
Mitochondrial Variability as a Source of Extrinsic Cellular Noise – Supplementary Information

Parameterisation of λ(t)

Figs. 2g and 2i in das Neves et al. [1] give the response of transcription rate (λ) in arbitrary units to varying concentrations
of ATP, without and with artificial decondensation of chromatin respectively. Measuring [ATP ] in µM and working with the
same arbitrary units employed in that study, we model this response with the expression:

λ = s1 + s2 tan−1(s3[ATP ] + s4), (1)

with s1 ' 51.2, s2 ' 44.7, s3 ' 2.88× 10−3µM−1, s4 ' −1.9 (see Fig. 1).
das Neves et al. also produced a curve showing λ with [ATP ] in an experimental situation involving the decondensation

of chromatin in the cell. This curve can be parameterised by the above equation with sd1 ' 40.0, sd2 ' 54.7, sd3 ' 1.6 ×
10−3µM−1, sd4 ' −0.27.

We choose this inverse tangent functional form to model the response of transcription rate to [ATP ] for mathematical simplicity
in subsequent sections, and note that modelling with other functional forms (for example, Hill functions) is also possible.

In the parameterisation of our model, the time series of [ATP ] in cells is rather linear and slowly varying. This behaviour
emerges both due to the dynamics of mitochondrial density (which tends towards β

α with time) and the fact that the exponential
growths involved are cell-cycle limited to only span a factor of around two before mitosis. It will be useful to employ a linear
approximation to λ(t), gained from an expansion in t about t′:

λ(t) = s1 + s2 tan−1

(
s4 + s3

γfn0e
βft

v0 + n0α
β (eβft − 1)

)
(2)

' c+ bt, (3)

where the values of c and b are found after some algebra to be:

b =
s2fβt

′d

(1 + (s4 + d)2)
(4)

c = s1 + s2 tan−1(s4 + d)− b, (5)

and

d =
s3fn0βγe

βft′

αn0 (eβft′ − 1) + βv0
. (6)

Constants c and b then depend on cellular initial conditions and t′ (which we take to be half the mean cell cycle length) but
not on t. The sign of b is determined by the over- or under-population of mitochondria in the cell at mitosis: over-population
will lead to high mitochondrial density and mean-reversion will act to decrease transcription rate with time (and vice versa).
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FIG. 1: λ with [ATP ] (experiment and fit).
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Observable Experimental Value Simulated Value Error

ηλ Control 0.4 0.389 0.028

ηλ Anti-oxidant 0.2 0.204 0.019

ηλ Pro-oxidant 1 0.943 0.057

ηλ Sister Cells 0.08 0.093 0.166

SD n+/n− 0.23 0.217 0.055

Cell cycle length 30.5 30.8 0.009

Mean [ATP ] 900 925 0.028

TABLE I: Experimental observables and simulated fits obtained through optimisation of fitting parameters. Errors are the absolute
difference between simulated and experimental values divided by experimental value. The score for a parameter set is the sum of errors
for each observable.
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FIG. 2: (A) Simulated relationship between a measure of total membrane potential in a cell (the product of mitochondrial mass n and
functionality f) and the mitochondrial mass in the cell. (B) Membrane potential (measured with CMXRos) against mitochondrial content
(measured with MitoGreen).

Fitting Other Parameters

The parameters in our model concerning volume cutoff and partitioning were chosen straightforwardly: v∗ for consistency
with Ref. [2] and σv to best fit experimental data from Ref. [1]. We then needed to find values for the remaining parameters
influencing properties of our model cells, namely α and β, the growth rates of cell volume and mitochondrial mass, γ, the constant
of proportionality between nf

v and [ATP ], and parameters determining the statistics of mitochondrial functionality fa, f
0
c , σf .

