, for g > 0 it is positive for all non-vanishing ε. Secondly,
taking the limit

lim
ε→0

ε

1 − exp(−εg)
= 1

g
(25)

recovers the solution of equation (22) for ε = 0,

P (ψ)(ψ, g;ψ0;	2, ε = 0) =
√

ψ0

ψ

1

	2g
I1

(
2
√

ψψ0

	2ψ

)
e
− ψ+ψ0

	2g . (26)

In fact, the latter solution is found in tables [19–21]. From that, equation (24) is
obtained after a sequence of transforms. Firstly, introducing P (ψ)(ψ, g;ψ0;	2, ε) =:
R(ψexp(−εψ), ψ	2)/ψ simplifies equation (22) to Ṙ(x, s̃) = x exp(−εs̃/	2)R′′(x, s̃). In
order to absorb the prefactor, we introduce R(x, s̃) = −(	2/ε)S(x, exp(−εs̃/	2)), so that
Ṡ(x, b) = −(	2/ε)xS′′(x, b). If P (ψ)(ψ, g;ψ0;	2, 0) solves equation (22) with ε = 0, then
S(x, b) = AxP (ψ)(x, b−1;ψ0,−	2/ε) with the same boundary and initial condition as above.
The initial condition applies at b = 1, the value of exp(−εs̃/	2) at s̃ = 0. Some algebra then
recovers the full solution equation (24).
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2.4. Comparison of the branching process and the random walker picture

In the following we compare a range of observables between the different processes or, rather,
their description. In fact, equations (21) and (24) are only two different perspectives on the
same process, with the advantage that one (the former, with additive noise) is much easier to
obtain and analyse than the other.

In the Langevin equations (14) and (9), ψ and φ respectively do not recover from having
vanished. In the following the limits

lim
t→∞N (φ)(t;φ0;	2, ε) = : N (φ)

0 (φ0;	2, ε) (27a)

lim
g→∞N (ψ)(g;ψ0;	2, ε) = : N (ψ)

0 (ψ0;	2, ε) (27b)

of the integrals

N (φ)(t;φ0;	2, ε) :=
∫ ∞

0
dφP (φ)(φ, t;φ0;	2, ε) (28a)

N (ψ)(g;ψ0;	2, ε) :=
∫ ∞

0
dψP (ψ)(ψ, g;ψ0;	2, ε) (28b)

are referred to as the asymptotic survival probabilities. Inspecting equation (7) shows that
indefinite survival in the BP may not map to indefinite survival of a random walker if ψ(g′)
vanishes fast enough. In turn, if φ(t ′) diverges quickly enough, g(t) in equation (8) might
remain finite in the limit t → ∞. Yet, equation (21) indicates that the distribution of φ(t) is
centred around φ0 − εt and events beyond that scale are exponentially suppressed. Indefinite
survival of a random walker thus results in (typically logarithmic) divergence of g(t) in t.

We conclude that survival of a random walker corresponds to survival of a corresponding
BP and, likewise, early death (at finite g) of a BP corresponds to an early death of a random
walker (at finite t). One may therefore expect that a transition from asymptotic death to
asymptotic survival in one system corresponds to a corresponding transition in the other
system.

Integrating equations (21) and (24) according to equation (28a) gives

N (φ)(t;φ0;	2, ε) = 1

2

(
1 − e− εφ0

	2

(
1 + E

(
εt − φ0

2
√

	2t

))
+ E

(
εt + φ0

2
√

	2t

))
(29)

and

N (ψ)(g;ψ0;	2, ε) =

⎧⎪⎪⎨
⎪⎪⎩

1 − exp

(
− −ψ0ε

	2(1 − exp(−εg))

)
for ε �= 0

1 − exp

(
−−ψ0

	2g

)
for ε = 0

(30)

which is again continuous in ε. Taking, however, the long time limits gives

N (φ)

0 (φ0;	2, ε) =
⎧⎨
⎩1 − exp

(
−−φ0ε

	2

)
for ε > 0

0 for ε � 0
(31a)

N (ψ)

