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Cox reduction and confidence sets of
models: a theoretical elucidation
Rebecca M. Lewis1 and Heather S. Battey2

Abstract. For sparse high-dimensional regression problems, Cox and Battey
[2, 14] emphasised the need for confidence sets of models: an enumeration
of those small sets of variables that fit the data equivalently well in a suitable
statistical sense. This is to be contrasted with the single model returned by
penalised regression procedures, effective for prediction but potentially mis-
leading for subject-matter understanding. The proposed construction of such
sets relied on preliminary reduction of the full set of variables. While various
possibilities could be considered for this, [14] proposed a succession of re-
gression fits based on incomplete block designs. The purpose of the present
paper is to provide insight on both aspects of [14]. For an unspecified reduc-
tion strategy, we begin by characterising models that are likely to be retained
in the model confidence set, emphasising geometric aspects. We then eval-
uate possible reduction schemes based on penalised regression or marginal
screening, before theoretically elucidating the reduction of [14]. We iden-
tify features of the covariate matrix that may reduce its efficacy, and indicate
improvements to the original proposal. An advantage of the approach is its
ability to reveal its own stability or fragility for the data at hand.

Key words and phrases: genomics; high-dimensional regression; model un-
certainty; partially balanced incomplete block arrangements; sparsity.

1. INTRODUCTION

In the context of regression with a large number p
of potential explanatory features on n ≪ p indepen-
dent individuals, usual practice is to identify a single
low-dimensional model. Motivated by scientific studies
in which subject-matter understanding is sought rather
than immediate predictive success, [14] argued that when
several reasonable explanations are statistically indistin-
guishable, one should aim to specify a confidence set
of models. The arguments for this are in our view com-
pelling, yet there may be some flexibility in how the broad
goal is operationalised. The following approach was sug-
gested in [14].

A reduction phase starts with the full set of p variables
and aims to identify a much smaller set Ŝ ⊂ {1, . . . , p}
indexing variables with apparent explanatory power. The
set Ŝ is called the comprehensive model. Following this
reduction, the model assessment phase assesses all sub-
models of Ŝ for their compatibility with the data, having
taken necessary measures to prevent miscalibration due to
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double use of the data. The confidence set of models M
is an enumeration of those small sets of variables that fit
the data equivalently well in a suitable statistical sense.

The reduction phase as outlined in [14] is termed Cox
reduction throughout the present paper and proceeds as
follows.

• Arrange the p variable indices at random either in
a k × k square or a k × k × k cube, where prefer-
ably k ≤ 15. Extensions to four or more dimensions
are possible. There is no loss of generality in as-
suming that p is a perfect cube, as otherwise some
positions are left unoccupied. A visualisation is in
Supplementary Material Figure S1.

• Any intrinsic biological or physiological character-
istics, known to be important, are either used to par-
tition the sample or are included in all regressions
and should not be arranged in the cube.

• Traverse the cube from its three directions, the
rows, columns and “corridors”, specifying 3k2 sets
of k variables. Fit a least squares regression to each
set.

• From each regression, provisionally select a small
number of variables. This might be the two vari-
ables with most significant effect, or all those vari-
ables, if any, whose Student t statistics exceed a
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threshold. Cox and Battey [14] recommended that
variables never selected or selected only once be
discarded, except in the absence of strong prior
counter evidence.

• The next step depends on the number of variables
remaining. If this remains large (in excess of 30,
say), a second phase is carried out, similar to the
first, typically based on a square rather than a cube.
The resulting set of variables from this two-stage
reduction is Ŝ .

A form of this procedure is presented in pseudo-code in
Section S1 of the Supplementary Material.

The arrangement of variables into 3k2 distinct blocks of
size k is the partially balanced incomplete block design of
Yates [46] used in a design setting where the number of
treatments exceeds the number of experimental units per
block. The context of Cox reduction is fundamentally dif-
ferent in that there is no blocking of units and no randomi-
sation of treatments to units. The analogy is that the de-
sign aims to minimise loss or redundancy of information.
As contrasted with, say, fitting 3k2 regressions on totally
random sets of k variables, Cox reduction ensures that ev-
ery variable is assessed an equal number times, and never
alongside the same set of variables. A practical advan-
tage of Cox reduction is the reassurance it offers, through
rerandomisation of the variable indices in the cube, over
the security or otherwise of the conclusions. In particular,
unstable sets Ŝ point to fragility of the method on the data
at hand and thereby guide the choice of tuning parameters.

While inspiration came from [46], motivation for Cox
reduction is from Bradford Hill’s [4] discussion of the cir-
cumstances under which an effect obtained in an observa-
tional study is relatively likely to have a causal interpre-
tation. Such conditions include that the effect is repro-
duced in independent studies and behaves appropriately
when the potential cause is applied, removed and then
reinstated [13]. See [15, p.165–6] for further discussion.
These aspects point to Cox reduction as at least a broadly
appropriate approach for an initial phase of analysis, to be
considered alongside some more established procedures
such as marginal screening or penalised regression. We
will show in Section 4 that the set of variables retained by
Cox reduction is better suited than some other reduction
strategies for assessment of models in the second phase.
A further motivation for theoretical elucidation is that the
procedure appears to be in use, as indicated by the down-
load logs for the R package HCmodelSets [31]. Some
published applications of Cox reduction include [3], [5],
[33], [45].

Among the most relevant procedures proposed else-
where in the high-dimensional literature is the multi-
environment knockoff filter discussed by [36], although
this generally comes with a different type of theoretical

guarantee. The confidence set of [14] identifies a num-
ber of models that are by definition statistically indistin-
guishable, whereas the knockoff procedure returns a sin-
gle model with a control on the false discovery rate [1, 9].

In a low-dimensional context, confidence sets of mod-
els have been emphasised repeatedly by Cox (see e.g.,
[12], [16], [17, Appendix A.2.5]). They have been con-
sidered from a different perspective in [30], which be-
gins with a collection of candidate models and aims to
identify those with the smallest expected loss at a given
significance level. In [30], the relative explanatory power
of pairs of models in the candidate set are compared,
whereas [14] uses the comprehensive model as a refer-
ence set against which to gauge the adequacy of each sub-
model. If no submodel achieves comparable fit, the model
confidence set of [14] is empty, whereas the set of [30]
contains several models with equally poor fit. Bayesian
approaches to model selection and the resulting credible
sets of models are in the same vein, with obvious opera-
tional differences. For example, the posterior distributions
in [37] and [29] assign non-zero weight to multiple mod-
els.

The purpose of the present paper is to provide theo-
retical insight into the construction of the model confi-
dence set proposed by [14], revealing situations that lead
the procedure to partially fail, either by discarding a gen-
uinely relevant variable in the reduction phase, or by dis-
carding the true model at the model assessment phase.
Several modifications to the original proposal are possi-
ble, of which some were mentioned in [2] but others are
new to the present paper, having emerged from theoretical
analyses contained herein.

A presentational quirk of the paper is that a theoretical
analysis of the model assessment phase of the procedure,
relating to the model confidence set M, is discussed first
(Section 4) conditional on a comprehensive model Ŝ hav-
ing already been isolated. This is to emphasise the possi-
bility of using other reduction strategies besides Cox re-
duction for the construction of Ŝ . Such alternatives are
discussed in Sections 5. An analysis of Cox reduction is
presented in Section 6.

Two sources of randomness will be used in the forth-
coming analysis. When considering the model assessment
phase (Section 4), the randomness is induced through
the generative model for the outcome. For the theoreti-
cal analysis of Cox reduction (Section 6), the outcome is
treated as fixed and the only source of randomness comes
from the arrangement of variables in the cube. In Sec-
tion 6, it is convenient to think of the outcome Y ∈ Rn
as generated according to the linear model Y =Xθ0 + ϵ
where X ∈ Rn×p is a design matrix, θ0 ∈ Rp is a sparse
vector satisfying ∥θ0∥0 = s≪ p and ϵ consists of inde-
pendent and identically distributed random entries with
mean zero and variance σ2. Such a modelling assumption,
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while convenient for sharpening terminology and nota-
tion, plays a negligible role in results of Section 6. A ref-
eree indicated p. 106 of Scheffé [39], which emphasises
the role of randomisation to ensure statistical inferences
from a notional normal-theory linear model are fair ap-
proximations under more realistic generative models. See
also the comments on binary outcomes in Section 9.4.

2. A SIMPLE EXPLICIT EXAMPLE

The following explicit example helps motivate the con-
fidence set of models perspective. Data were generated
according to the the model

Y =Xβ∗ + ϵ, ϵ∼Nn(0n, In×n)(1)

where β∗ = (1,1,0, . . . ,0)T ∈ Rp with p = 25 and n =
100. Since p is relatively small, there is no need for the
reduction phase; confidence sets can be constructed di-
rectly. Rows of X were generated independently from a
normal distribution of zero mean and covariance

Σ=



1 0.99 0.99 0.5 0.5 . . . 0.5
0.99 1 0.99 0.5 0.5 . . . 0.5
0.99 0.99 1 0.5 0.5 . . . 0.5
0.5 0.5 0.5 1 0.5 . . . 0.5

...
. . .

...
0.5 0.5 0.5 . . . 0.5 1 0.5
0.5 0.5 0.5 . . . 0.5 0.5 1


.

This setting was constructed so that the covariates indexed
by {1,2,3} are statistically indistinguishable. A linear re-
gression model fitted with a LASSO penalty by cross-
validation selected the single model indexed by covariate
{2}. A likelihood ratio test of each model Sm ⊆ {1,2,3}
against [p] = {1, . . . , p} declared {2}, {1,2}, {2,3} and
{1,2,3} as statistically indistinguishable from model [p]
at the 1% level. These models constitute the confidence
set M, together with any other low-dimensional sub-
models of [p] not rejected at the same significance level.
All four models produced similar predicted values (the
correlations between their fitted values and those obtained
from the full model were at least 0.97). While for predic-
tion the choice between well-fitting models is rather ar-
bitrary, if understanding is the goal, an arbitrary choice
among statistically indistinguishable models is a mislead-
ing portrayal of the information in the data, particularly if
the different models have fundamentally different scien-
tific interpretations. For more elaborate examples based
on real data see Section 8 and the empirical work in [14].

3. NOTATION

Let X be an (n × p)-dimensional matrix of covariate
observations with rows (xTi )

n
i=1 corresponding to n ob-

servational units. The letter i is reserved for indexing the

transposed rows in this way, with other letters specify-
ing columns. Let Y = (Y1, . . . , Yn)

T be the vector of out-
comes. Define θ0 ∈Rp to be the maximiser of an expected
log likelihood function, whose sample version is

ℓ(θ) =
∑n

i=1ℓi(θ,Yi), θ ∈Rp

where ℓi(θ,Yi) is a function of xTi θ. Let S = {j : θ0j ̸= 0}
be the set of signal variables and any indices not included
in this set specify noise variables. We refer to Xθ0 as the
signal.

Upper-case and lower-case letters denote matrices and
vectors respectively. With the context ensuring no ambi-
guity, capital letters are also used for sets. For a vector
u ∈ Rp, a matrix X ∈ Rn×p and a set A ⊆ {1, . . . , p},
uA denotes the vector of entries of u indexed by the
set A. The columns of X indexed by A are written XA

if |A| > 1 and xA if |A| = 1. For any a ∈ A, A−a is
the set A\{a} and Ac its complement {1, . . . , p}\A. Let
PX =X(XTX)−1XT , i.e. the projection matrix onto the
column span of X . To avoid double subscripting we write
PA = XA(X

T
AXA)

−1XT
A . The vector ej for j ∈ N\{0}

denotes the j-th standard basis vector whose dimension
will be clear from the context. Let ∥ · ∥0, ∥ · ∥2 and ∥ · ∥∞
be the ℓ0, ℓ2 and ℓ∞ vector norms. When the argument is
a matrix, ∥ ·∥2 refers to the spectral norm and ∥ ·∥∞ to the
infinity matrix norm given by the maximum absolute row
sum of the matrix. The maximum eigenvalue of a square
matrix M is written λmax(M). The sub-Gaussian norm of
a univariate random variable Z is

∥Z∥ψ2
= sup

q≥1
q−1/2(E|Z|q)1/q.

The sample correlation coefficient between two centred
vectors u and v is written

R(u, v) =
uT v

∥u∥2∥v∥2
.

The sample multiple correlation coefficient between a
centred vector u and a matrix X with centred columns
is

R(u,X) = max
α∈Rp

uTXα

∥u∥2∥Xα∥2
=R(u,PXu).

For two matrices XA and XB with centred columns,

R(XA,XB ) =max
α,β

αTXT
AXBβ

∥XAα∥2∥XBβ∥2
= ∥PAPB∥2,

where the final equality follows from the proof of Lemma
S5 in Section S5.

4. MODEL ASSESSMENT PHASE

4.1 Framework

Given a comprehensive model Ŝ , the model assessment
phase enumerates all sub-models of Ŝ that fit the data
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equivalently well. As suggested by [14], this may be ob-
tained by identifying all submodels of Ŝ that are not re-
jected in a likelihood ratio test at a given significance level
ϑ.

For any Sm ⊆ Ŝ , define U = Scm ∩ Ŝ and

Θ
(m)
0 = {θ ∈Rp : θSc

m
= 0},

Θ
(m)
1 = {θ ∈Rp : θU ̸= 0, θŜc = 0}.

Let r̂ and rm be the column ranks of X̃ and X̃m, where
X̃m consists of the columns of X indexed by Sm. The
likelihood ratio test of H0 : θ

0 ∈ Θ
(m)
0 against H1 : θ

0 ∈
Θ

(m)
1 is

(2) ψm(Y,X) = I1{w(Sm)≤ χ2
r̂−rm(1− ϑ)},

where χ2
r̂−rm(1−ϑ) is the 1−ϑ quantile of the χ2 distri-

bution with r̂− rm degrees of freedom and

w(Sm) = 2

{
sup

θ∈Θ(m)
1 ∪Θ(m)

0

ℓ(θ)− sup
θ∈Θ(m)

0

ℓ(θ)

}
.

A model Sm is included in the model confidence set M
if ψm(Y,X) = 1. To reduce the computational burden, it
is reasonable to construct the confidence set of models
by only testing submodels of Ŝ of size less than s# say,
chosen independently of n. The uncheckable assumption
s# ≥ s is needed, otherwise the true model is necessarily
excluded. Algorithm 1 in Section S1 of the supplementary
material provides pseudo-code for the model assessment
phase.

The likelihood ratio test has greater power to distin-
guish between some models than others. This section un-
covers geometric features associated with models in the
confidence set. This is considered under the assumptions
that S ⊆ Ŝ where S is the set of signal variables, and Ŝ
and M are independent. It follows that S is contained in
the model confidence set with probability converging to
the chosen level 1−ϑ as n→∞. We begin by describing
the local behaviour of the test using Le Cam’s formula-
tion of asymptotic normality. We then extend the results
by examining more general departures from the null hy-
pothesis.

For the rest of this section, let γ0 be the entries of θ0

indexed by the comprehensive model Ŝ and let X̃ be the
corresponding columns of X . Rearranging covariates if
necessary, assume that γ0 corresponds to the first few en-
tries of θ0. The notation ℓ(γ0,0) is used to represent ℓ(θ0)
when θ0 = (γ0,0).

4.2 Behaviour under contiguous alternatives

Interpretation of the log-likelihood ratio test ψm(Y,X)
in general models is aided through appeal to Le Cam’s
formulation of local asymptotic normality [34]. Under
standard parametric regularity conditions, notably that the

statistical model is differentiable in quadratic mean at γ0,
[44, Theorem 7.2] gives the following local asymptotic
expansion of the log likelihood, which holds under model
Ŝ or any submodel thereof:
(3)

ℓ(γ0 + hn,0)− ℓ(γ0,0) = hTZn −
1

2
hTH0h+ op(1).