To fix values for these parameters, we first chose values for two parameters (fa and f0c ) to give a mean functionality of 1 in the
control population, for simplicity. An optimisation procedure was then used to select values for σf , α, β and γ. The procedure
we used involved choosing arbitrary initial conditions for each parameter (though the order of magnitude of these initial values
was determined by a crude preliminary investigation) and iterating, choosing a new value for one of the free parameters at each
step, and retaining this value if the overall performance of the parameter set improved. The new values were chosen either
(with probability 0.1) uniformly over the order of magnitude associated with that parameter or (with probability 0.9) uniformly
from the interval of 10% deviations from the old value. To judge performance, a score for each parameter set was calculated
based on the absolute deviation between experimental and simulated observables, averaged over the seven quantities shown in
Table I. Once these values were chosen for cells under ‘normal’ oxidative conditions (the default), f−1,1c were set to match the
experimentally observed transcription noise levels under the corresponding oxidative conditions.

Mitochondrial Membrane Potential

Fig. 2 shows a comparison of the relationship between total membrane potential in a cell and mitochondrial mass in the
cell, from new experiments (see Methods in Main Text) and simulation of our model. Both our model and experimental data
shows a linear correlation between total membrane potential and mitochondrial mass. This result emerges straightforwardly
from our model due to the representation of total membrane potential (the product of n and f) and the qualitative agreement
with experiment suggests that this modelling approach is suitable.

Estimating Noise Contributions

Here we find an expression for transcription rate in terms of the initial conditions and age of a cell, then estimate the variances
associated with each of these contributory factors in order to assess the strength of each contribution to overall transcription
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rate noise.
As cells evolve deterministically within a cell cycle, the concentration of ATP in a model cell is a function of the cell’s initial

conditions and its age:

[ATP ] =
γfn

v
(7)

=
γfn0e

βft

v0 + n0α
β (eβft − 1)

, (8)

where the second line follows from simple integration of our dynamic equations. If we assume that the initial conditions of an
individual cell are uncorrelated – which is the case for single divisions within our model, but population and memory effects may
possibly lead to correlations – we can use standard rules for combining means and variances to calculate the population mean
and variance of the ATP distribution from the total differential:

µATP =
γµfµn0

eβµfµt

µv0 +
µn0

α

β (eβµfµt − 1)
. (9)

σ2
ATP =

∣∣∣∣∂ATP∂n0

∣∣∣∣2 σ2
n0

+

∣∣∣∣∂ATP∂f

∣∣∣∣2 σ2
f +

∣∣∣∣∂ATP∂v0

∣∣∣∣σ2
v0 +

∣∣∣∣∂ATP∂t

∣∣∣∣2 σ2
t (10)

=
e2ftββ2γ2

((eftβ − 1)n0α+ v0β)
4

(
n20
(
n0α

(
eftβ − 1− ftβ

)
+ v0β(1 + ftβ)

)2
σ2
f

+f2v20β
2σ2
n0

+ f4n20β
2(n0α− v0β)2σ2

t + f2n20β
2σ2
v0

)
(11)

= W 2
n0
σ2
n0

+W 2
v0σ

2
v0 +W 2

t σ
2
t +W 2

f σ
2
f . (12)

As transcription rate λ depends solely on [ATP ] in our model, we can then calculate the mean and variance of the distribution
of λ:

µλ = s1 + s2 tan−1(s3µATP + s4) (13)

σ2
λ =

∣∣∣∣ ∂λ

∂ATP

∣∣∣∣2 σ2
ATP (14)

=

(
s2s3σATP

1 + (µATP s3 + s4)2

)2

. (15)

From this, we can explore the contributions of mitochondrial segregation (σ2
n0

) and functional diversity (σ2
f ) on transcription

rate noise ηλ = σλ
µλ

. The overall expression can be written:

ηλ =
σλ
µλ

(16)

=
s2s3σATP

(s1 + s2 tan−1(s3µATP + s4))(1 + (µATP s3 + s4)2)
(17)

=
s2s3

√
W 2
n0
σ2
n0

+W 2
v0σ

2
v0 +W 2

t σ
2
t +W 2

f σ
2
f

(s1 + s2 tan−1(s3µATP + s4))(1 + (µATP s3 + s4))2
(18)

= w
√
wfη2f + wn0

η2n0
+ wtη2t + w2

v0ηv0 , , (19)

where the last line condenses the expression into the quadrature sum of noise levels in cellular parameters with weighting
factors wi = W 2

i µ
2
i .