0 (ψ0;	2, ε) =
⎧⎨
⎩1 − exp

(
−−ψ0ε

	2

)
for ε > 0

0 for ε � 0
(31b)
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which is, as expected, in agreement, because ψ0 = φ0. A discrepancy is however expected in
the leading order behaviour in large t and g respectively, for ε � 0, which is, for the random
walker

N (φ)(t, φ0;	2, ε) ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − e− −φ0ε

	2 for ε > 0 (32a)
φ0√
π	2t

for ε = 0

2φ0

(εt + φ0)(εt − φ0)

√
	2t

π
e− (εt+φ0 )2

4	2t for ε < 0 (32c)

(32b)

and for the BP

N (ψ)(g, ψ0;	2, ε) ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − e− ψ0ε

	2 for ε > 0 (33a)

ψ0

	2g
for ε = 0

ψ0|ε|
	2

eεg for ε < 0. (33c)

(33b)

The case ε = 0, obviously the critical point, deserves special attention. It is well known that
the survival probability in a fair BP, ε = 0, is inverse in the number of generations [13]. Since
the expected population size remains unchanged in the fair case, 〈ψ〉(g, ψ0;	2, ε = 0) = ψ0,
as discussed below, the expected population size conditional to survival is 	2g according
to equation (33b). On that basis, equation (7) suggests t(g) ≈ (1/2)	2g2 which produces
φ0/(	

2g
√

π/2) in (32b), out by a factor 1/
√

π/2 compared to the asymptote for the BP at
ε = 0, equation (33b).

Other observables worth comparing are moments conditional to survival, as they are
stationary. The moments

〈ψn〉 =
∫ ∞

0
dψψnP (ψ)(ψ, g;ψ0;	2, ε) (34)

of equation (24) can be calculated very easily using the identity∫ ∞

0
dx I1(x) e−γ x2 = e1/(4γ ) − 1 (35)

and differentiating with respect to γ which gives∫ ∞

0
dψψ−1/2I1(

√
ψα) eβψψn = 2α−(2n+1)

(
− d

dγ

)n∣∣∣∣
γ=−β/α2

(
e1/(4γ ) − 1

)
. (36)

We find, for example,

〈ψ0〉 = 1 − e
− ψ0ε

	2 (1−exp(−εg)) (37a)

〈ψ1〉 = ψ0eεg (37b)

〈ψ2〉 = 〈ψ1〉2 + 2ψ0
	2

ε
(e2εg − eεg), (37c)

where we use the convention 〈ψ0〉 = N (ψ)(g, ψ0;	2, ε) and similarly for φ. Corresponding
expressions for the random walker are extremely messy (as can be seen in equation (29)), so
we state only the first moment (the zeroth moment is stated in equation (29) and its expansion
in equation (32b)), dropping lower order terms in t (l.o.t.):

〈φ1〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εt
(

1 − e− εφ0
	2

)
+ l.o.t. for ε > 0 (38a)

φ0 for ε = 0

8φ0|ε|	2t2

(εt + φ0)2(εt − φ0)2

√
	2t

π
e− (εt+φ0 )2

4	2t + l.o.t. for ε < 0 (38c)

(38b)
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Normalizing the moments with the respective survival probability gives the moments
conditional to survival, 〈ψn〉s = 〈ψn〉/N (ψ) and similar for 〈φn〉s. For ε > 0 the normalization
is the same in both cases, equation (31a), so a comparison of the conditional moments
comes in fact down to comparison of the unconditional moments. For ψ ≈ ψ0exp(εg)

the mapped time is t(g) = ψ0(exp(εg) − 1)/ε which in equation (38b) gives 〈φ〉 =
ψ0(exp(εg) − 1)

(
1 − exp

(− εφ0

	2

))
, not quite matching equation (37b).

For ε = 0 the unconditional moments are identical, equation (37b) (at ε = 0) and
equation (38b), so the comparison of the conditional moments is merely a comparison of the
normalizations (32b) and (33b), which has been addressed above.

The case ε < 0 gives a conditional first moment of limt→∞〈φ1〉s = limt→∞〈φ1〉/〈φ0〉 =
4	2/|ε| while the BP gives limg→∞〈ψ1〉s = limg→∞〈ψ1〉/〈ψ0〉 = 	2/|ε|.