In equation (3), H0 is the Fisher information per obser-
vation, Zn = n−1/2∇γℓ(γ

0,0) converges in distribution
to a normal random vector of mean zero and covariance
matrix H0, and n1/2hn → h. Sufficient conditions for dif-
ferentiability in quadratic mean are given by [44, Propo-
sition 7.6]. These are satisfied, for example, by most ex-
ponential family regression models. It follows from (3)
that

ℓ(γ0 + hn,0)− ℓ(γ0,0)
γ0

−→N

(
−1

2
hTH0h,h

TH0h

)
,

where
γ0

−→ means converges weakly under the true distri-
bution defined by θ0 = (γ0,0).

Evans [23] generalised this result to allow two mod-
els, whose components are both in a O(n−1/2) neigh-
bourhood of the true distribution. This is a restriction to
so-called contiguous alternatives, which in the context
of equation (2) would imply that the model indexed by
Sm, if false, only omits variables whose associated sig-
nal strengths are dominated by the estimation error of the
maximum likelihood estimator. This characterisation be-
longs to formal theory but indicates the directions from γ0

in which the likelihood ratio test is expected to have rela-
tively high or low power. As in [23], introduce hn and h̃n
such that hn → 0, h̃n → 0 and n1/2(hn − h̃n)→ k. Pro-
vided that the true distribution belongs to a model whose
density with respect to an appropriate dominating mea-
sure is doubly differentiable in quadratic mean, in the
sense of [23, Definition 2.8], then

ℓ(γ0 + hn,0)− ℓ(γ0 + h̃n,0)

=
kT√
n
∇γℓ(γ

0 + h̃n,0)−
1

2
kTH0k+ op(1)

γ0

−→N

(
−1

2
kTH0k, k

TH0k

)
.(4)

To interpret this result in general models, suppose that k
is a scalar multiple of a unit eigenvector v of H0 with
associated eigenvalue λ, so that k = av, and kTH0k =
(aλ)2vT v = a2λ2. Since eigenvectors of H0 indicate or-
thogonal directions in which the Fisher information varies
from highest to lowest, equation (4) shows that the false
hypotheses in a local neighbourhood of γ0 that are most
likely to be excluded from the confidence set M are those
for which k coincides with directions of high curvature of
the log likelihood function.
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4.3 Extensions to other alternatives

The results in the previous section focus on models Sm
where the unknown parameter γ0 can be consistently esti-
mated. Depending on the form of the log-likelihood, con-
sistent estimation of γ0 is not necessary for accurate char-
acterisation of the log-likelihood ℓ(γ0,0). Consider the
normal theory linear model with covariate matrix X̃ and
known variance. Let X̃m consist of the columns of X̃ in-
dexed by Sm. Then,

w(Sm) = σ−2∥(PX̃ − PX̃m
)Y ∥22 ∼ χ2

r̂−rm(λ),

λ= σ−2∥(I − Pm)X̃γ
0∥22

when X̃ has full rank and Pm is the projection matrix
onto X̃m. A model Sm is included in the model confi-
dence set with probability converging to 1− ϑ whenever
∥(I −Pm)X̃γ0∥2 converges to zero, that is, whenever the
portion of the signal X̃γ0 that is orthogonal to the col-
umn span of X̃m converges to zero. This result applies
irrespective of how well γ0 is estimated by Sm.

To extend the results in the previous section, we con-
sider likelihoods that depend on γ only through X̃γ for
γ ∈ Rŝ. The following result shows that models satisfy-
ing assumptions (a)-(d) below are included in the model
confidence set with probability converging to 1−ϑ as the
sample size grows.

PROPOSITION 1. Suppose the log-likelihood function
ℓ(γ,0) depends on γ only through η = X̃γ and write
ℓ̄(η) = ℓ(γ,0). Let η0 = X̃γ0 and suppose there exist
unique maximisers

η̂m = argmaxη∈Col-Sp(X̃m)ℓ̄(η)

η̂ = argmaxη∈Col-Sp(X̃)ℓ̄(η).

Assume the following:

(a) Weak omitted signal: ∥(I − Pm)η
0∥2 = o(n−1/2),

(b) Predictive consistency under both models: ∥η̂ −
η0∥33 =OP (n

−1/2) and ∥η̂m− η0∥33 =OP (n
−1/2).

(c) A local asymptotic expansion: for Mn = o(1),

sup
h∈Bn

|ℓ̄(η0 + h)− f(η0, h)|= oP (1)

where Bn = {h ∈Rn : ∥h∥3 ≤Mn} and

f(η0, h) = ℓ̄(η0) + hT∇η ℓ̄(η
0) +

1

2
hT∇2

ηη ℓ̄(η
0)h.

Further, ∥n−1/2∇η ℓ̄(η
0)∥2 and ∥∇2

ηη ℓ̄(η
0)∥2 are

OP (1).
(d) Asymptotic normality of the score function: there

exists a matrix Q̃ of full rank whose columns span
the column space of X̃ and the first rm columns,
denoted Q̃m, span the column space of X̃m where

• maxni=1 ∥q̃i∥2 = O(1) where q̃Ti denotes the
i-th row of Q̃,

• the eigenvalues of Q̃T Q̃/n are asymptotically
bounded above and away from zero,

• the following asymptotic limits hold

(Q̃TJ0Q̃)−1/2Q̃TU0 d−→N(0, I),

(Q̃TmJ
0Q̃m)

−1/2Q̃TmU
0 d−→N(0, I),

with U0 =∇η ℓ̄(η
0) and J0 =−∇2

ηη ℓ̄(η
0).

Then,

P{ψm(Y,X) = 1}→ 1− ϑ

as n→∞.

The required ∥ · ∥3-consistency appearing in assump-
tions (b) and (c) of Proposition 1 is unusual but arises
naturally when considering the asymptotic expansion of
the log-likelihood as a function of η = X̃γ instead of γ.
Let h = X̃v with n1/2∥v∥2 = O(1). Standard arguments
show that under regularity conditions,

ℓ̄(η0 + h) = ℓ(γ0 + v,0)

= ℓ(γ0,0) + vT X̃T∇η ℓ̄(η
0)

+
1

2
vT X̃T∇2

ηη ℓ̄(η
0)X̃v+ oP (1)

= ℓ̄(η0) + hT∇η ℓ̄(η
0)

+
1

2
hT∇2

ηη ℓ̄(η
0)h+ oP (1).

This is an asymptotic expansion of the form given in as-
sumption (c) of Proposition 1. However, the condition
n1/2∥v∥2 = O(1) is strong as there exist cases where
n1/2∥v∥2 is unbounded and the asymptotic expansion re-
mains valid. To avoid this, we obtain a similar expansion
about η0 by identifying conditions on h for which

hT {∇2
ηη ℓ̄(η

0)−∇2
ηη ℓ̄(η)}h= oP (1),

where with slight notational inaccuracy, η lies on the line
joining η0 + h and η0, and may differ in each entry of the
matrix. In certain generalised linear models, this term is
of order ∥h∥33 which motivates assumptions (b) and (c).
For further details, see the proof of Lemma S10 in the
supplementary material.

Section S6 of the supplementary material gives condi-
tions under which the assumptions in Proposition 1 are
satisfied by canonical generalised linear models. These
conditions are met by the linear and logistic regression
models when Sm satisfies ∥(I − Pm)X̃γ

0∥2 = o(n−1/2)
and so those models that only exclude a small portion
of the signal X̃γ0 will be included in the model con-
fidence set. It is not necessary for X̃ to be full rank;
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see the proof of Proposition 1 for details. The expected
size of the model confidence set is at least M(1 − ϑ)
where M denotes the number of models Sm satisfying
∥(I − Pm)X̃γ

0∥ = o(n−1/2). If there are many sets of
covariates that are highly correlated in sample with sig-
nal variables, then the model confidence set will contain
a large number of models on average.

5. REDUCTION PHASE: EVALUATION OF POSSIBLE
STRATEGIES

The construction of a model confidence set hinges on
a preliminary reduction to a set Ŝ of manageable size
that contains the true model with probability converging
to one as n,p→∞. Possible reduction strategies include
penalised regression procedures such as the LASSO [43]
or marginal screening [26]. We briefly discuss some of
the considerations involved, with an emphasis on the lin-
ear model.

5.1 Penalised regression

Penalised regression performs variable selection by
minimising the least-squares or negative log-likelihood
function subject to a constraint on the magnitudes of the
entries of the parameter vector. An estimate of θ0 is first
obtained satisfying θ̂(λ) = argminθ∈Rp{−ℓ(θ) + λp(θ)},
where p(θ) is typically of the form

p(θ) =

p∑
j=1

pj(|θj |)

and the set

Ŝ = {j : θ̂(λ)j ̸= 0},(5)

may be used to specify the comprehensive model. The
tuning parameter λ determines the size of the set Ŝ . The
LASSO [43], SCAD [25] and MCP [47] procedures arise
from particular choices of p(θ).

As p(θ) is typically non-decreasing in the magnitudes
|θj | for j ∈ {1, . . . , p}, the comprehensive model obtained
through penalised regression will rarely detect signal vari-
ables that are weakly correlated with the response vari-
able. Decreasing the size of the tuning parameter intro-
duces further covariates, however those that are corre-
lated with the error term will be prioritised over those
variables with a weak signal, resulting in an overfitted
model. Cox reduction aims to avoid overfitting by per-
forming many low-dimensional regressions and retaining
only those variables that are consistently statistically sig-
nificant at a chosen level.

Penalised regression may also fail to select all signal
variables even when they are highly correlated with the
response variable. This occurrence is explained in [22] for
the linear model with LASSO solution θ̂(λ) obtained using

the LARS algorithm. Briefly, given a current predicted re-
sponse, the algorithm sequentially adds the covariate that
is most highly correlated with the residuals to update the
predicted response. The sequence of solutions obtained at
each step of the algorithm corresponds to the solutions of
the LASSO problem for decreasing λ [22, Theorem 1].
When two covariates are highly but not perfectly corre-
lated in sample, including one of them in a LARS step re-
duces the correlation between the other and the residual,
thus making it difficult for the second variable to enter
the model. This can lead the LASSO to select unimpor-
tant noise variables over signal variables. The simulation
results summarised at the start of Section 8 provide exam-
ples of this, showing that when signal strengths are weak
and correlations among covariates are high, the compre-
hensive model determined by an undertuned LASSO of-
ten omits signal variables.

The situation is in principle less problematic when there
are perfectly correlated signal variables. If a LASSO solu-
tion includes at least one of the perfectly correlated signal
variables, then there must exist another solution that in-
cludes all of these variables. This applies to general loss
functions and other penalty functions too. Unfortunately,
commonly used optimisation algorithms such as coordi-
nate descent [28, 6] only return one arbitrarily chosen so-
lution, leaving open the possibility that some signal vari-
ables are discarded.

For these reasons, an undertuned penalised regression
procedure is not recommended for construction of the
comprehensive model.

5.2 Marginal screening

For sets E and F , let

θ̂Y :E = (XT
EXE )

−1XT
EY

θ̂F :E = (XT
EXE )

−1XT
EXF

and θ̂Y :E .F be the entries of θ̂Y :K corresponding to E
when K = E ∪ F . The notation closely follows [19].
Marginal screening [26] retains variables with the largest
absolute marginal correlation with the outcome. To ex-
plore the limitations of marginal screening for construc-
tion of the comprehensive model, consider the decompo-
sition

(6) θ̂Y :E = θ̂Y :E .F + (θ̂F :E )
T θ̂Y :F .E .

where E ,F ⊂ {1, . . . , p} with |E |= 1. The result (6) was
first noted in [10] for sets F of size one and has been
used subsequently in [11, 20]. A derivation for |F | > 1
in the linear model is given in Section S4 of the supple-
mentary material (proof of Lemma S1). An asymptotic
analogue of equation (6) for general regression models
was given by [18]. It follows from (6) that θ̂Y :E = θ̂Y :E .F

if and only if either θ̂F :E = 0 or θ̂Y :F .E = 0 or the two



7

vectors are orthogonal. In particular, if this condition is
violated when E indexes a signal variable and F = S\E ,
it is possible for the marginal effect to be inflated or di-
minished. This improves or curtails the ability of marginal
screening to detect E . If there is total cancellation, i.e.
θ̂Y :E .F ≈−(θ̂F :E )

T θ̂Y :F .E , marginal screening would be
unable to detect the signal variable indexed by E .

The situation described above is also sometimes chal-
lenging for Cox reduction, as will become clear in Section
6. Differences between the two procedures are most ap-
parent when there is partial cancellation, so that the signal
variable indexed by E is deemed ineffective in the rela-
tively strong reduction effectuated by marginal screening,
but survives the weaker first round of Cox reduction, giv-
ing it the opportunity to be assessed in the presence of
other strong variables in the second round of reduction.

A more subtle point is that the noise variables retained
by Cox reduction facilitate model discrimination at the
model assessment phase to a greater extent than those
retained by marginal screening. The explanation is that
marginal screening retains covariates that are highly cor-
related in sample with Y , and so the variables included
in the comprehensive model generally span a relatively
low-dimensional subspace of Rn. Since Cox reduction
requires that any apparent effect is not explained away
by the companion variables, the angles between Y and
the resulting n-dimensional vectors of observations on re-
tained noise covariates need not be small. The implica-
tion is that XŜ typically spans a larger subspace of Rn. In
this way, Cox reduction is expected to identify a compre-
hensive model that fits the data better than that identified
by marginal screening, making it harder for submodels to
pass the likelihood ratio test. Furthermore, submodels of
the comprehensive model obtained from marginal screen-
ing span a similar space to XŜ by construction, and so
are unlikely to be rejected by a likelihood ratio test (see
Section 4).

While the advantages of Cox reduction over marginal
screening in particular circumstances are intuitively clear
based on (6), there are also situations in which marginal
screening outperforms Cox reduction. For this reason,
Section 6 studies a setting in which marginal screening
would be an obvious candidate for the construction of Ŝ .
This is to highlight limitations of Cox reduction and point
to potential improvements.

6. SOME THEORETICAL ANALYSIS OF COX
REDUCTION

6.1 Framework

Cox reduction forms a comprehensive model by analysing
variables alongside randomly selected sets of companion
variables and retaining those whose apparent effects are
not explained away by other variables. Some analysis of

Cox reduction was provided in [2], where the focus was
on the comparison of decision rules, legitimising certain
simplifying assumptions. Based on their results, we con-
sider the following version of Cox reduction.

• In the first round of Cox reduction, variable indices
are randomly arranged in a k × k × k cube. Vari-
ables are retained for further analysis if they are
among the two most significant in at least two out of
the three regressions in which they appear. See Al-
gorithm 2 in Section S1 of the supplementary ma-
terial.

• In the second round of Cox reduction, the indices
corresponding to variables retained after the first
round are randomly arranged in a k×k square. The
comprehensive model indexes those variables that
are significant at level α in at least one regression.
See Algorithm 3 in Section S1 of the supplemen-
tary material.

The present section identifies potentially problematic
situations that lead Cox reduction to retain noise variables
over signal variables. For this analysis, we treat Y and X
as fixed, with the only source of randomness coming from
the arrangement of variable indices in the cube. Each of
the regressions that are fitted are linear with variable sig-
nificance determined by the magnitude of a Wald statis-
tic. This is most natural when the generative model is of
the form Y =Xθ0 + ϵ, where ϵ consists of centred, inde-
pendent entries with known variance σ2. However, with
the exception of Proposition 2, the conclusions are free of
modelling assumptions.

6.2 Assumptions

We make the following assumptions on the design ma-
trix and response vector. This will allow the relative sig-
nificance of variables to be approximated by more inter-
pretable quantities.

CONDITION 1. Suppose Y and all columns of X are
centred, and XK is of full rank for all K ⊂ {1, . . . , p} of
cardinality k.