Initial volume distribution. The mean and variance of initial volumes is simple to obtain, as division always occurs at a
fixed volume and proceeds according to a fixed distribution. We straightforwardly have µv0 = v∗

2 , σv0 = σv.
Initial mitochondrial mass distribution. We estimate the population variance of initial mitochondrial mass as the variance

associated with the daughter of a cell with population average properties just before mitosis. Such a cell has v = v∗, n = β
αv
∗.

The mean and variance associated with initial mitochondrial mass in the daughter of such a cell is µn0
= β

α
v∗

2 , σn0
=
√

βv∗
4α .

These values give a simple estimate comparing to numerical results on the population statistics (see Fig. 3A).
Mitochondrial functionality distribution. Similarly, we estimate the population distribution of mitochondrial function-

alities by considering the daughter of a population-average cell. The steady-state distribution of the AR(1) process determining

f is known to be normal with mean fc
1−fa and variance

σ2
f

1−f2
a

. It is not straightforwardly obvious that the distribution of f in
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FIG. 3: A. Probability distribution of n0 under default model parameters, compared to the estimated distribution from considering a
population-average cell. B. Probability distribution of f under default model parameters, compared to the distribution of the underlying
AR(1) process.
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FIG. 4: Probability distributions of cellular age t and cell cycle length t∗ under default model parameters.

an unsynchronised population of cells, where the lifespan of a cell is a function of f , should also follow this form, but numerical
results confirm that the f distribution does closely match it (see Fig. 3B).

Distribution of cellular ages. This distribution is hard to estimate or approach analytically. We obtained the required
values numerically from simulations, as shown in Fig. 4. The mean and variance of this distribution was found to vary with σn0

and σf , the variance in mitochondrial mass and mitochondrial function. Over the ranges 0 < σn0
< 20 and 0 < σf < 0.4, µt

varied between 10 and 25 hours and σt varied between 9 and 50 hours. However, these terms provide a negligible contribution
to the transcription rate variability (see later), so we approximate the mean and variance of P (t) to be constant, with µt ' 16
and σt ' 14, the values corresponding to the default model parameterisation.

We find, with our default parameter set, wf = 8.5 × 105, wn0 = wv0 = 4.2 × 105, and that wt is zero within working
precision. Typical noise levels in these quantities were measured from simulations as ηf = 0.34, ηn0

= 0.13, ηv0 = 0.07. This
approximate analytic approach thus supports the hypothesis that the dominant contributions to transcription rate variability
are from mitochondrial variability terms.

Other Models

Continuous f

The behaviour of mitochondrial functionality f throughout and between cell cycles is the least well characterised property of
our model. We use a simple picture in which f stays constant throughout a cell cycle and changes stochastically at mitosis,
chosen for simplicity and due to the observed slowly varying behaviour of membrane potential in the cell cycle [1]. An alternative
picture involves f being allowed to vary continuously and randomly throughout the cell cycle and no discrete jump occuring at
mitosis, with daughter cells straightforwardly inheriting their parent’s functionality. We found that this system was difficult to
approach analytically, but performed numerical experiments to explore its behaviour. Instead of parameterising the behaviour
of f with fa and fc, describing an autoregressive process, we now allow f to vary in a random walk with steps of size δf per
unit time. δf then measures the degree of variability associated with f . To avoid unphysical situations, we place the constraint
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FIG. 5: Time series with varying f .
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FIG. 6: Behaviour of our model with continuously varying f . Comparison to experimental data of the model with f continuously
varying within cell cycles and inherited continuously at mitosis. Plots are the same as Fig. 4 in the Main Text.

0.1 ≤ f < 1.9, forcing f to follow a constrained random walk.