At first one may expect time independent quantities to be equal in both setups. However,
as they remain subject to their dynamics, survivors in one system (say the BP) may generally
be much closer to death than survivors in the other (say the random walkers), as they continue
to linger close to extinction.

One observable that can be recovered in the random walker mapping in exact form is the
total population size2 in the BP

� =
∫ ∞

0
dg′ψ(g′) (39)

whose expectation is finite if ε < 0 and corresponds, according to the mapping (7), exactly to
the time a random walker hits the absorbing wall. This is easily confirmed for the first moment,
since

〈�〉 =
∫ ∞

0
dg′〈ψ(g′)〉 = ψ0

|ε| (40)

for ε < 0 and because the probability density of walkers to hit the wall at t is
(− ∂

∂t )N (φ)(t;φ0;	2, ε), in the random walker picture

〈�n〉 =
∫ ∞

0
dttn

(
− ∂

∂t

)
N (φ)(t;φ0;	2, ε). (41)

One thus easily finds for ε < 0

〈�1〉 = φ0

|ε| (42a)

〈�2〉 = 〈�〉2 + 2	2φ0

|ε|3 (42b)

〈�3〉 = φ0

|ε5|
(
12	4 + 6	2|ε|φ0 + ε2φ2

0

)
= 〈�〉3 + 3(〈�2〉 − 〈�〉2)〈�〉 + 12	4φ0

|ε5| (42c)

obtained straightforwardly in the random walker picture. In contrast, deriving higher moments
of � in the BP picture is quite cumbersome, as they require higher correlation functions, for
example

〈�2〉 =
∫ ∞

0
dg′

∫ ∞

0
dg′′〈ψ(g′)ψ(g′′)〉. (43)

2 In self-organized criticality the total population size is in fact the time-integrated activity or, equivalently, the
avalanche size [22].
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In the presence of the ‘kernel’ P (ψ), equation (24), this correlation function is determined via

〈ψ(g′)ψ(g′′)〉 =
∫ ∞

0
dψ ′ψ ′P (ψ)(ψ ′, g′;ψ0;	2, ε)

∫ ∞

0
dψ ′′ψ ′′P (ψ)(ψ ′′, g′′ − g′;ψ ′;	2, ε)

(44)

assuming g′′ > g′. The resulting expressions can be evaluated using the moments calculated
above, equations (37a)–(37c). As expected, they exactly coincide with equations (42a)–(42c).

3. Contact process

We will now use the mapping illustrated above to characterize the stochastic equation of
motion of the random neighbour contact process.

The contact process [1] is a simple lattice model, for example of the spatio-temporal
evolution of an immobile plant species spreading on a substrate. For definiteness set up on a
square lattice, sites are either occupied or empty. Occupied sites become empty with Poissonian
extinction rate e and attempt to occupy with an offspring each of their neighbouring sites with
the same rate c/q, where q is the number of neighbours, in case of nearest neighbour interaction,
q being the coordination number. Such an attempt is successful, resulting in occupation of
the empty site, only when the targeted site was empty prior to the attempt. The interaction
is thus due to excluded volume, as colonization can occur only at empty sites. Sites become
occupied with Poissonian colonization rate kc/q, where k is the number of occupied nearest
neighbours. Extensions to higher and lower dimensions are obvious. Rescaling the time by e
determines the single parameter controlling the dynamics as λ = c/e. It turns out [23] that in
the thermodynamic limit a finite population density of occupied sites ψ is sustained for all λ

greater than some λc, displaying all features of a second order phase transition [24].
In fact, these features can already be seen in a mean field theory, where the rise in

occupation density is given by the competition of extinction and global colonization as a
function of time g

d

dg
ψ = λ(1 − ψ)ψ − ψ (45)

which has a non-trivial stationary state ψ = 1 − 1/λ > 0 for λ > 1, i.e. λc = 1. In fact, to
leading order ψ ∝ (λ − λc)

−1 for λ � λc and ψ = 0 otherwise. To go beyond mean field
theory, two additional ingredients are needed, namely spatial interaction and noise. The former
is implemented by smoothing out the occupation by introducing a diffusion term. The latter
accounts for the stochastic nature of the process. Similar to the BP analysed in section 2, the
variance of fluctuations should be linear in the local occupation. The full Langevin equation
of motion that is usually analysed as the contact process [1] reads3