CONDITION 2. Suppose the indices {1, . . . , p} can be
partitioned into disjoint sets A and B = {1, . . . , p}\A
such that

min
A⊆A, |A|=1

{R(Y,xA)}−1 =O(1)

and the maximum sample correlation

∆(a) := max
A⊆A,B⊂B,

|A∪B |=k,|A|≤a

max{R2(XA,XB ),R
2(Y,XB )}

satisfies ∆(a) = o(1) when a is of moderate size (to be
specified where necessary). When |A|= 0 or |B |= 0, we
let R2(XA,XB ) = 0 or R(Y,XB ) = 0 so that ∆(a) is
well-defined.
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Given our decision to treat Y and X as fixed, the terms
∆(a) or R(Y,xA) are, for present purposes, non-random
quantities that vary as n,p→∞. Condition 1 is minor and
ensures the Wald statistics are well-defined and can be re-
lated to sample correlation coefficients as defined in Sec-
tion 3. To interpret and justify Condition 2, it will be use-
ful to temporarily view the rows of the design matrix as
independent and identically distributed random quantities
with A indexing signal variables and noise variables cor-
related in population with signal variables, and B index-
ing the remaining noise variables. Under suitable condi-
tions on the random process, R(Y,xA) is a sample corre-
lation between two quantities that are related at the popu-
lation level, and so will likely be bounded away from zero
asymptotically. In contrast, R(XA,XB ) and R(Y,XB )
are sample correlations between unrelated random vari-
ables and so these are expected to decay to zero as n→∞
provided the cardinality of the sets A and B are of mod-
erate size. This behaviour coincides with that required in
Condition 2. We focus on sets such that |A ∪ B| = k,
this being the block size in each traversal of the cube or
square. The quantity a in the definition of ∆(a) reflects a
restriction on the number of variables in A appearing in
each regression, and we will soon see that during the first
round of Cox reduction, it is sufficient to consider a= 1.
Based on this interpretation, we refer to A as the set of
pseudo-signal variables and B as the set of pseudo-noise
variables.

Proposition 2 provides a more precise justification for
Condition 2 in the case a = 1 when the entries of the
design matrix and response vector are random observa-
tions from sub-Gaussian distributions. The result shows
that ∆(1) = oP (1) by making use of Theorem 3.1 in [27].
The behaviour of ∆(a) for a > 1 was not considered by
[27].

PROPOSITION 2. Assume the following:

• Each entry of Y is an independent observation of a
centred sub-Gaussian random variable,

• For a ∈ A, each entry of xa is an independent ob-
servation of a centred sub-Gaussian random vari-
able.

• Each row of XB is an independent sample from the
distribution of U where U ∈ R|B| is a random vec-
tor with independent and centred entries satisfying

sup
α∈R|B|:∥α∥2=1

∥αTU∥ψ2
<∞.

• XA and Y are both independent of XB (but possi-
bly dependent on each other).

Then,

∆(1) =OP {log(|B|)/n}= oP (1)

as p,n→∞ with k, k−1 =O(1), log(|B|) = o(n), |A|=
o{log(|B|)} and |A|8/7 log{|B|n}= o(n1/7).

When |A| = O(1) and |B| = O(p), Proposition 2
shows that ∆(1) = oP (n

−6/7) = oP (1) as long as log p=
o(n1/7). When this assumption is violated, it is possible
for noise variables to be retained instead of signal vari-
ables. This is discussed further in Section 6.6 and some
of the modifications outlined in Section 7 are designed to
mitigate the issue.

Our formulation is deliberately constructed so that
when A includes all signal variables, Cox reduction of-
fers no obvious advantage over marginal screening as far
as retention of signal variables is concerned. Limitations
of Cox reduction may then be identified and potential im-
provements proposed.

6.3 Preliminary insights

For a set K ⊂ {1, . . . , p} of size k indexing variables in
a given k-dimensional regression, suppose Cox reduction
retains variables according to the Wald statistic

TY :K = σ−1D
−1/2
K θ̂Y :K

where DK is a diagonal matrix with entries given by the
diagonal entries of (XT

KXK )−1 and θ̂Y :K was defined in
Section 5.2. Lemma S2 shows that the entry of TY :K cor-
responding to variable index e ∈K is

σ−1∥Y ∥2R(Y, (I − PK−e
)xe)(7)

and so the relative sizes of the Wald statistics depend on
the sample correlation between the response variable Y
and the projected covariates (I − PK−e

)xe. If a variable
has a real effect on the response, this correlation will be
large for many companion sets K−e. Cox reduction is de-
signed to exploit this. For conciseness, correlation in the
present section means sample correlation unless indicated
otherwise.

For a more precise analysis, let A⊆A and B ⊆B index
the variables appearing in a given traversal of the hyper-
cube with |A∪B |= k. Let TY :A.B be the entries of TY :K

corresponding to A when K = A ∪B . The following re-
sult allows us to characterise the limiting behaviour of the
statistics TY :A.B and TY :B .A under Conditions 1 and 2.

PROPOSITION 3. Suppose R(XA,XB ) ≤ 1 − c for
some c > 0. Then there exists C > 0, depending only on
c, such that

TY :A.B = TY :A + δA.B

TY :B .A = T(I−PA)Y :B + δ
(2)
B .A

= δ
(1)
B .A + δ

(2)
B .A

where

∥δA.B∥∞ ≤ Cσ−1∥Y ∥{R(XA,XB) +R(Y,XB )},

∥δ(1)B .A∥∞ ≤ σ−1∥Y ∥{R(XA,XB) +R(Y,XB )}

∥δ(2)B .A∥∞ ≤ Cσ−1∥(I − PA)Y ∥2R(XA,XB )}.
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Proposition 3 shows that as R(XA,XB ) → 0 and
R(Y,XB )→ 0, the entries of the scaled statistic

∥Y ∥−1TY :A.B

converge to the corresponding entries of the scaled t-
statistic obtained by regressing Y on XA only. In con-
trast, the entries of ∥Y ∥−1TY :B .A converge to the entries
of the scaled t-statistic obtained by regressing (I −PA)Y
on XB . The latter is negligible compared to the magni-
tudes of the entries of ∥Y ∥−1TY :A.B . These observations
will be of use when analysing each round of reduction in
the following sections.

6.4 First reduction

In the first round of Cox reduction, variable e ∈
{1, . . . , p} is assessed alongside variables indexed by K1,
K2 and K3, where K1 ∩K2 ∩K3 = {e}. Let Ee:K be the
event that the absolute entry of TY :K corresponding to
e ∈K is among the two largest values in the set

{|eTj TY :K | : j ∈ {1, . . . , k}}.

Then the variable indexed by e is retained through the first
reduction if at least two of the three events Ee:K1

, Ee:K2

and Ee:K3
occur. See Algorithm 2 in Section S1 of the

Supplementary material.
When the number of pseudo-signal variables is small

relative to the dimension p= k3, it is likely that pseudo-
signal variables are unaccompanied by other variables
from A in at least 2/3 of the regressions in which they
appear. By Proposition 3, pseudo-signal variables are re-
tained through the first reduction based on their marginal
relationship with the response. The following result es-
tablishes that as long as the marginal correlation between
the response variable and a given pseudo-signal variable
is sufficiently large, Cox reduction retains the pseudo-
signal variable with probability close to one, where the
randomness comes only from the arrangement of variable
indices in the hypercube, the responses and covariates be-
ing treated as fixed at their realised values.

PROPOSITION 4. Suppose Conditions 1 and 2 hold
with a = 1 when p,n→ ∞ with k = O(1). Then, for n
large enough, the covariates indexed by A are retained
after the first round of reduction with probability at least

1− |A|(|A| − 1)(|A| − 2)(k− 1)2

(k3 − 1)(k3 − 2)
.(8)

The lower bound on the probability given in Proposi-
tion 4 is a lower bound on the probability that pseudo-
signal variables appear unaccompanied by other pseudo-
signal variables in at least 2/3 regressions in which they
appear. This bound is plotted in Figure 1. When |A| is of
moderate size relative to p= k3, the probability is close to
one. In light of this result, highly correlated variables may

Fig 1: Plot of equation (8) for various values of k and |A|.

be paired, with one representative of both, during the first
round of reduction. This serves to reduce the cardinality
of the the set A, thus increasing probability (8).

The result in Proposition 4 is conservative in that it fo-
cuses on the case where each pseudo-signal variable is the
most significant in at least 2/3 regressions in which it ap-
pears. Cox reduction retains a variable if it is among the
two most significant.

The first reduction retains all pseudo-signal variables
whose marginal correlation with the response is suffi-
ciently large and so mimics a conservative version of
marginal screening that retains covariates with the largest
ŝ marginal correlations with the response, for ŝ large. The
two procedures differ in the set of retained pseudo-noise
variables. The second round of Cox reduction, at which
point the two procedures diverge more substantially, con-
siders the joint explanatory power of sets of pseudo-signal
variables.

6.5 Second reduction

Suppose that the index e, retained through the first re-
duction, is randomly arranged in a k × k square, where
the dimension k may be different from that of the first
reduction. Let K1 and K2 be the variables that share a
row or column with e in the square and redefine Ee:K
to be the event that the entry of TY :K corresponding to
e ∈K is significant at level α. Then, the second round of
reduction retains the variable indexed by e on the event
Ee:K1

∪ Ee:K2
. See Algorithm 3 in Section S1 of the Sup-

plementary material.
In contrast to the first round, pseudo-signal variables

are likely to appear together in second-round regressions.
Proposition 5 derives the expected number of pseudo-
signal variables that share a row or column with a given
a ∈ A in terms of the dimension of the square k and the
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(a) Round 1: k× k× k cube

(b) Round 2: k× k square

Fig 2: Expected number of indices from A−a sharing a
fibre with a for various values of k and |A|.

size of the set A. For comparison, the analogous calcula-
tion for the cube is also provided. Figure 2 shows that this
expectation is substantially larger in the second round.

PROPOSITION 5. Suppose the indices in A are ran-
domised to positions in a k× k square. For a given index
a ∈A, the expected number of indices from A−a sharing
a row or column with a is

2(|A| − 1)

k+ 1
.

In contrast, if the indices are randomised to positions of a
k× k× k cube, the expected number of indices from A−a
sharing a row, column or corridor with a is

3(|A| − 1)

k2 + k+ 1
.

Provided Conditions 1 and 2 hold for a = k, Proposi-
tions 3 and 5 imply that pseudo-signal variables are re-

tained through the second reduction based on the signifi-
cance of statistics of approximate form

σ−1∥Y ∥2R(Y, (I − PA−a
)xa)(9)

where A⊆A denotes the pseudo-signal variables appear-
ing in a given row or column and a ∈A. Since the second
reduction compares the magnitude of these statistics to a
pre-defined threshold, the retention of pseudo-signal vari-
ables is approximately independent of all pseudo-noise
variables. Provided the dependence between pseudo-
signal variables does not make R(Y, (I−PA−a

)xa) small
for many possible sets A and indices a, Cox reduction
will retain pseudo-signal variables.

In contrast, any pseudo-noise variables that survived the
first reduction are retained through the second based on
the magnitudes of statistics of approximate form

σ−1∥(I − PA)Y ∥2R{(I − PA)Y, (I − PB−b
)xb}

where B ⊆ B and A ⊆ A denote the pseudo-noise and
pseudo-signal variables appearing in the same regression
as b ∈B . These statistics are bounded in magnitude by

σ−1∥Y ∥2∆(|A|)1/2

up to a constant and so their relative sizes compared to (9)
are asymptotically small. Cox reduction is not expected
to prioritise these indices for retention. Proposition 6 for-
malises these observations, showing that when the sample
size is large enough, pseudo-signal variables included in
a set A1 ⊆ A are ranked more highly by Cox reduction
than pseudo-noise variables. Provided the threshold for
retention is chosen appropriately, Cox reduction will suc-
cesfully distinguish between these two types of variables.

PROPOSITION 6. Suppose Conditions 1 and 2 hold
with a= k. Define A1 ⊆A to satisfy

max
a∈A1

max
A⊆A\{a}, |A|≤k−1

{|R(Y, (I − PA)xa)|}−1 =O(1).

Then there exist N,α > 0 such that when n ≥ N the in-
dices in A1 are retained by the second reduction but those
in B that survived the first reduction, are not. This holds
irrespective of the random arrangement of indices in the
hypercube.

It is possible that A1 is empty or does not include the
full set of pseudo-signal variables. In this case, the vari-
ables in A\A1 may be retained by Cox reduction, al-
though this will depend on the random arrangement of
the indices in the hypercube.

The second reduction requires any apparent explana-
tory power to persist when the variable in question is ac-
companied by relatively strong companion variables. Its
intended purpose was to differentiate variables in S from
those in Sc ∩ A, when S ⊆ A. Consider a regression of
Y on XA where A⊆A contains signal and noise indices.
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Lemma S3 shows that the entry of σTY :A corresponding
to a ∈A is given by

∆1 +∆2(10)

where

∆1 =
√

1−R2(xa,XA−a
)θ0a∥xa∥2

∆2 = ∥Y −XAθ
0
A∥2R(Y −XAθ

0
A, (I − PA−a

)xa).

The term ∆1 describes the amount of the true signal corre-
sponding to each variable that is recovered, and is equal to
zero when a indexes a noise variable. The term ∆2 char-
acterises how well the variables in A are able to recover
the omitted signal Y −XAθ

0
A and is bounded in magni-

tude by ∥Y −XAθ
0
A∥2. A regression of Y on XA is able

to distinguish between the noise and signal variables in
A if the term mina∈S∩A |∆1| is large in comparison to
maxa∈A |∆2|. If a indexes a noise variable, then ∆1 = 0
and |∆2| is minimised (up to terms involving ϵ) when A
includes the signal variables that are not orthogonal to xa.
In contrast, ∆1 is largest for a ∈ S ∩ A when colinear-
ity between signal variables and other variables in A is
absent. Whether or not Cox reduction accurately differ-
entiates variables in S from those in Sc ∩A when S ⊆A
therefore depends on the balance of colinearity among the
variables present, and the proportion of signal that they
contain.

In practice, the threshold α is chosen so that the set
of retained variables is relatively stable across repeated
rerandomisation of the indices in the two hypercubes. In
view of the observations above, the set of pseudo-noise
variables retained due to high spurious correlationR((I−
PA)Y, (I − PB−b

)xb) is expected to differ upon repeated
rerandomisation of the variable indices in the hypercubes.
In contrast, provided the dependence between pseudo-
signal variables does not cause R(Y, (I − PA−a

)xa) to
be uniformly small over many sets A and indices a ∈ A,
pseudo-signal variables will be retained by Cox reduction
irrespective of the arrangement of variable indices. Thus,
a relatively stable set of retained variables over repeated
rerandomisation suggests presence of variables with gen-
uine explanatory power. If no threshold α results in a sta-
ble set of manageable size, this is a warning against the
procedure for the data at hand.

6.6 Problematic situations

The analysis above points to situations that may lead
Cox reduction to exclude relevant variables. For example,
a signal variable with a weak sample correlation with the
outcome is relatively unlikely to be retained by Cox re-
duction. Section 5.2 discusses how such a variable might
arise. Most variable selection procedures exclude the pos-
sibility that signal variables have weak marginal or partial
correlations with the response. See Condition 3 in [26],

and the definition of partial faithfulness or Assumption 4
in [7].

In the second round of Cox reduction, variables from
A appear together with frequency depending on the di-
mension of the square. When a signal variable has a weak
partial correlation with the response given many different
variables from A, it may be declared unimportant in both
of its second-round regressions and hence discarded by
Cox reduction. Rerandomisation or a more systematic ar-
rangement of the variable indices in the second reduction
improve the situation. This is discussed in Sections 7 and
9.3.

Another unfavourable situation, more problematic for
marginal screening than for Cox reduction, is when a
noise variable that is uncorrelated with all signal variables
has a large sample correlation with the response purely by
chance. Simulations in [26] pointed to large spurious cor-
relations for large p. This was formalised in [27] which
established the limiting distribution of the maximum spu-
rious correlation. The distributions of other order statistics
were not discussed. Any spurious noise variable would be
contained in A and likely survive the first reduction. De-
pending on the random arrangement of variables in the
square, it may also survive the second reduction. Simi-
larly, noise variables may be retained when multiple cor-
relation coefficients between uncorrelated variables are
spuriously large.