Figs. 5 and 6 shows the behaviour of this model after parameterisation on the same data used to parameterise our default
model. Most experimental results are captured to a similar extent than observed with our default model. These results suggest
that the model’s agreement with experimental data is robust with respect to the fine detail of the time evolution of f within cell
cycles. This robustness suggests that it is the magnitude of extrinsic variability in mitochondrial functionality that gives rise to
important physiological effects, rather than the specific detail of the time evolution and inheritance of functionality. However, as
different dynamic regimes may adequately represent the behaviour of mitochondrial functionality, the need for further elucidation
of mitochondrial functionality in model building is emphasised.
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Label Equations Description

A
v̇ = αn

ṅ = βn
Default model type

B
v̇ = αv

ṅ = βv
Volume control on growth

C
v̇ = αn

ṅ = αn
(
γ − n

v

) Strong, explicit mean reversion of n towards a density γ.

D
v̇ = αv

(
1 − v

v∗

)
ṅ = αn

(
γ − n

v

) Explicit mean reversion of n towards γ, and volume
growth towards a target v∗

E
v̇ = α

ṅ = βn
(
γ − n

v

) Linear volume growth

F
v̇ = α

ṅ = β
(
γ − n

v

) Linear volume growth and weaker mean reversion on n

TABLE II: Different possible models for time evolution of the cell exhibiting mean reversion. Each of these expressions admits an analytic
solution for n(t) and v(t). Other combinations (for example, weak mean reversion on n and exponential volume growth) are harder to
solve and are often unstable for high or low initial n/v.

ATP and Alternatives

It is thought that ATP levels in the cell are subject to homeostasis. For this reason we do not include a sink term for ATP,
assuming that an ATP deficit will be immediately compensated for. A model that would capture ATP usage is given by:

v̇ = α′
a

v
(20)

ṅ = β′
a

v
(21)

ȧ = γ′n− (α′ + β′)
a

v
, (22)

where a is the cellular ATP level. Here, the second term in Eqn. 22 corresponds to the rate of use of ATP in increasing
the cell volume and mitochondrial mass. Note that if a = γn our model equations are recovered. This model, with a suitable
parameterisation, produces very similar results to our simpler model.

We also note that the following system explicitly incorporates ATP homeostasis, as ATP is produced up to a certain level by
mitochondria and used up in the increase of cellular volume:

ȧ = α′(a∗ − a)n− β′av, (23)

where a∗ controls the homeostatic level of ATP. This equation is solved by

a = a0e
−t(α′n−β′v) +

a∗α′n

α′n+ β′v
, (24)

giving a hyperbolic form for ATP levels in terms of n and v. This representation could easily be extended to allow consideration
of the ATP:ADP ratio – in which the rate of use of ATP gives the rate of production of ADP and vice versa.

It is also possible that ROS plays a role in modulating transcription rate and cellular growth rates. In this case, an additional
term could be introduced into the model, proportional to the number of mitochondria, and possibly inversely proportional to
mitochondrial functionality, and used to modulate the dynamic equations and transcription rate.

In our current model, we do not consider these complicating factors, due to our lack of experimental justification for them and
also due to our desire to retain a simple, analytically tractable model. Future work, possibly motivated by the experiments we
suggest in the main text, could take these more complicated factors into account.

Other Deterministic Dynamic Forms

Our model has been chosen phenomenologically to match experimental results concerning the distribution and behaviour of
mitochondria. Other models are possible that display similar behaviour. In Table II we mention some potential alternative
models. These alternatives both incorporate mean reversion on mitochondrial density and yield sensible key results. There is a
difference in mean reversion rate between these models, illustrated by dynamic plots in Fig. 7.

Our model was chosen for its analytic tractability and its ability to reproduce experimental phenomena: these more complex
models rapidly become analytically intractable, which hinders a deeper understanding of their behaviour.
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FIG. 7: The functional form of mitochondrial density ρ with time t (in arbitrary units) in other possible models for the time evolution
of cellular properties. For these illustrations, the parameter set α = 0.1, β = 0.01, v0 = 1000 is used. The different lines correspond to
trajectories of ρ resulting from varying initial n0 between 0 and 400 (a much wider range than in the default model, as different choices of
functional form may lead to different absolute values for n and v). The label of the plot gives the corresponding function in Table II.