ψ̇ (x, g) = λ(1 − ψ(x, g))ψ(x, g) − ψ(x, g) + D∇2ψ +
√

ψ(x, t)η(x, g) (46)

where the noise has vanishing mean, is Gaussian, white and has correlator

〈η(x, g)η(x′, g′)〉 = 2	2δ(g − g′)δ(x − x′). (47)

This equation has been analysed extensively using field theoretic methods [25–27], in
particular perturbation theory. Above the upper critical dimension d > dc = 4 [28, 29] spatial

3 The absence of an explicit carrying capacity and extinction rate spoils the usual dimensional independence of ψ .
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φ

U

〈φ〉s

(a) λ = 1/2

φ

U

〈φ〉s

(b) λ = 1

φ

U

〈φ〉s

(c) λ = 3

Figure 2. The potential, equation (50), for three different values of λ. Mirror charges
are subject to the dotted potential on the left. The arrow from above marks the position
of the expected average position φ conditioned on survival.

variation of ψ becomes irrelevant4, i.e. the diffusion term can be dropped, resulting in the
random neighbour contact process,

d

dg
ψ(g) = λ(1 − ψ(g))ψ(g) − ψ(g) +

√
ψ(g)η(g), (48)

which is the equation we will analyse in the following. The aim is to characterize (48) by
mapping it onto a linear Langevin equation with additive noise. Firstly this sheds light on
the meaning of the random neighbour model and its relation to the original, spatial version.
This will also provide a well-founded interpretation of the finite size scaling behaviour of
the random neighbour contact process as one would implement it numerically. Secondly, a
number of authors have used equations of the form above to model various natural phenomena
[30–34], such as the stochastic logistic equation, and we expect their work to benefit directly
from our analytical approach.

3.1. Mapping the random neighbour CP to an Ornstein–Uhlenbeck process

Using the mapping introduced in section 2.2 the original equation of motion of the random
neighbour contact process equation (48) can be mapped to

φ̇(t) = −λφ(t) + (λ − 1) + ξ (t), (49)

with an absorbing wall at φ = 0 and t(g) again given by equation (7).
Was it not for the absorbing wall, the probability density P0(φ) in the stationary state

could be read off instantly as the deterministic part of (49) can be written as

− λφ(t) + (λ − 1) = −dU

dφ
where U (φ) = 1

2
λ

(
φ − λ − 1

λ

)2

(50)

and therefore P0(φ) ∝ exp(−U (φ)/	2). The parameter (λ − 1)/λ translates the minimum
of the harmonic potential horizontally, while λ itself modifies its curvature, see figure 2. The
dotted potential shown there is experienced by the mirror charges placed in the system to
meet the Dirichlet boundary condition, producing a double-parabola potential. The cusp of the
potential at φ = 0 for λ �= 1 is indicative of the technical difficulties ahead.

4 Irrelevance is to be understood in the technical, field-theoretical sense. The cartoon normally drawn is that of spatial
correlations (on sufficiently large scales) no longer entering, when the dimension is so high that the process rarely
returns to a site.
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φ̃

Ũ

〈
φ̃
〉

s

(a) λ = 1/2, ã = 1

φ̃

Ũ

〈
φ̃
〉

s

(b) λ = 1, ã = 0

φ̃

Ũ

〈
φ̃
〉

s

(c) λ = 3, ã = −2/3

Figure 3. The potential Ũ (φ̃) = U (φ) = (1/2)λφ̃2 (as in equation (50)) of the Ornstein–
Uhlenbeck process equation (51) after the shift by ã = −1 + 1/λ, equation (52).
The absorbing wall is indicated by the dashed line and the hatched region, which is
not accessible for the walker. The grey, shaded areas are the asymptotic conditional
probability densities equation (64). The arrow from above marks the position of the
expected average position φ̃ conditioned on survival, see figure 2.

One may expect a phase transition due to the competition of two scales: The distance
between the absorbing wall and the minimum of the potential, (λ − 1)/λ, and the strength
of the noise relative to the steepness of the potential, 	/

√
λ, which may or may not drive the

particles into the wall. Because the ratio of the two lengths is dimensionless, it is possible that
the transition occurs at a non-trivial value of λ giving rise to non-trivial exponents.