In view of the model assessment phase, inclusion of
noise variables is less problematic than omission of sig-
nal variables provided there are not so many as to make
assessment of models practically infeasible. Sample split-
ting and rerandomisation, discussed in Section 7, reduce
the survival probability of noise variables.

7. RECOMMENDED IMPROVEMENTS TO COX
REDUCTION

7.1 Alternating subsamples

We propose using a different portion of the sample for
each reduction round, breaking the dependence between
analyses in the first and second reductions and thereby
reducing the probability that irrelevant noise variables ap-
pear correlated with the response in both rounds. Let I be
a subset of {1, . . . , n}. The split-sample version of Cox
reduction uses observations indexed by I for the first re-
duction and the model assessment phase, and those in-
dexed by Ic for the second reduction. For more than two
rounds, alternation should continue in this way. We rec-
ommend including 30− 40% of observations in I for the
two-stage procedure, based on the relative difficulty of the
stages.

7.2 Rerandomisation

A benefit of Cox reduction is the external source of
randomness from the arrangement of variable indices in
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successive hypercubes. This provides a way of internally
calibrating the procedure by rerandomising the variable
indices. Battey and Cox [2] suggested this as a check on
the stability of Ŝ . An elaboration is to rerandomise re-
peatedly, resulting in sets Ŝ1, Ŝ2, . . ., and only retain vari-
ables in the final set Ŝ if they are present most of the
time, e.g. in at least half the rerandomisation outcomes.
With this adaptation, Cox reduction is less dependent on
the particular set of variables appearing in regressions
together, reducing the chances that signal variables are
omitted due to small partial correlations or that noise vari-
ables are retained due to high spurious correlation.

A natural and partially refutable criticism is that the
procedure entails at least one tuning parameter (from the
second-round reduction), increased to two when reran-
domisation is introduced. In practice, selection of tun-
ing parameters is guided by stability of the set Ŝ and is
rarely problematic. If there appears to be no choice of tun-
ing pair that delivers a stable outcome, that is a warning
against the procedure. The ability of Cox reduction to re-
veal its own fragility on the data at hand is an advantage
over the alternatives discussed in Section 5.

8. NUMERICAL PERFORMANCE

Section S2 of the supplementary material shows the
numerical performance of Cox reduction and the pro-
posed construction of the model confidence set. Simu-
lated data were generated to compare marginal screening
and LASSO penalised regression to Cox reduction in the
setting laid out in Section 6. Cox reduction and marginal
screening both performed well, retaining all signal vari-
ables in the comprehensive model and yielding a model
confidence set with high simulated coverage probability.
In contrast, the undertuned LASSO failed to include all
signal variables in the comprehensive model when corre-
lations among variables were high and signal strengths
were low. The size of the model confidence set con-
structed from marginal screening contained more models
on average than that obtained from Cox reduction, as ex-
pected based on the discussion in Section 5. The recom-
mended improvements to Cox reduction from Section 7
performed favourably.

To test the performance of the procedure in the presence
of more complicated dependence structures, an analysis
based on real data was performed. These were from the
online supplement of [8] and consisted of the logarithm
of the expression levels of p = 4088 genes, measured
for n= 71 observational units. An artificial response was
generated as Y = 1n + Xθ0 + ϵ, with X from the ge-
nomics data, 1n an n-dimensional vector of ones, and
ϵ∼N(0,1). Four cases were considered to illustrate our
theoretical insights by adjusting the set S of signal vari-
ables. In all cases θ0S = 213.

To aid construction and understanding of the examples,
we standardized the columns of X to have unit sample
standard deviation. This would not be appropriate in a
genuine statistical analysis as it destroys the interpreta-
tion of the regression coefficients.

In each of 500 Monte Carlo replications an artificial re-
sponse was generated anew and a confidence set of mod-
els was constructed using the most competitive of the re-
duction procedures from the analysis in Section S2 of
the supplementary material, namely marginal screening
(MS), Cox reduction with rerandomisation (CR-R) and
Cox reduction with rerandomisation and sample split-
ting (CR-RSS). A set of indices I ⊂ {1, . . . , n} of size
|I| = 29 was drawn at random and fixed across Monte
Carlo replications. This was used for model assessment
for all procedures. The observations indexed by Ic were
used for reduction for MS and CR-R, while CR-RSS used
I for its first reduction and Ic for its second. For each
approach, we recorded the proportion of times each sig-
nal variable was included in Ŝ , the proportion of times Ŝ
included the full set of signal variables, the proportion of
times the set of signal variables was included in the model
confidence set M and the size of M.

For a fair comparison, the comprehensive model was
taken to consist of 15 variables for all procedures. Thus in
the rerandomised versions of Cox reduction we retained
in Ŝ the 15 variables that were suggested most often,
where the tuning parameter in the second reduction was
chosen such that stability of the model confidence set was
achieved. It is possible to construct examples in which
a large significance level is needed in the second round
in order that the same variables are retained frequently
over successive rerandomisation. This is usually indica-
tive of a weak signal to noise ratio and signals caution.
Alternatively, there may be a sharp transition in the sig-
nificance level at which the number of retained variables
in all randomisations jumps sharply. Such instability is
again a warning of partial fragility.

A favourable situation for both marginal screening and
Cox reduction is when the estimated absolute effect ap-
pears larger than it is due to strong dependence between
signal variables of an appropriate sign. This situation was
explored and the results were similar to those reported in
the analysis in Section S2 and are therefore omitted. The
aim of the following three examples is to highlight limi-
tations of the methodology in the presence of certain co-
variate dependencies.

Example: effect cancellation A signal variable that is
marginally uncorrelated in sample with the response vari-
able is unlikely to be retained by marginal screening or
Cox reduction. Section 5.2 shows how this can happen
for signal variables. In particular, it entails fairly strong
sample correlation between signal variables of an appro-
priate sign. In this example, the set of signal variables was
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chosen to be the variables {1852,3862,4088} with strong
positive and negative correlations given by

Corr(XS ,XS) =

 1.00 −0.73−0.72
−0.73 1.00 0.73
−0.72 0.73 1.00

 .

Table 1 displays the results. The situation is not improved
by increasing the signal to noise ratio, with both marginal
screening and Cox reduction rarely including the first sig-
nal variable in the comprehensive model, as expected.
If the effect cancellation was only partial and in a suit-
able range, Cox reduction will sometimes dominate over
marginal screening, as discussed in Section 5.

MS CR-R CR-RSS

P(1852 ∈ Ŝ) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
P(3862 ∈ Ŝ) 1.00 (0.00) 1.00 (0.06) 1.00 (0.00)
P(4088 ∈ Ŝ) 1.00 (0.00) 1.00 (0.00) 0.99 (0.08)
P(S ⊆ Ŝ) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

|Ŝ| 15 15 15
P(S ∈M) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
E(|M\S|) 4280 (635) 2907 (1437) 3273 (1429)

Table 1: Simulation results using real data as the
design matrix. The set of signal variables is S =
{1852,3862,4088}, Ŝ is the comprehensive model, M
is the set of models of size at most s# = 5 that are signifi-
cant at level α= 0.01. Empirical standard errors are given
in brackets.

Example: noise variables with stronger marginal cor-
relations than signal A second example illustrates a sit-
uation in which Cox reduction outperforms marginal
screening. The set of signal variables was taken as
{5,1812,1861} with correlation structure

Corr(XS ,XS) =

1.00 0.18 0.32
0.18 1.00 0.28
0.32 0.28 1.00

 .

Several noise variables were correlated with all three sig-
nal variables so that these appeared marginally stronger
than the signal variables themselves. The signal variables
nevertheless had sufficient marginal strength to be re-
tained through Cox reduction. Results are in Table 2.

MS CR-R CR-RSS

P(5 ∈ Ŝ) 0.00 (0.00) 0.53 (0.50) 0.95 (0.21)
P(1812 ∈ Ŝ) 0.00 (0.06) 0.91 (0.28) 1.00 (0.00)
P(1861 ∈ Ŝ) 0.19 (0.39) 0.65 (0.48) 1.00 (0.05)
P(S ⊆ Ŝ) 0.00 (0.00) 0.28 (0.45) 0.95 (0.22)

|Ŝ| 15 15 15
P(S ∈M) 0.00 (0.00) 0.27 (0.45) 0.93 (0.23)
E(|M\S|) 4854 (484) 2065 (1886) 555 (739)

Table 2: As Table 1 with S replaced by {5,1812,1861}

Example: weakly correlated signal variables This fi-
nal example illustrates a setting where marginal screen-
ing outperforms Cox reduction. The set of signal variables
was chosen to be a group of three weakly correlated vari-
ables indexed by {10,2027,2923}. The sample correla-
tions among these signal variables were

Corr(XS ,XS) =

1.00 0.10 0.08
0.10 1.00 −0.04
0.08−0.04 1.00

 .

The results are reported in Table 3.

MS CR-R CR-RSS

P(10 ∈ Ŝ) 0.95 (0.21) 0.34 (0.47) 1.00 (0.00)
P(2027 ∈ Ŝ) 1.00 (0.00) 0.03 (0.16) 1.00 (0.21)
P(2923 ∈ Ŝ) 1.00 (0.00) 0.72 (0.45) 0.04 (0.10)
P(S ⊆ Ŝ) 0.95 (0.21) 0.00 (0.05) 0.04 (0.20)

|Ŝ| 15 15 15
P(S ∈M) 0.94 (0.23) 0.00 (0.05) 0.04 (0.20)
E(|M\S|) 525 (935) 3653 (1615) 732 (647)

Table 3: As Table 1 with S replaced by {10,2027,2923}

Marginal screening successfully included all signal
variables in the comprehensive model and produced a
model confidence set of moderate size on average over
Monte Carlo replicates. Cox reduction performed less
well, with at least one signal variable being frequently
omitted from Ŝ . In these rerandomised versions of Cox
reduction, sample splitting increased the probability that
the first two signal variables were retained but decreased
the survival probability of the third.

In all three examples, the omission of signal variables
at the reduction stage does not affect the usefulness of the
model confidence set for identifying models that fit the
data equally well.

9. FURTHER DISCUSSION

9.1 Bootstrap confidence sets of models

A natural attempt to construct confidence sets of mod-
els uses the LASSO or similar on B bootstrap samples,
obtained by sampling n observations with replacement.
This suggestion can be refuted in the light of [42, 41].

Let the true positive rate be the proportion of signal
variables selected by the LASSO and the false discovery
rate be the proportion of selected variables that are noise
variables. [42] showed that even under idealised condi-
tions with large signal strengths and uncorrelated vari-
ables, the false discovery rate is lower bounded by a func-
tion of the true positive rate with probability one. Further,
[41] shows that the first noise variable is selected earlier
on the LASSO path than the final signal variable. Hence,
each model either includes the full set of signal variables
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contaminated by noise variables, or does not include the
full set of signal variables. These conclusions hold with
probability tending to one in the notional double asymp-
totic regime in which p grows with n. As a result, with
probability close to one, the true model is never selected
and a model confidence set constructed in this way has
coverage probability close to zero.

9.2 Cox reduction with unknown variance

An unknown error variance σ can either be estimated
prior to Cox reduction based on all p covariates or esti-
mated anew in each of the regressions that are run. The
former approach results in an unbiased estimate, whilst
the latter typically produces biased estimates from regres-
sions omitting signal variables. Nevertheless, the latter is
preferable as a severely biased estimate indicates that the
joint explanatory power of covariates appearing in a re-
gression together is weak, making it less likely that these
covariates are retained through the second round of Cox
reduction. The associated Wald statistic is

TY :K = σ̂−1
K D

−1/2
K θ̂Y :K ,

σ̂2K =
∥Y −XK θ̂Y :K ∥22

n− |K |
where DK is a diagonal matrix with entries given by the
diagonal entries of (XT

KXK )−1. This choice does not af-
fect the first-round reduction, which is based on the rel-
ative significance of variables in a given regression. Its
effect in the second round is to de-emphasise covariates
appearing in regressions with a weak signal.

If it is instead decided to estimate σ prior to Cox re-
duction, suitable estimators are in [24], [40] and [21]. See
[38] for a numerical comparison of their performance. As
the relative significance of covariates are unaffected by es-
timation of σ, an equivalent approach sets σ to be an arbi-
trary value, adjusting the second-round significance level
to give a stable comprehensive model of manageable size.

9.3 Systematic arrangement of variables

Expression (10) shows that differentiation between Cox
reduction and marginal screening can be achieved by forc-
ing second-round regressions to contain correlated signal
and noise variables from A. This suggests a more sys-
tematic arrangement of variables in the square in which
indices E and F for which |R(xE , xF )| ≫ 0 appear to-
gether in rows or columns. Further analysis is needed to
ascertain any optimal arrangement of variables in the sec-
ond round to maximise the probability of retaining signal
variables.

9.4 Binary responses

Scheffé [39] emphasised the approximate validity of in-
ference based on a notional linear model, owing to the
randomisation. Lewis and Battey [35] formalise this intu-
ition beyond the context of Cox reduction when the out-
comes are generated from a linear logistic model. Gen-
erative binary models, when fitted by maximum likeli-
hood, are problematic in the second stage of Cox reduc-
tion, where many combinations of strong variables form
a separating hyperplane, that is, produce no classification
errors within sample. Ordinary least squares fitting over-
comes the difficulties.

9.5 Prediction

The argument for confidence sets of models is some-
what weakened when prediction is the primary goal.
However, stability of the predictor over time and in dif-
ferent contexts is important and more likely with a model
that has an underlying interpretation as well as immediate
predictive success. By consideration of prediction inter-
vals for each model in M, we account both for model un-
certainty and statistical uncertainty. Overlapping predic-
tion intervals are reassuring, while those differing consid-
erably point to instability of the predictor under alterna-
tive circumstances. See Section S3 of the supplementary
material for an example.
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Availability of source code. Source code for imple-
menting Cox reduction and constructing confidence sets
of models is available from www.ma.imperial.ac.uk/∼
hbattey/softwareCube.html. The more user-interfaced R
package HCmodelSets [31] is accompanied by a de-
tailed guide to usage [32]. Source code implement-
ing some of the refinements discussed in the present
work, such as those used in the simulations in Section
S2.1 of the supplementary material, is available from
https://github.com/rm-lewis.
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SUPPLEMENTARY MATERIAL

This document provides the supplementary material for
the paper "Cox reduction and confidence sets of models:
a theoretical elucidation".

S1. PSEUDO-CODE

This section provides pseudo-code for the reduction
and model assessment phases of [1]. The model confi-
dence set may be constructed based on an arbitrary com-
prehensive model using Algorithm 1. This approach is
discussed in Section 4 of the main text. Algorithms 2 and
3 outline the construction of the comprehensive model
based on Cox reduction. Algorithm 2 focuses on the first
round of reduction in a cube and a depiction of the par-
tially balanced incomplete block arrangement is given in
Figure S1. Algorithm 3 considers the second round in a
square.

For a design matrix X and response vector Y , the fol-
lowing commands may be used to apply both rounds of
Cox reduction to construct the comprehensive model and
form the model confidence set.

Load the data X and Y ;

Initialise α,ϑ and s#;

Ŝ1← CR_CUBE(X,Y )
Ŝ ← CR_SQUARE(X,Y, Ŝ1, α)
M← MCS(X,Y, Ŝ, ϑ, s#)
ReturnM, the model confidence set.