We note in addition that the [ATP ] term that appears in our dynamic equations may be replaced by a transcription or
translation rate term, explicitly including the sigmoidal (or hyperbolic) response of these cellular growth rates in the dynamic
equations. In our bare model, we use the simpler [ATP ] term both to maintain analytic tractability and because the appropriate
form for a response curve is difficult to estimate (for example, cellular growth may be a result of a combination of transcription
and translation, and may include other additional terms). This approach essentially involves using a linear approximation for
growth rate: linear approximations for transcription rate are employed elsewhere in this study and yield very similar results to
the numerical behaviour of the corresponding nonlinear case.

It is possible to construct models for mitochondrial stochasticity that do not involve mean-reverting behaviour of mitochondrial
density. As a simple example, if cellular dynamics are such that mitochondrial mass and cellular volume evolve independently:

v̇ = αfv; (25)

ṅ = βfn, (26)

with mitosis involving a binomial segregation of volume and mitochondrial mass as before, the population variance in mitochon-
drial density will generally increase in an unbounded manner, as the probability of observing higher and higher mitochondrial
densities increases with time. However, if cutoffs are placed on mitochondrial density, so that cells are removed from the
population if their density does not obey

ρ− <
n

v
< ρ+, (27)

the population distribution of mitochondrial density can achieve stationarity. This approach results in a much weaker cor-
relation between mitochondrial mass n and cellular volume v. This model can be parameterised (an example parameter set is
ρ− = 10, ρ+ = 300, α = β = 0.1, γ = 3.6, other parameters the same as in the default model) to yield similar results to the
default model for transcriptional noise.

This rather constructed model is considered due to the discrepancy between flow cytometry data in das Neves et al. [1],
showing an absence of correlation between mitochondrial volume and cellular volume. Obtaining analytic results from this
model is difficult, both in terms of approximation for the moments of probability distributions and the time evolution of mRNA.

We also note that, while our model results in cells with high mitochondrial density exhibiting high ATP levels, it could be the
case that a different variable correlated with density is more fundamentally responsible for this relationship. For example, struc-
tural properties of the mitochondrial network within a cell – the largest connected component, or overall degree of connectivity
– may be dependent on mitochondrial density and responsible for ATP levels.

Potential Experiments for Refinement

As mentioned in the Main Text, our model was constructed from a phenomenological philosophy, with the intention of using
experimental results to construct a plausible coarse-grained explanation for the influence of mitochondrial variability on extrinsic
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Observable Prediction

1 Mitochondrial functionality (measured via
membrane potential) before and after mi-
tosis.

Parent membrane potential is weakly retained but
stochastically altered to give daughter membrane poten-
tial. Note that our current model treats this process
crudely and as such many other dynamics may be possi-
ble (see ‘Continuous f ’).

2 Protein expression levels as a function of
[ATP ].

Expression levels are higher in cells with higher [ATP ].

3 Time series of mitochondrial mass and den-
sity through the cell cycle.

Exponential cell growth, with mitochondrial density
tending towards an average value. The time series of
these dynamics could be used to distinguish between dif-
ferent models (see ‘Other Models’).

4 Behaviour of [ATP ] with time. Slowly varying over the cell cycle, mean-reverting to-
wards an average value.

5 Determinant factors of [ATP ]. Mitochondrial mass and membrane potential, and cell
volume. Levels of ROS may also be of importance.

6 Relative contribution of mitochondrial
mass and functional variability to tran-
scriptional variability (measured via bro-
mouridine uptake).

Strong dependence of transcriptional noise on both mi-
tochondrial inheritance and functionality variability.

7 Noise in protein expression levels. Dependent on mitochondrial variability, and lower for
cells with mitochondrial low mass and functionality.

8 ROS levels (measured via, for example, Mi-
toSox).

Possibly correlated inversely with a measure of mitochon-
drial functionality, and possibly higher with low mito-
chondrial mass and functionality, as weaker/sparser mi-
tochondria struggle to match energy demands.