To ease notation, the origin is now moved so that the minimum of the potential is at φ̃ = 0,
resulting in the Langevin equation analysed in the following

˙̃
φ(t) = −λφ̃(t) + ξ (t), (51)

where

φ̃(t) = φ(t) + ã with ã = 1

λ
− 1 (52)

the latter being the position of the absorbing wall in a shifted potential, illustrated in figure 3.
The Langevin equation (51) is an Ornstein–Uhlenbeck process [35] with an absorbing wall
[36].

3.2. The Fokker–Planck equation

In the following, we will determine the ‘solution’ of equation (51), which is expected to be
much more easily obtained than that of the original process (46). The Fokker–Planck equation
reads [37]

∂

∂t
P(φ̃; t) = λ

∂

∂φ̃
(φ̃P(φ̃; t)) + 	2 ∂2

∂φ̃2
P(φ̃; t) (53)

with boundary condition P(ã; t) = 0 and initial condition limt→0 P(φ̃; t) = δ(φ̃ − φ̃0). It is
obvious to attempt to write its solution in terms of eigenfunctions yn(x) with x = φ̃

√
λ/	 and

eigenvalues μn, say

P(φ̃; t) =
∑

n

e−μnλte− λφ̃2

2	2 yn(x) (54)

12
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where yn fulfils the eigenvalues equation

y′′
n − xy′

n = −μnyn, (55)

with yn(a) = 0. The factor exp(−λφ̃2/(2	2)) in (54) appears quite naturally; without it, the
eigenvalues μn were negative and each term in the series divergent. Equation (55) is in fact
the eigenvalue problem of the Kolmogorov backward operator (generator) [9] of (53) and for
μn ∈ N (55) is the Hermite equation.

However, Hermite polynomials do not generally solve (55), because they do not generally
fulfil yn(ã) = 0, except when ã = 0 (i.e. the potential in figure 2(a) without a cusp), where
yn(x) = Hm(x) for n = 0, 1, 2, . . . and m = 2n + 1, so that μn = m. This solution in odd
polynomials hints at the interpretation of the problem in terms of a mirror charge trick alluded
to earlier.

The Kolmogorov backward equation (55) is also a Sturm–Liouville eigenvalue problem
and multiplication by the weight function e− x2

2 converts it to standard Sturm–Liouville form

(e− x2

2 y′
n(x))′ + μne− x2

2 yn(x) = 0. (56)

A Sturm–Liouville eigenvalue problem has a set of eigenvalues corresponding to a complete
set of orthogonal eigenfunctions that are square integrable with respect to the weight function
[38]. This equation is a singular Sturm–Liouville problem because it is defined on an infinite

interval and therefore an extra condition is needed such that

√
e− x2

2 yn(x) tends to zero as
|x| −→ ∞, to ensure square integrability of yn(x). If this condition holds then a complete set
of solutions can be found.

Solutions of (55) can be constructed in terms of a series by studying the recurrence relation
of its coefficients. A more efficient route is the use of special functions, such as confluent
hypergeometric functions also known as Kummer functions [39]. These are solutions of the
differential equation [40] x d2y

dx2 + (β − x)
dy
dx − αy = 0 where y(x) = M(α;β; x) or y(x) =

U(α;β; x) or any linear combination thereof. A solution of the form y = U(−μn/2; 1/2; x2/2)

solves equation (55) and satisfies the Dirichlet boundary condition at ã for suitably chosen μn.
It turns out that of the two independent solutions, only U has the right asymptotic behaviour in
large x to guarantee square integrability. Unfortunately, U(−μn/2; 1/2; x2/2) does not solve
the equation for ã < 0 because it has a singularity at zero and can therefore not constitute a
complete system of eigenfunctions of the Sturm–Liouville problem.