Algorithm 1 An algorithm for constructing the model
confidence set based on a comprehensive model Ŝ .

procedure MCS(X, Y, Ŝ, ϑ, s#)

Input: design matrix X ∈Rn×p, response vector Y ∈Rn×1,
comprehensive model Ŝ , significance level ϑ ∈ (0,1),
maximum model size s# ∈N ;

InitialiseM←∅;
for each Sm ⊂ Ŝ with |Sm| ≤ s# do

Compute the likelihood ratio test statistic w(Sm) for testing
Sm against Ŝ ,
if w(Sm) is not significant at level ϑ then
M←M∪Sm;

end if
end for
ReturnM.

end procedure

Algorithm 2 An algorithm for performing the first round
of Cox reduction in a cube. Variables are selected if they
are among the two most significant in a regression. Vari-
ables are retained if they are selected in at least two out
of three regressions. The algorithm returns the indices of
selected variables.

procedure CR_CUBE(X, Y )

Input: design matrix X ∈Rn×p, response vector Y ∈Rn×1;

Do: randomly arrange the indices 1, . . . , p in a cube of size
k× k× k where k ≥ p1/3;

for each row, column or “corridor” in the cube do
Identify the indices K⊂ {1, . . . , p} in that row, column or
corridor,
Regress Y against XK,
Select the indices corresponding to the two most significant
variables;

end for
Ŝ1← the set of indices selected in at least two out of three
regressions;
Return Ŝ1.

end procedure

Algorithm 3 An algorithm for performing the second
round of Cox reduction in a square. Variables are selected
if they are significant at level α. Variables are retained if
they are selected in at least one out of two regressions.
The algorithm returns the comprehensive model.

procedure CR_SQUARE(X, Y, Ŝ1, α)

Input: design matrix X ∈Rn×p, response vector Y ∈Rn×1,
set of selected indices Ŝ1 ⊆ {1, . . . , p}, significance level α ∈
(0,1) ;

Do: randomly arrange the indices in Ŝ in a square of size k× k

where k ≥ |Ŝ|1/2;

for each row or column in the square do
Identify the indices K⊂ Ŝ1 in that row/column,
Regress Y against XK,
Select the indices corresponding to variables that are
significant at level α;

end for
Ŝ← the set of indices selected in at least one out of two
regressions;
Return Ŝ.

end procedure

S2. NUMERICAL PERFORMANCE

This section analyses the numerical performance of
Cox reduction and the construction of the model con-
fidence set. Simulated data were generated to compare
marginal screening and LASSO penalised regression to
Cox reduction in the setting laid out in Section 6 of the
original paper.
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“corridors”

rows

columns

Fig S1: Partially balanced incomplete block arrangement
of p= 1000 variables in blocks of size k = 10. Each small
cube represents a variable index and appears with k − 1
companion variables. The colour is for visualisation only
and plays no role in the analysis.

S2.1 Monte Carlo experiments

In each of 500 Monte Carlo replications, n = 100
copies of independent, multivariate normal variables were
generated of dimension p = 1000 and covariance matrix
PΣP−1, where P is a permutation matrix and Σ is an
identity matrix with a block of size |A|= s+ c replaced
by an equi-correlation matrix with correlations ρ. The
covariates corresponding to s correlated variables were
added to randomly generated Gaussian noise with unit
variance to produce a response variable. The sample was
split into two portions containing 40% and 60% of the
observations respectively. Comprehensive models Ŝ were
obtained using the following reduction strategies:

• Marginal screening (MS): Ŝ was taken to be the 15
covariates with the highest sample correlation with
the response based on the largest portion of data.

• Undertuned LASSO: Ŝ was taken as the set (5) de-
fined in Section 5 of the original paper based on the
largest portion of data with λ chosen as the smallest
such that a model of size at most 15 was selected.

• Cox Reduction (CR): Ŝ was the set of retained
variables after two rounds of Cox reduction on the
largest portion of data. In the first round, variables
that were among the two most significant in at
least 2/3 regressions were retained. In the second
round, all variables significant at level α were re-
tained. The second round was performed initially
with α = 0.05 and repeated, reducing α by 0.001
each time, until at most 15 variables remained.

• Cox Reduction with sample splitting (CR-SS): as
CR but instead of using the largest portion of data

for both reduction rounds, the smallest portion was
used for the first round and the largest for the sec-
ond.

• Cox Reduction with rerandomisation (CR-R): as
CR but with rerandomisation of variable indices in
the cube. For each randomisation, α was initialised
at 0.05 and reduced by 0.001 until model of size at
most 25 was obtained. The process was repeated 10
times and the comprehensive model Ŝ consisted of
all variables retained in at least 40% of repetitions.
The restriction to 25 variables was made to ensure
that |Ŝ| was roughly 15, although this differs ac-
cording to the randomisation. The largest portion
of data was used for all repetitions.

• Cox Reduction with rerandomisation and sample
splitting (CR-RSS): as CR-R but in all repetitions
the smallest portion of data was used for the first
reduction and the largest for the second, as in CR-
SS.

A model confidence set was obtained for each compre-
hensive model using the smaller portion of data by includ-
ing all submodels of size at most s# = 5 not rejected at
level ϑ= 0.01. Let C be the set of noise variables having
non-zero populaton correlation with signal variables. For
each Monte Carlo replicate, the proportion of variables in
S and C retained was recorded, together with an indica-
tor of whether the comprehensive model Ŝ contained the
full set of signal variables S , whether S was included in
the confidence set of models M and the number of false
models included in M. The process was repeated with
various choices of s, c, ρ and signal to noise ratio. The
results are summarised in Tables S1-S4, where expecta-
tions and probabilities refer to averages over Monte Carlo
replication.

The model confidence set should ideally include a) the
true model and b) a minimal number of other well-fitting
models. All reduction strategies included the true set of
signal variables in the comprehensive model in a large
proportion of cases. The undertuned LASSO performed
the worst, particularly when correlations among variables
were high and the signal to noise ratio was low where it
failed to include all signal variables in the comprehensive
model in a large number of cases (see the LASSO compo-
nent of the second chunk of each table). Whilst marginal
screening and the variations of Cox Reduction performed
similarly in terms of retention of signal variables at the re-
duction stage and selection of the true model at the model
assessment stage, marginal screening generally included
more false models in the confidence set. This is partly due
to our retaining a fixed number of variables for marginal
screening, which is higher on average than the number of
variables retained by the other reduction procedures. It is
also to be expected based on the discussion in Section 5.2
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Table S1: Simulation results when variables are correlated with n= 100, s= 3 and c= 3. S is the set of signal variables, C is the set of noise variables correlated
(in population) with signal variables, Ŝ is the comprehensive model obtained after all reduction rounds, M is the set of models that are significant at level ϑ.
Empirical standard errors are given in brackets.

s c ρ signal
noise

Reduction E
(
|S∩Ŝ|
|S|

)
E
(
|C∩Ŝ|
|C|

)
E|Ŝ| P(S ⊆ Ŝ) P(S ∈M) E(|M\S|)

Strategy (ϑ= 0.01) (ϑ= 0.01)

3 3 0.9 1

LASSO 0.98 (0.09) 0.35 (0.27) 13.6 (1.4) 0.93 (0.26) 0.91 (0.28) 1715.1 (946.7)
MS 1.00 (0.00) 1.00 (0.00) 15.0 (0.0) 1.00 (0.00) 0.98 (0.13) 2947.3 (1080.7)
CR 1.00 (0.04) 0.96 (0.11) 14.4 (0.8) 0.99 (0.11) 0.98 (0.14) 2493.2 (1078.8)

CR-SS 1.00 (0.02) 0.99 (0.06) 14.7 (0.7) 1.00 (0.06) 0.98 (0.14) 2570 (1101.1)
CR-R 1.00 (0.00) 1.00 (0.00) 13.1 (2.0) 1.00 (0.00) 0.99 (0.11) 1893.9 (1810.7)

CR-RSS 1.00 (0.00) 1.00 (0.00) 10.9 (2.0) 1.00 (0.00) 0.97 (0.18) 755.6 (859.7)

3 3 0.9 0.6

LASSO 0.84 (0.19) 0.29 (0.26) 13.6 (1.5) 0.56 (0.50) 0.55 (0.50) 2237.4 (1085.1)
MS 1.00 (0.00) 1.00 (0.00) 15.0 (0.0) 1.00 (0.00) 0.98 (0.13) 4080.4 (822.9)
CR 0.98 (0.08) 0.94 (0.13) 14.4 (0.9) 0.94 (0.24) 0.93 (0.26) 3396.8 (1042.6)

CR-SS 0.99 (0.07) 0.95 (0.12) 14.7 (0.8) 0.97 (0.18) 0.92 (0.27) 3438.7 (1101.9)
CR-R 1.00 (0.00) 1.00 (0.00) 13.7 (2.0) 1.00 (0.00) 1.00 (0.04) 3211.6 (2401.1)

CR-RSS 1.00 (0.00) 1.00 (0.00) 11.5 (2.3) 1.00 (0.00) 0.94 (0.23) 1443.4 (1583.7)

3 3 0.5 1

LASSO 1.00 (0.00) 0.18 (0.24) 13.7 (1.3) 1.00 (0.00) 0.99 (0.10) 386.5 (316.4)
MS 1.00 (0.00) 0.99 (0.07) 15.0 (0.0) 1.00 (0.00) 0.99 (0.11) 642.8 (477.1)
CR 1.00 (0.00) 0.84 (0.22) 14.3 (1.0) 1.00 (0.00) 0.98 (0.13) 509.5 (411.6)

CR-SS 1.00 (0.00) 0.96 (0.12) 14.7 (0.8) 1.00 (0.00) 0.96 (0.19) 494.9 (432.9)
CR-R 1.00 (0.00) 0.96 (0.12) 13.6 (2.1) 1.00 (0.00) 0.99 (0.09) 505.5 (723.2)

CR-RSS 1.00 (0.00) 0.99 (0.06) 11.6 (2.3) 1.00 (0.00) 0.96 (0.20) 212.6 (304.7)

3 3 0.5 0.6

LASSO 0.98 (0.08) 0.19 (0.23) 13.6 (1.4) 0.94 (0.23) 0.94 (0.24) 1385.6 (953.4)
MS 1.00 (0.00) 0.96 (0.13) 15.0 (0.0) 1.00 (0.00) 0.99 (0.08) 2301.8 (1131.9)
CR 0.99 (0.07) 0.74 (0.27) 14.3 (1.0) 0.96 (0.20) 0.95 (0.23) 1815.7 (1089.2)

CR-SS 1.00 (0.03) 0.89 (0.19) 14.7 (0.8) 0.99 (0.10) 0.93 (0.26) 1698.9 (1141.1)
CR-R 1.00 (0.01) 0.89 (0.21) 13.8 (2.0) 1.00 (0.04) 0.99 (0.10) 1771.4 (1798.7)

CR-RSS 1.00 (0.00) 0.95 (0.12) 11.8 (2.4) 1.00 (0.00) 0.92 (0.27) 767.7 (1099.4)
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Table S2: Simulation results when variables are correlated with n= 100, s= 3 and c= 5. S is the set of signal variables, C is the set of noise variables correlated
(in population) with signal variables, Ŝ is the comprehensive model obtained after all reduction rounds, M is the set of models that are significant at level ϑ.
Empirical standard errors are given in brackets.

s c ρ signal
noise

Reduction E
(
|S∩Ŝ|
|S|

)
E
(
|C∩Ŝ|
|C|

)
E|Ŝ| P(S ⊆ Ŝ) P(S ∈M) E(|M\S|)

Strategy (ϑ= 0.01) (ϑ= 0.01)

3 5 0.9 1

LASSO 0.97 (0.10) 0.31 (0.21) 13.7 (1.3) 0.91 (0.29) 0.90 (0.29) 1849.2 (1003.7)
MS 1.00 (0.00) 1.00 (0.00) 15.0 (0.0) 1.00 (0.00) 1.00 (0.06) 3349.2 (1093.0)
CR 1.00 (0.04) 0.94 (0.10) 14.5 (0.8) 0.99 (0.11) 0.98 (0.15) 2840.7 (1146.7)

CR-SS 1.00 (0.03) 0.97 (0.08) 14.8 (0.4) 0.99 (0.09) 0.97 (0.18) 3034.9 (1174.2)
CR-R 1.00 (0.00) 1.00 (0.01) 13.8 (1.8) 1.00 (0.00) 0.99 (0.10) 2630.3 (2179.5)

CR-RSS 1.00 (0.00) 1.00 (0.00) 12.3 (1.8) 1.00 (0.00) 0.99 (0.12) 1400.7 (1259.5)

3 5 0.9 0.6

LASSO 0.81 (0.21) 0.30 (0.21) 13.5 (1.4) 0.50 (0.50) 0.50 (0.50) 2309.4 (1069.5)
MS 1.00 (0.00) 1.00 (0.00) 15.0 (0.0) 1.00 (0.00) 0.99 (0.08) 4410.4 (775.4)
CR 0.96 (0.12) 0.89 (0.13) 14.4 (0.8) 0.87 (0.34) 0.85 (0.35) 3547.5 (1146.3)

CR-SS 0.98 (0.07) 0.92 (0.11) 14.8 (0.5) 0.95 (0.22) 0.91 (0.28) 3906.1 (1149.9)
CR-R 1.00 (0.00) 1.00 (0.01) 14.6 (1.9) 1.00 (0.00) 0.98 (0.13) 4550.9 (3329.7)

CR-RSS 1.00 (0.00) 1.00 (0.01) 13.0 (2.1) 1.00 (0.00) 0.94 (0.23) 2477.8 (2243.7)

3 5 0.5 1

LASSO 1.00 (0.00) 0.16 (0.17) 13.7 (1.4) 1.00 (0.00) 0.99 (0.12) 403.2 (333.5)
MS 1.00 (0.00) 0.99 (0.05) 15.0 (0.0) 1.00 (0.00) 0.98 (0.13) 689.2 (516.4)
CR 1.00 (0.01) 0.80 (0.20) 14.3 (0.9) 1.00 (0.04) 0.98 (0.13) 551.4 (455.2)

CR-SS 1.00 (0.00) 0.95 (0.10) 14.8 (0.6) 1.00 (0.00) 0.97 (0.17) 558.3 (486.2)
CR-R 1.00 (0.00) 0.96 (0.10) 14.2 (1.9) 1.00 (0.00) 0.98 (0.15) 593.1 (588.6)

CR-RSS 1.00 (0.00) 0.99 (0.05) 13.2 (2.0) 1.00 (0.00) 0.97 (0.18) 408.8 (686.3)

3 5 0.5 0.6

LASSO 0.99 (0.06) 0.18 (0.18) 13.7 (1.3) 0.97 (0.18) 0.95 (0.21) 1450.1 (994.8)
MS 1.00 (0.00) 0.94 (0.13) 15.0 (0.0) 1.00 (0.00) 0.99 (0.09) 2501.9 (1255.3)
CR 0.98 (0.08) 0.65 (0.25) 14.3 (1.0) 0.95 (0.22) 0.93 (0.26) 1901.1 (1110.0)

CR-SS 1.00 (0.01) 0.87 (0.16) 14.8 (0.6) 1.00 (0.04) 0.95 (0.21) 1982.2 (1209.3)
CR-R 1.00 (0.01) 0.85 (0.20) 14.5 (2.1) 1.00 (0.04) 0.99 (0.11) 2680.5 (2676.4)

CR-RSS 1.00 (0.00) 0.95 (0.11) 13.4 (2.2) 1.00 (0.00) 0.95 (0.22) 1472.8 (1908.0)
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Table S3: Simulation results when variables are correlated with n= 100, s= 5 and c= 3. S is the set of signal variables, C is the set of noise variables correlated
(in population) with signal variables, Ŝ is the comprehensive model obtained after all reduction rounds, M is the set of models that are significant at level ϑ.
Empirical standard errors are given in brackets.

s c ρ signal
noise

Reduction E
(
|S∩Ŝ|
|S|

)
E
(
|C∩Ŝ|
|C|

)
E|Ŝ| P(S ⊆ Ŝ) P(S ∈M) E(|M\S|)

Strategy (ϑ= 0.01) (ϑ= 0.01)

5 3 0.9 1

LASSO 0.98 (0.06) 0.40 (0.28) 13.8 (1.3) 0.92 (0.28) 0.91 (0.29) 1033.1 (720.3)
MS 1.00 (0.00) 1.00 (0.00) 15.0 (0.0) 1.00 (0.00) 0.99 (0.11) 1707.3 (964.7)
CR 1.00 (0.00) 0.99 (0.05) 14.4 (0.9) 1.00 (0.00) 0.99 (0.12) 1455.6 (897.3)