TABLE III: Potential experiments that may clarify aspects of our model, roughly ranked in order of importance for supporting or suggesting
area of refinement for our model.

noise in general and transcription rate in particular. Our goal was to introduce a simplified but consistent mathematical summary
of the data and to use this to motivate further experiments. We suggest a set of experiments in Table II that would support or
contribute to further development of this model.

mRNA & Protein Levels

The master equation for the probability distribution of mRNA levels can be written down as:

∂Pm
∂t

= λ(t)Pm−1 + ξ(m+ 1)Pm+1 − (λ(t) + ξm)Pm, (28)

where λ(t) is the time-dependent birth rate of mRNA molecules, ξ is the rate of removal of mRNA, and Pm(t) is the probability
of observing the system with m mRNA molecules at time t. We choose

λ(t) = (c+ bt), (29)

the approximation from ‘Parameterisation of λ(t)’, to model transcription rate with time.

Using the generating function G(z) =
∑
m z

mPm gives:

∂G

∂t
= λ(t)(z − 1)G− ξ(z − 1)

∂G

∂z
. (30)

We can solve Eqn. 30 with the method of characteristics. This process allows us to convert the PDE into a set of ODEs
along a characteristic curve of the function. We wish to recast Eqn. 30 into the following form, where a characteristic curve is
parameterised by the new variable s:

d

ds
G(z(s), t(s)) = F (G, z(s), t(s)). (31)

Using the chain rule, we can write:
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d

ds
G(z(s), t(s)) =

∂G

∂z

dz

ds
+
∂G

∂t

dt

ds
(32)

=
1

z − 1

∂G

∂t
+ ξ

∂G

∂z
= (c+ bt)G, (33)

where the last line is just a rearrangement of the original PDE. By comparing coefficients, we obtain the characteristic equations
for the system:

dz

ds
= ξ → z = ξs+ z0 (34)

dt

ds
=

1

z − 1
=

1

ξs+ z0 − 1
→ t =

1

ξ
ln(ξs+ z0 − 1) + t0, (35)

dG

ds
= (c+ bt)G =

(
c+ b

(
1

ξ
ln(ξs+ z0 − 1) + t0

))
G. (36)

These equations may be interpreted as describing the evolution of the arguments of G, and the subsequent evolution of the
value of G, as we progress along a curve parameterised by s. As absolute values of s are not important, affecting only the
parameterisation of progress along a characteristic curve, we set z0 = 0 without loss of generality. We then have s = z

ξ and

t0 = t− 1
ξ ln(z − 1). The final ODE can then be solved by separation of variables:

∫
1

G
dG =

∫ (
c+ b

(
1

r
ln(ξs+ z0 − 1) + c2

))
ds (37)

= s(c+ bt0)− sb

ξ
+
sb

ξ
ln(ξs− 1)− b

ξ2
ln(ξs− 1) (38)

=
z

ξ
(c+ bt)− bz

ξ2
− b

ξ2
ln(z − 1), (39)

We then have

G = C exp

(
z

ξ
(c+ bt)− bz

ξ2

)
(z − 1)

−b
ξ2 , (40)

where the arbitrary function C = C(t− 1
ξ ln(z − 1)) = C(t0), as this quantity is independent of s.

If the initial copy number of mRNA molecules is m0, we have the initial condition G(z, 0) =
∑
m z

mPm(0) =
∑
m z

mδmm0
=

zm0 . Noting that at t = 0, e−t0ξ = z − 1, we find that if we employ the choice

C(t0) = exp

(
(e−t0ξ + 1)

(
b

ξ2
− c

ξ

))
(e−t0ξ + 1)m0 exp

(
−b
ξ2
t0ξ

)
, (41)

we recover the required initial condition:

G(z, t0) = exp

(
z

ξ
(c+ bt)− bz

ξ2

)
(z − 1)

−b
ξ2 exp

(
(e−t0ξ + 1)

(
b

ξ2
− c

ξ

))
e−t0ξ + 1)m0 exp

(
−b
ξ2
t0ξ

)
(42)

G(z, t0 = 0) = exp

(
zc

ξ
− bz

ξ2

)
(z − 1)

−b
ξ2 exp

(
z

(
b

ξ2
− c

ξ

))
zm0(z − 1)

b
ξ2 (43)

= zm0 . (44)

The general solution is then given by Eqn. 42, which, using t0 = t− 1
ξ ln(z − 1), can be written:

G(z, t) = ea1z+a2(z + a3)m0 , (45)

with

a1 =
1

ξ

(
c+ bt− ce−ξt +

b

ξ
(e−ξt − 1)

)
(46)

a2 = −m0tξ − a1 (47)

a3 = eξt − 1 (48)



10

We can recover the mean and variance of the distribution Pm(t) by using µm = ∂G
∂z

∣∣
z=1

and σ2
m = ∂2G

∂z2

∣∣∣
z=1

+ ∂G
∂z

∣∣
z=1
−(

∂G
∂z

∣∣
z=1

)2
:

µm = (a3 + 1)m0−1ea1+a2(a1 + a1a3 +m0) (49)

σ2
m = (a3 + 1)m0ea1+a2

(
a1 + a21 +

m0

a3 + 1

(
1 + 2a1 +

m0 − 1

a3 + 1

)
− (a3 + 1)m0+2ea1+a2(a1 + a1a3 +m0)2

)
(50)

We can also recover the full probability distribution of observing m mRNAs using Pm(t) = 1
m!

∂mG
∂zm

∣∣
z=0

. Using Leibniz’s rule
allows us to write:

Pm(t) =
1

m!

∂mG

∂zm

∣∣∣∣
z=0

(51)

=
1

m!

m∑
i=0

(
m

i

)
∂i

∂zi
ea1z+a2

∂m−i

∂zm−i
(z + a3)m0

∣∣∣∣∣
z=0

(52)

=

m∑
i=0

1

i!(m− i)!
ai1e

a1z+a2
m0!

(m0 −m+ i)!
(z + a3)m0−m+i

∣∣∣∣∣
z=0

(53)

=

m∑
i=0

m0!ai1e
a2am0−m+i

3

(m0 −m+ i)!i!(m− i)!
. (54)

This can be alternatively written as

Pm(t) = am0−m
3 ea2

m0!

m!(m0 −m)!
1F1(−m;m0 −m+ 1;−a1a3) (55)

where 1F1 is the Kummer confluent hypergeometric function.
The corresponding master equation including proteins is:

∂Pmn

∂t
= mλn(t)Pmn−1 + ξn(n+ 1)Pmn+1 − ξnnPmn −mλn(t)Pmn

+λm(t)Pm−1n + ξm(m+ 1)Pm+1n − ξmmPmn − λm(t)Pmn, (56)

for which we have not obtained a general analytic solution. Instead, we simulate this system with a stochastic simulation
algorithm. To simulate these systems, we use a parameter set employed by Raj et al. [3]: 〈λm〉 = 0.06 s−1, 〈λn〉 = 0.007 s−1, ξm =
7× 10−5 s−1, ξn = 1.1× 10−5 s−1. The death rates are simply inserted into the simulation, and the mean birth rates are used to
tune the time-varying birth rate for the simulation. For example, the normalisation of λm(t) was chosen so that the population
average value of [ATP ] corresponded to 〈λm〉.

As the process of translation is believed to be [ATP ]-dependent but not dependent on chromatin remodelling, the decondensed
version of Eqn. 1 (using the hyperbolic sdi coefficients rather than the sigmoidal si coefficients) was used for λn. Again, the
mean birth rate was used to normalise this function as above. Overall, we then have constant rates for mRNA death (faster) and
protein death (slower) and time-varying birth rates for mRNA (including chromatin remodelling) and proteins (not including
chromatin remodelling).

As mentioned in the Main Text, we found this parameterisation to yield large copy numbers of proteins, which led to very
low values for intrinsic noise. We explored this effect by increasing the degradation rates from Raj et al.’s default values, to
ξm = 7× 10−3 s−1, ξn = 1.1× 10−3. In addition, we investigated the case where variability in [ATP ] only affected transcription
rate, with translation rate taking the constant value λn = 0.007 s−1. As shown in the Main Text, those simulations with higher
degradation rates showed a more significant intrinsic noise contribution, and the trends in these dual reporter simulations changed
little with a constant translation rate. This consistency means that though our crude model of the dependence of translation
rate on [ATP ] could be challenged, even if translation is ATP dependent we still see pronounced effects on protein levels through
ATP-dependent variability in transcription rate.
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