Another differential equation to consider is the parabolic cylinder function equation
d2y

dx2
+

(
ν + 1

2
− x2

4

)
y = 0. (57)

The solutions of this equation [41] are the parabolic cylinder functions y(x) = Dν (x),
which also solve equation (55) when of the form y = e

x2

4 Dν (x), specifically Dν (x) =
exp(−x2/4)Hν (x) for integer ν. For suitable μn the parabolic cylinder functions satisfy the
boundary condition at ã, namely Dμn (ã

√
λ/	) = 0, and are analytic along the whole real line

[42]. The solution of (53) with an absorbing wall at ã is thus

P(φ̃; t) = e− λ(φ̃2−φ̃2
0 )

4	2

√
λ

	

∞∑
n=1

h−1
n e−μnλtDμn

(√
λ

	
φ̃

)
Dμn

(√
λ

	
φ̃0

)
(58)

where h−1
n is a normalization constant,∫ ∞

a
√

λ/	

dxDμn (x)Dμm (x) = hnδnm (59)

which holds for any pair μn, μm such that Dμn,m (ã
√

λ/	) = 0. Completeness of Dμn (x)

guarantees the initial condition limt→0 P(φ̃; t) = δ(φ̃ − φ̃0).
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λ

ã
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μ1

Figure 4. The smallest eigenvalue μ1 (dotted),i.e. the smallest root μ of Dμ(ã
√

λ/	) =
0, shown here for 	 = 1 as a function of λ. The asymptotic death rate of the process,
μ1λ (full line), does not signal a phase transition at any finite value of λ. The position
of the absorbing wall, ã = 1/λ − 1, is shown as a dashed line.

3.3. Observables

In the following the process (51) is characterized with respect to the parameter λ with the aim
to identify and characterize a phase transition. As above, the observables we are interested in
are the survival probability, conditional moments and time-integrated activity. By construction,
only the latter can be calculated exactly in the mapping to the Ornstein–Uhlenbeck process.

Based on the solution (58) all observables mentioned above are easily accessible.
Asymptotically, the probability density is dominated by the smallest eigenvalue μ1,

lim
t→∞P(φ̃; t) eμ1λt =

√
λ

	
h−1

1 e− λ(φ̃2−φ̃2
0 )

4	2 Dμ1

(√
λ

	
φ̃

)
Dμ1

(√
λ

	
φ̃0

)
(60)

so that the (relative) death rate is immediately identified as μ1λ, which is shown in figure 4.
The rate with which the system empties asymptotically, μ1λ, is positive for all positive λ.
Moreover, the spectrum is always discrete. In summary, (sudden) onset of asymptotic survival,
as seen in the BP above, is not displayed by this Ornstein–Uhlenbeck system, although this is
precisely what is expected in a contact process. This apparent clash is resolved below.

For the following calculations a number of identities are useful, such as the recurrence
relations of the parabolic cylinder functions [41],
d

dx
(ex2/4Dν (x)) = νex2/4Dν−1(x) and

d

dx
(e−x2/4Dν (x)) = −e−x2/4Dν+1(x) (61)

so that

Dν+1(x) − xDν (x) + νDν−1(x) = 0 . (62)

The survival probability, N (φ̃)(t) = ∫ ∞
ã dφ̃P(φ̃; t), therefore has asymptote

N (φ̃)(t, φ̃0;	2, ε) ∼ e−μ1λth−1
1 e− λ(ã2−φ̃2

0 )

4	2 Dμ1−1

(√
λ

	
ã

)
Dμ1

(√
λ

	
φ̃0

)
. (63)

While N (φ̃) vanishes in large t for all finite λ, the asymptotic probability density conditional
to survival (see equation (60)),

lim
t→∞

P(φ̃; t)

N (φ̃)(t)
=

√
λ

	
e− λ(φ̃2−ã2 )

4	2
Dμ1

(√
λφ̃

	

)
Dμ1−1

(√
λã
	

) , (64)

as shown in figure 3, is stationary, in contrast to the BP discussed above. As expected, the wall
is effectively repelling, as walkers close to it are absorbed more readily than those staying
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away from it, or, conversely, if a walker survives, then because it stays well away from the
wall. Because ψ cannot run off, but, rather, is contained within a parabolic potential, t(g),
(7), does not necessarily diverge with g, i.e. vanishing asymptotic survival probability in the
random walker picture does not imply the same in the original picture (48).