CR-SS 1.00 (0.00) 1.00 (0.03) 14.8 (0.5) 1.00 (0.00) 0.99 (0.11) 1594.3 (928.1)
CR-R 1.00 (0.00) 1.00 (0.00) 13.2 (1.8) 1.00 (0.00) 0.99 (0.11) 1058.9 (991.4)

CR-RSS 1.00 (0.00) 1.00 (0.00) 11.7 (1.8) 1.00 (0.00) 0.98 (0.13) 594.4 (608.1)

5 3 0.9 0.6

LASSO 0.87 (0.14) 0.37 (0.28) 13.7 (1.3) 0.47 (0.5) 0.47 (0.50) 2200 (1163.3)
MS 1.00 (0.00) 1.00 (0.00) 15.0 (0.0) 1.00 (0.00) 0.99 (0.10) 3665.1 (1050.6)
CR 0.99 (0.05) 0.94 (0.13) 14.4 (0.9) 0.93 (0.26) 0.92 (0.27) 3034.9 (1227.0)

CR-SS 1.00 (0.03) 0.97 (0.10) 14.8 (0.5) 0.98 (0.13) 0.97 (0.18) 3300.3 (1144.9)
CR-R 1.00 (0.00) 1.00 (0.00) 13.8 (1.8) 1.00 (0.00) 0.99 (0.08) 2831.6 (2213.0)

CR-RSS 1.00 (0.00) 1.00 (0.00) 12.2 (1.9) 1.00 (0.00) 0.98 (0.13) 1483.4 (1261.2)

5 3 0.5 1

LASSO 1.00 (0.00) 0.26 (0.25) 13.9 (1.2) 1.00 (0.00) 0.99 (0.09) 60.7 (87.2)
MS 1.00 (0.00) 1.00 (0.03) 15.0 (0.0) 1.00 (0.00) 0.99 (0.10) 88.9 (131.0)
CR 1.00 (0.01) 0.91 (0.17) 14.3 (0.9) 1.00 (0.04) 0.99 (0.09) 80.2 (139.4)

CR-SS 1.00 (0.00) 0.98 (0.08) 14.8 (0.5) 1.00 (0.00) 0.98 (0.13) 80.1 (120.4)
CR-R 1.00 (0.00) 0.99 (0.05) 13.8 (1.9) 1.00 (0.00) 0.99 (0.09) 69.7 (115.1)

CR-RSS 1.00 (0.00) 1.00 (0.03) 12.8 (2.0) 1.00 (0.00) 0.98 (0.13) 46.9 (78.0)

5 3 0.5 0.6

LASSO 0.99 (0.04) 0.27 (0.25) 13.8 (1.2) 0.97 (0.17) 0.96 (0.19) 587.8 (539.1)
MS 1.00 (0.00) 0.99 (0.05) 15.0 (0.0) 1.00 (0.00) 0.99 (0.09) 953.4 (768.8)
CR 0.99 (0.04) 0.87 (0.20) 14.4 (1.0) 0.96 (0.19) 0.95 (0.22) 769.8 (663.9)

CR-SS 1.00 (0.01) 0.96 (0.12) 14.8 (0.5) 1.00 (0.04) 0.96 (0.19) 800.6 (714.3)
CR-R 1.00 (0.00) 0.97 (0.10) 14.0 (1.8) 1.00 (0.00) 0.99 (0.10) 789.1 (927.3)

CR-RSS 1.00 (0.00) 1.00 (0.04) 13.0 (2.1) 1.00 (0.00) 0.98 (0.15) 527.7 (1017.5)
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Table S4: Simulation results when variables are correlated with n= 100, s= 5 and c= 5. S is the set of signal variables, C is the set of noise variables correlated
(in population) with signal variables, Ŝ is the comprehensive model obtained after all reduction rounds, M is the set of models that are significant at level ϑ.
Empirical standard errors are given in brackets.

s c ρ signal
noise

Reduction E
(
|S∩Ŝ|
|S|

)
E
(
|C∩Ŝ|
|C|

)
E|Ŝ| P(S ⊆ Ŝ) P(S ∈M) E(|M\S|)

Strategy (ϑ= 0.01) (ϑ= 0.01)

5 5 0.9 1

LASSO 0.98 (0.06) 0.36 (0.22) 13.7 (1.3) 0.89 (0.32) 0.88 (0.33) 1116.0 (805.7)
MS 1.00 (0.00) 1.00 (0.00) 15.0 (0.0) 1.00 (0.00) 0.99 (0.09) 2050.1 (1132.2)
CR 1.00 (0.03) 0.97 (0.08) 14.4 (0.8) 0.98 (0.13) 0.98 (0.15) 1736.2 (1039.4)

CR-SS 1.00 (0.01) 0.99 (0.05) 14.8 (0.4) 1.00 (0.04) 0.99 (0.12) 1930.4 (1116.6)
CR-R 1.00 (0.00) 1.00 (0.00) 13.9 (1.6) 1.00 (0.00) 0.99 (0.10) 1675.6 (1551.9)

CR-RSS 1.00 (0.00) 1.00 (0.00) 13.0 (1.5) 1.00 (0.00) 0.99 (0.12) 1134.9 (1047.2)

5 5 0.9 0.6

LASSO 0.84 (0.14) 0.35 (0.22) 13.8 (1.3) 0.37 (0.48) 0.35 (0.48) 2292.1 (1198.4)
MS 1.00 (0.00) 1.00 (0.00) 15.0 (0.0) 1.00 (0.00) 0.99 (0.09) 3991.9 (1016.1)
CR 0.98 (0.07) 0.92 (0.12) 14.5 (0.8) 0.89 (0.31) 0.89 (0.32) 3427.4 (1222.9)

CR-SS 0.99 (0.04) 0.95 (0.09) 14.9 (0.4) 0.95 (0.21) 0.94 (0.24) 3670.9 (1138.6)
CR-R 1.00 (0.00) 1.00 (0.00) 14.5 (1.7) 1.00 (0.00) 0.99 (0.10) 3820.8 (2746.1)

CR-RSS 1.00 (0.00) 1.00 (0.00) 13.5 (1.7) 1.00 (0.00) 0.99 (0.12) 2717.6 (2109.1)

5 5 0.5 1

LASSO 1.00 (0.00) 0.23 (0.19) 13.8 (1.3) 1.00 (0.00) 0.99 (0.10) 58.8 (92.3)
MS 1.00 (0.00) 1.00 (0.03) 15.0 (0.0) 1.00 (0.00) 0.99 (0.12) 90.5 (115.5)
CR 1.00 (0.02) 0.88 (0.16) 14.4 (0.9) 0.99 (0.09) 0.98 (0.15) 76.0 (108.6)

CR-SS 1.00 (0.01) 0.97 (0.08) 14.9 (0.4) 1.00 (0.06) 0.98 (0.15) 79.8 (97.2)
CR-R 1.00 (0.00) 0.99 (0.06) 14.7 (1.7) 1.00 (0.00) 0.99 (0.12) 89.2 (119.5)

CR-RSS 1.00 (0.00) 0.99 (0.03) 14.3 (1.9) 1.00 (0.00) 0.98 (0.15) 75.7 (163.1)

5 5 0.5 0.6

LASSO 0.99 (0.05) 0.24 (0.20) 13.8 (1.3) 0.95 (0.21) 0.95 (0.23) 582.8 (526.2)
MS 1.00 (0.00) 0.99 (0.05) 15.0 (0.0) 1.00 (0.00) 0.99 (0.08) 1051.2 (822.0)
CR 0.98 (0.06) 0.81 (0.19) 14.4 (0.9) 0.92 (0.27) 0.91 (0.29) 856.8 (743.8)

CR-SS 1.00 (0.01) 0.94 (0.10) 14.8 (0.4) 1.00 (0.06) 0.97 (0.18) 889.3 (747.0)
CR-R 1.00 (0.01) 0.97 (0.08) 14.9 (1.7) 1.00 (0.04) 0.99 (0.10) 1159.4 (1189.3)

CR-RSS 1.00 (0.00) 0.99 (0.05) 14.5 (1.9) 1.00 (0.00) 0.97 (0.16) 935.1 (1167.4)
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of the main paper. We probe this further in the simula-
tions in Section 8 of the main paper. With this caveat,
the randomised versions of Cox Reduction appear to per-
form best, retaining the true set of signal variables with
high probability and including fewer models in the confi-
dence set. Sample splitting performed favourably. It was
noted from a subsidiary empirical analysis (omitted) that
in the second-round reduction with a fixed choice of sig-
nificance level, CR-SS retained fewer noise variables than
CR while retaining all signal variables with equally high
probability. Marginal screening was also slightly more
likely to include noise variables correlated with signal
variables in the comprehensive model.

To facilitate the evaluation of each reduction strategy’s
performance across a range of scenarios, 10-15 variables
were always included in Ŝ and models of size at most
five were included in M based on a fixed significance
level ϑ. When the true model consisted of only three vari-
ables, more models were included in M than when the
true model consisted of five variables. This is to be ex-
pected based on the analysis in Section 4 of the original
paper. When correlations among variables were high and
signal strengths low, numerous models produced similar
fit so that M contained a larger number of models.

In most cases the number of models in M is very
large. [2] gave a logical argument that can be used to
narrow down these conclusions. This can be performed
completely independently of Cox reduction and the con-
struction of confidence sets of models, so that there are no
difficulties of post-selection inference.

S3. COX REDUCTION AND STABILITY OF
PREDICTIONS

We illustrate the ideas outlined in Section 9.5 of the
original paper with data generated as in Table S3 using
s= 5, c= 3, a signal to noise ratio of 1 and ρ equal to 0.5
and 0.9. A confidence set of models was obtained using
the rerandomised version of Cox reduction with sample
splitting and the significance level for the model selection
phase was set to ϑ= 0.01. The model confidence set con-
sisted of 10 and 84 models respectively when ρ= 0.5 and
ρ = 0.9, with S ∈M under both scenarios. Each model
was used to generate confidence sets of predictions based
on 100 newly generated observations. Figure S2 plots the
union of the confidence sets of predictions against the true
responses. For each observation, the interval is coloured
according to the proportion of confidence sets containing
each point.

Observations were generally included or were close to
at least one confidence interval. The large region of over-
lap across models gives reassurance over predictive con-
clusions. For design matrices with more dependence be-
tween covariates, the procedure may suggest numerous
models and the prediction intervals will sometimes be ap-
preciably larger than those obtained from a single well-
fitting model, reflecting uncertainty over the model.

(a) ρ= 0.5: |M|= 10

(b) ρ= 0.9: |M|= 84

Fig S2: The union of all confidence sets of predictions
obtained from the models in the confidence set are plotted
against the true responses. Intervals are coloured based on
the proportion of confidence sets that contain each point;
sections contained in all confidence sets are dark blue.
The black line y = x represents perfect prediction.

S4. PROOFS OF MAIN RESULTS

Throughout this section, let E ,F ⊂ {1, . . . , p} be such
that |E ∪ F |< n with E ∩ F = ∅. These sets will always
be used to index columns of X . Define K = E ∪ F to
be the indices appearing in a given traversal of the hyper-
cube. In a regression of Y on XK , let

θ̂Y :K = (XT
KXK )−1XT

KY,

and use θ̂Y :E .F and θ̂Y :F .E to denote the entries of θ̂Y :K

corresponding to the sets E and F respectively. Let
θ̂F :E = (XT

EXE)
−1XT

EXF . Similarly, let TY :K be the
Wald-type statistic obtained from a linear regression of
Y on XK , and denote its components corresponding to
E and F by TY :E .F and TY :F .E respectively. More pre-
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cisely,

TY :K = σ−1D
−1/2
K θ̂Y :K

where DK is a diagonal matrix with entries given by the
diagonal entries of (XT

KXK )−1. The notation

(XT
KXK)−1

(E ,E)

will be used to denote the rows and columns of the matrix
(XT

KXK )−1 corresponding to the set E .

PROOF OF PROPOSITION 1. The log-likelihood ratio
test statistic can be expressed as

w(Sm)/2 = sup
η∈Col-Sp(X̃)

ℓ̄(η)− sup
η∈Col-Sp(X̃m)

ℓ̄(η)

= sup
h1∈Col-Sp(X̃)

ℓ̄(η0 + h1)

− sup
h0∈{Col-Sp(X̃m)−η0}

ℓ̄(η0 + h0)

as η0 is assumed to be in the column span of X̃ but not
necessarily in the column span of X̃m. Let ĥ0 = η̂m − η0

and ĥ1 = η̂ − η0 be the maximisers. By assumption,
∥ĥ0∥33, ∥ĥ1∥33 =OP (n

−1/2). Define Mn to be a sequence
converging to zero as n→∞ so that ∥ĥ1∥3/Mn = oP (1)

and ∥ĥ0∥3/Mn = oP (1). For example, Mn = n−1/7.
Then, with probability converging to one, ĥ1, ĥ0 ∈ Bn,
the ℓ3-ball of radius Mn about zero, and so

w(Sm)/2 =∆1 −∆0 + oP (1)

where

∆1 = sup
h1∈H(1)

n

ℓ̄(η0 + h1)− ℓ̄(η0)

∆0 = sup
h0∈H(0)

n

ℓ̄(η0 + h0)− ℓ̄(η0),

H
(1)
n = Col-Sp(X̃)∩Bn and

H(0)
n = (Col-Sp(X̃m)− η0)∩Bn.

Let U0 =∇η ℓ̄(η
0) and J0 =−∇2

ηη ℓ̄(η
0). For h1 ∈H

(1)
n ,

∥h1∥3 ≤ Mn and h1 = Q̃β for some β ∈ Rr̂ and Q̃ de-
fined in the statement of the proposition. So, applying the
local asymptotic expansion,

∆1 = sup
β: Q̃β∈H(1)

n

{βT Q̃TU0 − 1

2
βT Q̃TJ0Q̃β}

+oP (1).

The supremum is achieved at

β = (Q̃TJ0Q̃)−1Q̃TU0

satisfying

∥Q̃β∥33 ≤ ∥Q̃β∥∞∥Q̃β∥22 =OP (n
−1/2) = oP (M

3
n)

because, letting Z = (Q̃TJ0Q̃)−1/2Q̃TU0,

∥β∥2 = n−1/2∥(Q̃TJ0Q̃/n)−1/2Z∥2

≤ n−1/2∥(Q̃TJ0Q̃/n)−1/2∥2∥Z∥2
=OP (n

−1/2)

by (c), (d) and ∥Q̃β∥∞ ≤maxni=1 ∥q̃i∥2∥β∥2. This max-
imiser lies in Bn with probability converging to one and
so

∆1 = ∥(Q̃TJ0Q̃)−1/2Q̃TU0∥22/2

+oP (1).(1)

For h0 ∈ H
(0)
n , ∥h0∥3 ≤ Mn and h0 = Q̃mα + v where

v =−(I − Pm)η0 and α ∈Rrm . So,

∆0 = sup
α: (Q̃mα+v)∈H(0)

n

{(Q̃mα+ v)TU0

−1

2
(Q̃mα+ v)TJ0(Q̃mα+ v)}

+oP (1).

By assumption ∥v∥2 = o(n−1/2) and

n−1/2∥Q̃mα∥2 ≤ n−1/2∥h0∥2 ≤ n−1/3∥h0∥3 = o(1).

So,

|vTU0| ≤
√
n∥v∥2∥n−1/2U0∥2 = oP (1)

|vTJ0Q̃mα|= ∥
√
nv∥2∥n−1/2Q̃mα∥2∥J0∥2 = oP (1)

|vTJ0v| ≤ ∥n−1J0∥2∥
√
nv∥22 = oP (1).

Thus,

∆0 = sup
α: (Q̃mα+v)∈H(0)

n

{(Q̃mα)TU0 − 1

2
(Q̃mα)TJ0(Q̃mα)}

+oP (1)

and maximising this expression gives

∆0 = ∥(Q̃T
mJ0Q̃m)−1/2Q̃T

mU0∥22/2

+oP (1).(2)

Combining equations (1) and (2)

w(Sm) = ∥(Q̃TJ0Q̃)−1/2Q̃TU0∥22
−∥(Q̃T

mJ0Q̃m)−1/2Q̃T
mU0∥22 + oP (1)

= (Σ−1/2Z)TΓΣ−1/2Z + oP (1)

where Z = n−1/2Q̃TU0, nΣ= Q̃TJ0Q̃, nΣmm = Q̃T
mJ0Q̃m

and

Γ= I−Σ1/2

(
Σ−1
mm 0
0 0

)
Σ1/2.
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The matrix Γ is positive semi-definite of rank r̂− rm with
eigenvalues equal to one or zero. This is because

λ

{
Σ1/2

(
Σ−1
mm 0
0 0

)
Σ1/2

}
= λ

{(
Σ−1
mm 0
0 0

)
Σ

}
where for any square matrix M , λ(M) is the set of eigen-
values of M . As Σmm are the entries of Σ in the first rm
rows and rm columns, this set consists of the eigenvalues
of an upper triangular matrix with rm ones and r̂ − rm
zeroes on the diagonal. Thus, the set of eigenvalues of Γ
consists of rm zeroes and r̂− rm ones. Write Γ= P TΛP
where P is an orthonormal matrix and Λ is a diagonal
matrix with r̂ − rm ones and rm zeroes on the diagonal.
Then,

w(Sm) = (PΣ−1/2Z)TΛ(PΣ−1/2Z) + oP (1)

=

r̂−rm∑
i=1

(PΣ−1/2Z)2i + oP (1)

and by assumption, PΣ−1/2Z
d−→N(0, I). As asymptot-

ically w(Sm) is the sum of the squares of r̂−rm indepen-
dent standard normal random variables

w(Sm)
d−→ χ2

r̂−rm

and so the result follows.

LEMMA S1.

θ̂Y :E = θ̂Y :E .F + (θ̂F :E )
T θ̂Y :F .E .

PROOF. Let K = E ∪F . By definition,

θ̂Y :E = (XT
EXE )

−1XT
EPKY

+(XT
EXE )

−1XT
E (I − PK )Y

= (XT
EXE )

−1XT
EPKY

= (XT
EXE )

−1XT
EXK θ̂Y :K

= (I, (XT
EXE )

−1XT
EXF )θ̂Y :K

= θ̂Y :E .F + (θ̂F :E )
T θ̂Y :F .E

where we have assumed without loss of generality that E
indexes the first few columns of XK . Further,

θ̂Y :E = θ̂Y :E .F ⇐⇒ (θ̂F :E )
T θ̂Y :F .E = 0.

LEMMA S2. Suppose |E |= 1. Then,

TY :E .F = σ−1∥Y ∥2R(Y, (I − PF )xE ).

PROOF. By Lemma S4 and the definitions of marginal
and multiple sample correlation coefficients,

θ̂Y :E .F = {xTE (I − PF )xE}−1xTE (I − PF )Y

=
R(Y, (I − PF )xE )∥Y ∥2
∥xE∥

√
1−R2(xE ,XF )

.

By writing the inverse of a matrix in terms of a Schur
complement,

(XT
KXK )−1

(E ,E) = (xTE (I − PF )xE )
−1

= ∥xE∥−2
2 (1−R2(xE ,XF ))

−1.

Combining these equations gives the desired result.

PROOF OF PROPOSITION 2. Let ϵ = M log(|B|) with
M > 0. By a union bound,

P {n∆(1)> ϵ} ≤ P
{

max
B⊂B,|B |=k

nR2(Y,XB )> ϵ

}
+P
{

max
B⊂B,|B |=k−1

nR2(Y,XB )> ϵ

}
+|A| max

A⊆A,|A|=1
P
{

max
B⊂B,|B |=k−1

nR2(XA,XB )> ϵ

}
and so it is sufficient to consider the limiting distribu-
tion of the maximum spurious correlation between a vec-
tor and an independent random matrix consisting of k or
k − 1 columns. We focus on the term R2(XA,XB ) al-
though the results follow identically for R2(Y,XB ). Un-
der the assumptions in the proposition, Theorem 3.1 in
[3] states that there exists a constant C > 0 independent
of |B|, k and n such that

sup
ϵ≥0

|P{n max
B⊂B, |B |=k−1

R2(XA,XB )> ϵ} − P{R̃2 > ϵ}|

≤Cn−1/8[max{log(|B|), logn}]7/8

where

R̃2 = Z2
(|B|) + · · ·+Z2

(|B|−k+2)

with Z ∼N|B|(0, I) and

Z2
(1) ≤ Z2

(2) ≤ · · · ≤ Z2
(|B|)

are the order statistics of {Z2
j }

|B|
j=1. The aim is to ob-

tain the rate at which P{R̃2 > ϵ} converges to zero. Let
Mn = maxi=1,...|B|Zi and Ln = maxi=1,...|B|{−Zi}. As
a maximum of i.i.d. standard Gaussian random variables,
[4] shows that a−1

n (Mn − bn) converges in distribution to
a Gumbel distribution where an = b−1

n and

bn =
√

2 log(|B|)− log log(|B|) + log(4π)

2
√

2 log(|B|)

+O{(log |B|)−1}.
A similar result holds for Ln. The rate of convergence to
a Gumbel distribution is {log(|B|)}−1, and so

P(R̃2 > ϵ)≤ P{(k− 1)Z2
(|B|) > ϵ}

≤ P{(k− 1)1/2Mn >
√
ϵ}

+P{(k− 1)1/2Ln >
√
ϵ}

≤ 2
{
1− exp

(
−e−fn

)
+ ηn

}
(3)
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where, for ϵ=M log(|B|) with M > 0 large enough,

max{f−1
n , ηn}=O[{log(|B|)}−1].

As ex ≥ 1 + x for all x, we have

1− exp
(
−e−fn

)
≤ 1− exp

{
−1

fn + 1

}
≤ (1 + fn)

−1,

and so

P

n max
B⊂B,

|B |=k−1

R2(XA,XB )> ϵ


=O

(
max

{
ϵn, log(|B|)−1

})
where ϵn = n−1/8max{log(|B|), logn}7/8. Using similar
arguments,

P(n∆(1)> ϵ) =O
(
|A|max

{
ϵn, log(|B|)−1

})
.

When |A|= o{log(|B|)} and |A|8/7 log{|B|n}= o(n1/7),
all terms on the right hand side converge to zero and so

∆(1) =OP (log(|B|)/n).

The result follows when log(|B|)/n= o(1).

PROOF OF PROPOSITION 3. The result follows di-
rectly from Lemmas S7 and S8 in Section S5.

PROOF OF PROPOSITION 4. We can condition on the
event G that each variable in A appears unaccompanied
by other pseudo-signal variables in at least 2/3 regressions
in which it appears. A lower bound on the probability that
this event occurs is given in Lemma S9. On the event G,
every pseudo-signal variable will survive the first round
of reduction if

min
A⊆A, |A|=1

min
B∈Bk

{|TY :A.B | − ∥TY :B .A∥∞}> 0(4)

where Bk = {B ⊆ B : |B | = k − 1}. By Proposition 3,
Lemma S2 and Lemma S8,

TY :A.B = σ−1∥Y ∥2R(Y,xA) + δA.B

TY :B .A = δ
(1)
B.A + δ

(2)
B.A

where provided R(XA,XB ) < 1− c, there exists C > 0
depending only on c such that,

|δA.B| ≤ Cσ−1∥Y ∥2{R(XA,XB ) +R(Y,XB )}

∥δ(1)B.A∥∞ ≤ σ−1∥Y ∥2{R(XA,XB ) +R(Y,XB )}

∥δ(2)B.A∥∞ ≤ Cσ−1∥Ỹ ∥2R(XA,XB ).

Thus, (4) occurs if for all A⊆A with |A|= 1, B ∈ Bk,

σ−1∥Y ∥2|R(Y,xA)| − |δA.B |

> ∥δ(1)B.A∥∞ + ∥δ(2)B.A∥∞(5)

By assumption, there exists ϵ > 0 such that for n large
enough,

min
A⊂A, |A|=1

|R(Y,xA)|> σϵ

and

max
A⊂A, |A|=1,B∈Bk

max{|δA.B|,∥δ(1)B.A∥∞,∥δ(2)B.A∥∞} ≤ ϵ∥Y ∥2/4.

Then, condition (5) holds and the result follows.

PROOF OF PROPOSITION 5. First consider the k × k
square. Let Ga,a0

be the event that indices a and a0 share
a row or column. The expected number of indices from
A−a sharing a row or column with a is given by

E

 ∑
a0∈A−a

1{Ga,a0
}

=
2(|A| − 1)(k− 1)

(k2 − 1)
.

This follows because conditional on the location of a in
the square, there are 2(k − 1) out of a total of k2 − 1
locations for a0 that ensure that a and a0 share a row or
column.

The arguments for the k× k× k cube are similar. Now
let Ga,a0

be the event that indices a and a0 share a row,
column or corridor. The expected number of indices from
A−a sharing a row, column or corridor with a is given by

E

 ∑
a0∈A−a

1{Ga,a0
}

=
3(|A| − 1)(k− 1)

(k3 − 1)

as conditional on the location of a in the cube, there are
3(k− 1)/(k3− 1) locations for a0 to ensure that a and a0
share a row, column or corridor.

PROOF OF PROPOSITION 6. By assumption, there ex-
ists N1,C1 > 0 such that for all n≥N1,

∆(k)≤ 1/2

max
a∈A1

max
A⊆A\{a}, |A|≤k−1

{|R(y, (I − PA)xa)|}−1 ≤C−1
1 .

Consider a regression of Y on the covariates indexed by
A∪B where A⊆A, B ⊆B and A∩A1 ̸= ∅. By Lemma
S2 and Proposition 3, when n≥N1, the entry of |TY :A.B|
corresponding to a ∈A∩A1 is given by

σ−1∥Y ∥2R(Y, (I − PA−a
)xa) + δ1

where there exists a universal constant C2 > 0 such that

|δ1| ≤C2σ
−1∥Y ∥2∆1/2(k).

In particular, for n≥N1, this entry is at least as large in
magnitude as

σ−1∥Y ∥2{C1 −C2∆
1/2(k)}.(6)
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In contrast, consider an arbitrary regression in Cox reduc-
tion that includes a pseudo-noise variable b ∈ B. The en-
try of its corresponding Wald statistic is bounded above
in magnitude by

σ−1∥y∥2(2 +C2)∆
1/2(k),(7)

when n ≥ N1, where we have used the second equation
in Proposition 3. In light of (6) and (7), there exists α
such that the second round of Cox reduction retains those
indices a ∈A1 but not those in B when

(2 +C2)∆
1/2(k)< {C1 −C2∆

1/2(k)}.(8)

By assumption, there exists N2 such that whenever n ≥
N2,

∆1/2(k)<
C1

2(1 +C2)
.

Choosing N =max{N1,N2}, it follows that (8) holds for
n≥N and so the result follows.

LEMMA S3. Suppose |E |= 1. Then

σTY :E .F =∆1 +∆2

where

∆1 =
√

1−R2(xE ,XF )θ
0
E∥xE∥2

∆2 = ∥Y −XK θ0K ∥2R(Y −XK θ0K , (I − PF )xE )

where K = E ∪F .

PROOF. By definition,

(XT
KXK )−1XT

KY = θ0K + (XT
KXK )−1XT

K (Y −XK θ0K ).

Further,

(XT
KXK )−1

(E ,E) = ∥xE∥−2
2 (1−R2(xE ,XF ))

−1,

so

σTY :E .F =
√

1−R2(xE ,XF )θ
0
E∥xE∥2

+σT(Y−XK θ0
K ):E .F .

The result follows by applying Lemma S2 to the second
term.

S5. PROOFS OF ADDITIONAL RESULTS

The notation in this section follows the notation in Sec-
tion S4.

LEMMA S4.

θ̂Y :E .F = {XT
E (I − PF )XE}−1XT

E (I − PF )Y

θ̂Y :F .E = {XT
F (I − PE )XF}−1XT

F (I − PE )Y.

PROOF. By definition(
XT

EXE XT
EXF

XT
FXE XT

FXF

)(
θ̂Y :E .F

θ̂Y :F .E

)
=

(
XT

EY
XT

FY

)
.

Using the second row, θ̂Y :F .E = (XT
FXF )

−1XT
F (Y −

XE θ̂Y :E .F ). Substituting this expression into the first row

XT
E {I −XF (X

T
FXF )

−1XT
F }XE θ̂Y :E .F

=XT
E {I −XF (X

T
FXF )

−1XT
F }Y.

Similar arguments can be used to derive an analogous re-
sult for θ̂Y :F .E .

LEMMA S5. Suppose XK = (XE ,XF ) ∈ Rn×k is a
matrix of full rank. Then,

∥PEPF∥2 = ∥PFPE∥2 < 1.

PROOF. Define

R(XE ,XF ) = max
α∈R|E|

max
β∈R|F|

αTXT
EXFβ

∥XEα∥2∥XFβ∥2
.

The term R(XE ,XF ) is non-negative by definition. Fur-
ther, by the Cauchy-Schwarz inequality, R(XE ,XF )≤ 1
with equality if and only if XEα and XFβ are linearly de-
pendent. Thus, when X is full-rank 0≤R(XE ,XF )< 1.
As R(XE ,XF ) = R(XF ,XE ), it is sufficient to show
that

∥PEPF∥2 =R(XE ,XF ).

First note that for a given α,

max
β∈R|F|

αTXT
EXFβ

∥XEα∥2∥XFβ∥2
=R(XEα,XF ) =

∥PFXEα∥2
∥XEα∥2

.

Indeed, following the arguments in [5, p. 164-165],

max
β∈R|F|

αTXT
EXFβ

∥XEα∥2∥XFβ∥2

= max
β∈R|F|

αTXT
EXF (X

T
FXF )

−1/2(XT
FXF )

1/2β

∥XEα∥2∥XFβ∥2

≤ max
β∈R|F|

∥(XT
FXF )

−1/2XT
FXEα∥2∥(XT

FXF )
1/2β∥2

∥XEα∥2∥XFβ∥2

=
∥PFXEα∥2
∥XEα∥2

where the Cauchy-Schwarz inequality was used in the
second line. Then,

R2(XE ,XF ) = max
α∈R|E|

∥PFXEα∥22
∥XEα∥22

= max
u∈R|E|

∥PFXE (X
T
EXE )

−1/2u∥22
∥u∥22

= λmax{REPFR
T
E}.
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where RE = (XT
EXE )

−1/2XT
E . For any m,n ∈ N\{0}

and two matrices M ∈ Rm×n and N ∈ Rn×m, the non-
zero eigenvalues of MN are equal to the non-zero eigen-
values of NM . Then, as the eigenvalues of REPFR

T
E are

non-negative,

R2(XE ,XF ) = λmax(PFPE )

= λmax(PFPEPF )

= ∥PEPF∥22.

LEMMA S6. For e ∈ E , define Qe to be the projection
matrix onto (I − PF )XE−e

. Then,

(I − PF −Qe) = (I − PF −∆e)(I − PE−e
)

where

max
e∈E

∥∆e∥2 ≤ (1 + c−1)R(XE ,XF )

when R(XE ,XF )≤ 1− c for some c > 0.

PROOF. Expressing Qe in terms of (I −PF )XE−e
and

factorising shows that

Qe = (I − PF )XE−e
H−1/2M−1H−1/2XT

E−e
(I − PF )

where H =XT
E−e

XE−e
and

M = I −H−1/2XT
E−e

PFXE−e
H−1/2.

As

∥H−1/2XT
E−e

PFXE−e
H−1/2∥2 ≤ ∥PE−e

PF∥2 < 1

by Lemma S5, we can use the geometric series for matri-
ces to invert M and obtain

Qe = (I − PF )PE−e
(I − PF )

+(I − PF )

∞∑
m=1

(PE−e
PF )

mPE−e
(I − PF )

= PE−e
− PF

+(I − PE−e
)

∞∑
m=0

(PFPE−e
)mPF (I − PE−e

).