With (61) and (62) asymptotic moments conditional to survival are found as

lim
t→∞〈φ̃〉s = 	√

λ

Dμ1−2
(√

λ
	

ã
)

Dμ1−1
(√

λ
	

ã
) + ã = μ1

μ1 − 1
ã, (65)

and

lim
t→∞〈φ̃2〉s − 〈φ̃〉2

s = 	2

λ

⎛
⎝2Dμ1−3

(√
λ

	
ã
)

Dμ1−1
(√

λ
	

ã
) − D2

μ1−2

(√
λ

	
ã
)

D2
μ1−1

(√
λ

	
ã
)
⎞
⎠

= ã2μ1

(μ1 − 1)2(μ1 − 2)
− 2	2

λ(μ1 − 2)
. (66)

Because the asymptotic conditional distribution P(φ̃; t)/N (φ̃)(t) is stationary, one might
expect the conditional moments to be identical in the mapped and in the original process. To
interpret the results for the contact process correctly, it is crucial to undo the shift applied in
equation (52) as that affects the mapping equation (8). The conditional un-shifted position
of the random walker, limt→∞〈φ〉s = ã/(μ1 − 1), must be strictly positive by construction,
suggesting that μ1 − 1 ∝ ã around λ = 1, as ã vanishes.

The special case λ = 1 can be solved explicitly using Hermite polynomials, producing

lim
t→∞〈φ̃〉s = lim

t→∞〈φ〉s =
√

π

2
	2 for λ = 1 (67)

which implies μ1 = 1 −
√

2/(π	2)(λ − 1) to leading order in λ about 1 and via (66)

lim
t→∞〈φ̃2〉s − 〈φ̃〉2

s = lim
t→∞〈φ2〉s − 〈φ〉2

s =
(

2 − π

2

)
	2 for λ = 1. (68)

For very small 0 < λ � 1 the potential becomes increasingly flat while the wall ã is
moving further and further to the right. At the wall the potential has slope Ũ ′(ã) = 1−λ, while
its curvature approaches 0. As μ1 diverges like 1/(4	2λ) [43] with vanishing λ, 〈φ̃〉s diverges
with ã like 1/λ (the arrow in figure 3(a) moving further to the right), while 〈φ〉s converges to
4	2, the conditional relative distance to the wall as shown in figure 2(a).

Not unexpectedly, for very large λ the wall has no noticeable effect, as ã approaches −1
and the potential Ũ (φ̃) = (1/2)λφ̃2 becomes increasingly sharply peaked

lim
t→∞〈φ̃2〉s − 〈φ̃〉2

s � 	2

λ
(69)

as if the walker were in a potential without absorbing wall, at stationarity distributed
like exp(−Ũ (φ̃)/	2). Consequently, 〈φ̃〉s vanishes asymptotically (figure 3(c)). Given
equation (65), its asymptotic behaviour is that of μ1, [43]

μ1 �
√

λ

2π	2
e− λ

2	2 , (70)

which is reminiscent of the Kramers rate of escape over a cusp-shaped barrier [44,
section VII.E.2]. Finally, the moments of the total activity in the contact process, as defined in
equation (41) for the BP, are easily derived in the random walker picture. By the nature of the
mapping, this observable is recovered exactly:

〈�m〉 = e− λ(ã2−φ̃2
0 )

4	2

√
λ

	

∞∑
n=1

h−1
n m!(μnλ)−mDμn−1

(√
λ

	
ã

)
Dμn

(√
λ

	
φ̃0

)
(71)
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The factor h−1
n on the right-hand side ensures quick convergence of the sum. There is, in fact,

no suggestion that 〈�m〉 is not analytic in λ.
This concludes the calculation of the observables that are easily derived from the random

walker picture of the random neighbour contact process. The moments of the total activity,
(71), are exact, while the moments of the asymptotic conditional population density, such as
(67) and (68), are not necessarily. None of the observables, however, signals a transition, in
contrast to the simplified mean field theory (45).

4. Discussion and conclusion

Before we discuss the mapping employed above in broader terms, we want to address the
question of why the random neighbour contact process, as formulated in equation (48), does
not display the phase transition its mean-field theory exhibits.

The analysis above shows that in the random walker picture, fluctuations will eventually
drive the particle into the absorbing wall irrespective of its position and the particle’s
starting point. Correspondingly, in the original random neighbour contact process, the activity
eventually ceases with finite rate as long as the absorbing state is accessible. On the other hand,
every naı̈ve numerical implementation of the random walker contact process will display the
mean field behaviour. Yet, numerical implementations of absorbing state phase transitions
suffer from the problem of being necessarily finite [45]. Taking the thermodynamic limit is
crucial for the recovery of the transition, because in any finite system the system almost surely
falls into an absorbing state (extinction). At closer inspection, the same applies in the present
model: In increasingly large systems with volume N the effective noise amplitude vanishes
like 	2 ∝ 1/N, because the occupation density ψ in a large system is less affected by the noise
than in small systems. Decreasing 	 has the same effect on μn as increasing the magnitude of
ã
√

λ, since Dμn (ã
√

λ/	) = 0. In the limit of vanishing 	 there are thus three cases:

lim
	→0

μ1 =

⎧⎪⎨
⎪⎩

∞ for ã
√

λ > 0 (72a)

1 for ã
√

λ = 0

0 for ã
√

λ < 0. (72c)

(72b)

It is obviously important to take the limit 	 → 0 in equation (58) before considering its
asymptotes in large t. For ã < 0 the particles are pinched in an infinitely sharp potential and
cannot overcome the barrier to the absorbing wall, i.e. limt→∞ lim	→0〈φ〉 = −ã, or according
to equation (65)

lim
	→0

〈φ〉s = lim
	→0

1

μ1 − 1
ã = −ã = 1 − 1

λ
for λ > 1 (73)

as ã
√

λ < 0 in equation (72b), reproducing the mean field result stated after equation (45).
The wall becomes accessible for ã � 0 in which case limt→∞〈φ〉s = 0. For ã

√
λ > 0 this

is in line with equations (72b) and (65). For ã = 0 the special case (67) applies (because
λ = 1) and taking the limit 	2 → 0 there, produces again 〈φ〉s = 0. The limit 	 → 0 thus
recovers the case 	 = 0 which leads to the mean field theory equation (45) that displays the
transition. Taking the limit 	 → 0 directly in equation (58) using equation (72b) is more
difficult, because we were unable to identify a suitable asymptotic behaviour of Dμ1 (φ̃

√
λ/	)

as μ1 approaches 0 and 	 vanishes.
In summary, the phase transition disappears provided the amplitude of the noise correlator

is finite, because all walkers will eventually reach the absorbing wall, irrespective of the value
of λ. The transition can thus be partly restored by studying finite t, as the characteristic time
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to death is given by the time scale 1/λ provided by the potential, multiplied by the distance
of the wall relative to the width of φ̃ produced by the noise, ã

√
λ/	. As 	2 ∝ 1/N ∝ L−d in

a d-dimensional system with linear extent L, this suggests a dynamical exponent of z = d/2,
which is correct at the upper critical dimension d = 4 [46].

In the present random neighbour model the rôle of the thermodynamic limit is thus
primarily to suppress fluctuations which always drive the system to extinction. Only once the
noise has been eliminated can the long-time limit be taken. One may expect that similar effects
play a rôle in spatially extended systems.

4.1. Mapping multiplicative to additive noise

The scheme introduced in section 2.2 has a very broad range of applications. If used to cancel
a multiplicative noise amplitude, it will typically be applied with the intention to reduce the
nonlinearity present in the Langevin equation. This is obviously not automatically the case.
For example

d

dg
ψ(g) = λ(1 − ψ(g))ψ(g) − ψ(g) +

√
ψ(g)(1 − ψ(g))η(g), (74)

which is a more sophisticated version of the random neighbour contact process that includes
fluctuations in the number of unoccupied sites, leads to the mapped equation

φ̇(t) = −λ + 1

1 − φ(t)
+ ξ (t), (75)

somewhat reminiscent of the Bessel process, now equipped with an absorbing wall.
In general, the scheme allows the relation of a range of different Langevin equations and

processes, some of which are much easier to analyse than others. A potential disadvantage is
that only certain observables are exactly recovered in the mapped process; however, for a large
number of processes and mappings this is not of great significance, for example if the primary
aim is to identify a phase transition, or if the observables are expected to be sufficiently well
approximated in the mapped process.
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