Then (I − PF −Qe) = (I − PF −∆)(I − PE−e
) where

∆e = (I − PE−e
)

∞∑
m=1

(PFPE−e
)mPF − PE−e

PF

and when R(XE ,XF )≤ 1− c,

max
e∈E

∥∆e∥2 ≤max
e∈E

{
∥PFPE−e

∥2
1− ∥PFPE−e

∥2
+ ∥PFPE−e

∥2
}

=max
e∈E

{
R(XF ,XE−e

)

1−R(XF ,XE−e
)
+R(XF ,XE−e

)

}
≤ R(XF ,XE )

1−R(XF ,XE )
+R(XF ,XE )

≤ (1 + c−1)R(XE ,XF ).

LEMMA S7. Suppose R(XE ,XF ) ≤ 1 − c for some
c > 0. Then, there exists C > 0 depending only on c such
that

∥TY :E .F − TY :E∥∞ ≤ Cσ−1∥Y ∥2
×{R(XE ,XF ) +R(Y,XF )}

∥TY :E .F − TỸ :E∥∞ ≤ Cσ−1∥Ỹ ∥2R(XE ,XF ).

where Ỹ = (I − PF )Y .

PROOF. Without loss of generality, consider the first
entry of TY :E .F . Let j = 1 and e be the first entry of the
set E . By Lemma S4 and further applications of the Schur
complement,

θ̂Y :E .F = {XT
E (I − PF )XE}−1XT

E (I − PF )Y

(XT
KXK )−1

(EE) = {XT
E (I − PF )XE}−1,

where K = E ∪ F . The first row of the matrix {XT
E (I −

PF )XE}−1 is

(S−1,−S−1xTe (I −PF )XE−e
{XT

E−e
(I −PF )XE−e

}−1).

where Qe is the projection matrix onto (I−PF )XE−e
and

S−1 = {xTe (I − PF −Qe)xe}−1.

It can be shown that I − PF −Qe is a projection matrix
using the fact that (I − PF )Qe =Qe. Let

ue = (I − PF −Qe)xe.

The first entry of θ̂Y :E .F is given by {uTe ue}−1uTe Y and
so, the first entry of σTY :E .F is

{uTe ue}−1/2uTe Y = {uTe ue}−1/2uTe (I − PF )Y.(9)

The two expressions given in the statement of the lemma
arise from re-writing each of the two expressions given
in the equality above. Consider the first expression in (9).
By Lemma S6,

(I − PF −Qe) = (I − PF −∆e)(I − PE−e
)

where for c′ = 1+ c−1,

max
e∈E

∥∆e∥2 ≤
R(XF ,XE )

1−R(XF ,XE )
+R(XF ,XE )

≤ c′R(XE ,XF ).

Then, ue = (I − PF −∆e)(I − PE−e
)xe and so,

uTe Y

{xTe (I − PE−e
)xe}1/2

=
xTe (I − PE−e

)Y

{xTe (I − PE−e
)xe}1/2

+ δe,1

= σeTj TY :E + δe,1(10)
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by the proof of Lemma S2, where

max
e∈E

|δe,1|= sup
e∈E

∣∣∣∣xTe (I − PE−e
)(PF +∆T

e )Y

{xTe (I − PE−e
)xe}1/2

∣∣∣∣
≤ ∥Y ∥2{max

e∈E
∥∆e∥2 +R(Y,XF )}

≤ ∥Y ∥2
{
c′R(XE ,XF ) +R(Y,XF )

}
As (I−PF −∆e)(I−PE−e

) = (I−PF −Qe) is a pro-
jection matrix and (I −PE−e

)(PF +∆e) = (PF +∆e), it
can be shown that (PF +∆e)(I −PE−e

) is also a projec-
tion matrix and so

uTe ue = xTe (I − PF −Qe)xe

= xTe (I − PF −∆e)(I − PE−e
)xe

= ∥(I − PE−e
)xe∥22(1− δ2e,2)(11)

where

δe,2 =
∥(PF +∆e)(I − PE−e

)xe∥2
∥(I − PE−e

)xe∥2

≤
∥PF (I − PE−e

)xe∥2
∥(I − PE−e

)xe∥2
+

∥∆e(I − PE−e
)xe∥2

∥(I − PE−e
)xe∥2

≤R(XE ,XF ) + ∥∆e∥2
as (I − PE−e

)xe is in the column span of XE . So,

max
e∈E

|δe,2| ≤ (1 + c′)R(XE ,XF ).

Combining (9), (10) and (11),

σ|eTj (TY :E .F − TY :E )| ≤ |σeTj TY :E{(1− δ2e,2)
−1/2 − 1}|

+|δe,1(1− δ2e,2)
−1/2|

≤ C∥Y ∥2{R(XE ,XF ) +R(Y,XF )}
for some C > 0 depending only on c. This establishes the
first expression in the statement of the lemma.

To obtain the second expression, replace (10) by the
following,

uTe (I − PF )Y

{xTe (I − PE−e
)xe}1/2

=
xTe (I − PE−e

)(I − PF )Y

{xTe (I − PE−e
)xe}1/2

+ δe,1

= σeTj T(I−PF )Y :E + δe,1(12)

by the proof of Lemma S2, where

max
e∈E

|δe,1|= sup
e∈E

∣∣∣∣xTe (I − PE−e
)∆T

e (I − PF )Y

{xTe (I − PE−e
)xe}1/2

∣∣∣∣
≤ ∥(I − PF )Y ∥2max

e∈E
∥∆e∥2

≤ c′∥(I − PF )Y ∥2R(XE ,XF ).

Combining (9), (11) and (12),

σ|eTj (TY :E .F − TỸ :E )| ≤ |σeTj TỸ :E{(1− δ2e,2)
−1/2 − 1}|

+|δe,1(1− δ2e,2)
−1/2|

≤ C∥Ỹ ∥2R(XE ,XF )

where Ỹ = (I − PFY ).

LEMMA S8.

∥T(I−PF )Y :E∥∞ ≤ σ−1∥Y ∥2{R(Y,XE ) +R(XE ,XF )}.

PROOF. Let Ỹ = (I − PF )Y , j = 1 and suppose e is
the first index in E . By Lemma S2,

σeTj TỸ :E = ∥Ỹ ∥2R(Ỹ , (I − PE−e
)xe)

=
Ỹ T (I − PE−e

)xe

{xTe (I − PE−e
)xe}1/2

.

Let α= (1,−xTe XE−e
(XT

E−e
XE−e

)−1)T . Then,

|σeTj TỸ :E |=

∣∣∣∣∣ Ỹ TXEα

∥XEα∥2

∣∣∣∣∣
≤ ∥Ỹ ∥2R(Ỹ ,XE )(13)

by definition of the multiple correlation coefficient. Fur-
ther,

∥Ỹ ∥2R(Ỹ ,XE ) = ∥PE (I − PF )Y ∥2
≤ ∥PEY ∥2 + ∥PEPFY ∥2
≤ ∥Y ∥2{R(Y,XE ) +R(XE ,XF )}

by the proof of Lemma S5. The result follows by com-
bining this with (13) and noting that the bound does not
depend on j.

LEMMA S9. Suppose the indices {1, . . . , k3} are
randomly arranged in a k × k × k cube and let A ⊆
{1, . . . , k3}. Let G be the event that every index in A is
unaccompanied by other indices in A in at least two out
of three of the row, column or corridor in which it ap-
pears. Then,

P(G)≥ 1− |A|(|A| − 1)(|A| − 2)(k− 1)2

(k3 − 1)(k3 − 2)
.

PROOF. Consider the probability of the complement
event Gc: that there exists an index in A that appears un-
accompanied in at most one regression. For Gc to occur
there must exist an element of A, call it index a, where
two of its row, column or corridor contain at least one
other element from A. Let a1 and a2 be the two elements.
Given the position of index a, the probability that a1 and
a share a row, column or corridor is 3(k − 1)/(k3 − 1).
Then, the probability that a2 also shares such a block with
a but not with a1 is 2(k − 1)/(k3 − 2). Finally, there are(|A|

3

)
ways of choosing indices a, a1 and a2. Applying a

union bound, the probability of Gc is bounded above by

P(Gc)≤
6
(|A|

3

)
(k− 1)2

(k3 − 1)(k3 − 2)

=
|A|(|A| − 1)(|A| − 2)(k− 1)2

(k3 − 1)(k3 − 2)
.
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S6. CONFIDENCE SET OF MODELS IN THE
GENERALISED LINEAR MODEL

In the generalised linear model with canonical link
function, the log-likelihood is of the form

ℓ̄(η) =

n∑
i=1

yiηi − b(ηi)

ϕ
− c(yi)

where ϕ is a known constant, b : R 7→ R is a three-times
differentiable function satisfying b′′(x)≥ 0 for all x ∈ R
and c : R 7→ R. The following result establishes condi-
tions under which the assumptions in Proposition 1 of the
main paper hold for this log-likelihood. These conditions
are satisfied for the linear and logistic regression models.

PROPOSITION S1. Let Pm be the projection matrix
onto the column span of X̃m. Suppose ∥(I − Pm)η0∥2 =
o(n−1/2) and make the following assumptions:

(A1) there exists a constant c1 > 0 such that b′′′(x)≤ c1
for all x ∈R,

(A2) there exist constants c2,C2 > 0 independent of n
such that for all i= 1, . . . , n

c2 ≤ Var(Yi)≤C2, E{|Yi −E(Yi)|3} ≤C2,

(A3) for any δ > 0, there exists a constant c3 > 0 such
that b′′(xi)> c3 for all i= 1, . . . , n and any x sat-
isfying ∥x− η0∥2 ≤ δ,

(A4) there exists a matrix Q̃ of full rank whose columns
span the column space of X̃ and the first rm
columns, written Q̃m, span the column space of X̃m

such that there exists constants c4, c5, c6 > 0 with

c4n≤ λmin(Q̃
T Q̃)≤ λmax(Q̃

T Q̃)≤ c5n

for n large enough and maxi=1,...n ∥q̃i∥∞ ≤ c6
where q̃Ti denotes the i-th row of Q̃.

Then the conditions in Proposition 1 are met.

The first three conditions in Proposition S1 relate to the
assumed form of the generalised linear model. Assump-
tion (A4) places conditions only on the design matrix X̃
as in Proposition 1 of the main text. The eigenvalue con-
dition in (A4) would be satisfied if the non-zero eigenval-
ues of n−1X̃T X̃ were asymptotically bounded above and
away from zero.

In this section, we provide a proof of Proposition S1.
Before proceding, it will be useful to summarise key nota-
tion and simple consequences of assumptions (A1)-(A4)
that will be used on various occasions throughout the
proof. First, it is well-known that for i= 1, . . . , n,

E(Yi) = b′(η0i ), Var(Yi) = ϕb′′(η0i )

where η0 = X̃γ0 is the true signal. In particular,

η0 = argmaxη∈Col-Sp(X̃)E{ℓ̄(η)}.

Define

η̂ = argmaxη∈Col-Sp(X̃)ℓ̄(η)

η̂m = argmaxη∈Col-Sp(X̃m)ℓ̄(η)

η0m = argmaxη∈Col-Sp(X̃m)E{ℓ̄(η)}.

We assume these maximisers are unique and set the rel-
evant score equations to zero. Let U0 = ∇η ℓ̄(η

0) and
J0 = −∇2

ηη ℓ̄(η
0). For the generalised linear model with

canonical link, U0 = ϕ−1(Y − E(Y )) and J0 is the di-
agonal matrix with (i, i)-th entry given by ϕ−2Var(Yi) =
ϕ−1b′′(η0i ). Extend these definitions to

U0
m =∇η ℓ̄(η

0
m), J0

m =∇2
ηη ℓ̄(η

0
m).

It will be useful to define D(η1, η2) to be a diagonal ma-
trix whose (i, i)-th entry is given by b′′(η

(i)
i ) where η(i) is

a vector on the line joining η1 and η2. The following are
useful consequences of assumptions (A1)-(A4).

(C1) Let nΣ= Q̃TJ0Q̃. Then,

λmax(Σ)≤ λmax(Q̃
T Q̃/n)λmax(J

0) =O(1)

by assumption (A2) and (A4). Similarly, λ−1
min(Σ) =

O(1).
(C2) Suppose η is such that ∥η − η0∥∞ = o(1). By as-

sumption (A1) and the mean value theorem,

∥D(η, η0)− ϕJ0∥2 = ∥D(η, η0)−D(η0, η0)∥2
≤ c1∥η− η0∥∞
= o(1).

Further, by assumption (A4),

n−1∥Q̃T {D(η, η0)− ϕJ0}Q̃∥2 = o(1).

(C3) For some β and β0, write η = Q̃β, η0 = Q̃β0 and
define Uη =∇η ℓ̄(η). Let D =D(η, η0). Then, as-
suming n1/2∥β − β0∥2 = o(1) and using a Taylor
expansion,

ϕ∥Q̃T
m(Uη −U0)∥2 = ∥Q̃T

m{b′(η)− b′(η0)}∥2

= ∥Q̃T
mDQ̃(β0 − β)∥2

≤ ∥Q̃TDQ̃(β0 − β)∥2

≤ ∥Q̃TDQ̃∥2∥β0 − β∥2
= o(n1/2)

where we have used the notation b′(η) to denote
the vector with i-th entry equal to b′(ηi). This re-
sults follows from (C1), (C2) and the fact that
∥η−η0∥∞ ≤maxi=1,...n ∥q̃i∥2∥β−β0∥2 = o(1) by
assumption (A4).
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To prove Proposition S1, we break the proof into three
parts. First we establish a local asymptotic expansion of
the log-likelihood function about η0 (Lemma S10), then
we show that the score function is asymptotically nor-
mally distributed (Lemma S11). Finally, we prove that the
estimated predicted values η̂m are consistent estimators
of η0 (Lemma S15). A proof that η̂ is also a consistent
estimator of η0 is omitted as the ideas resemble those in
Lemma S15 and related results. Some of these results fol-
low classical results closely, which we include for com-
pleteness.

S6.0.1 Local asymptotic expansion

LEMMA S10. Suppose conditions (A1)-(A4) hold.
Then, for any Mn = o(1),

sup
h∈Bn

|ℓ̄(η0 + h)− f(η0, h)|= o(1)

where Bn = {h ∈Rn : ∥h∥3 ≤Mn} and

f(η0, h) = ℓ̄(η0) + hT∇η ℓ̄(η
0) +

1

2
hT∇2

ηη ℓ̄(η
0)h.

Further, n−1/2U0 = n−1/2∇η ℓ̄(η
0) and J0 =−∇2

ηη ℓ̄(η
0)

satisfy

∥n−1/2U0∥2 =OP (1), ∥J0∥2 =OP (1).

PROOF. Suppose h satisfies ∥h∥3 ≤Mn. Using a Tay-
lor expansion,

ℓ̄(η0 + h)− ℓ̄(η0) = hTU0 − hTJ0h

2

− 1

2ϕ
hT {D(η0, η0 + h)− ϕJ0}h.

Let D =D(η0, η0+h). By assumption (A1) and the mean
value theorem,

|(D− ϕJ0)ii|= |b′′(η(i)i )− b′′(η0i )| ≤ c1|hi|

where η(i) is a vector on the line joining η0 + h and η0.
Then, as ∥h∥3 ≤Mn,

|hT (D− ϕJ0)h|=

∣∣∣∣∣
n∑

i=1

h2i (D− ϕJ0)ii

∣∣∣∣∣
≤ c1

n∑
i=1

|hi|3

≤ c1M
3
n.

As this upper bound holds for any h ∈Bn, it follows that

sup
h∈Bn

|ℓ̄(η0 + h)− f(η0, h)| ≤ c1M
3
n/(2ϕ) = o(1).

Further,

∥n−1/2U0∥22 =
n∑

i=1

{Yi −E(Yi)}2

ϕ2n

Let Zi = {Yi −E(Yi)}2 and σ2
i = Var(Yi). Then,

E

∣∣∣∣∣
n∑

i=1

(Zi − σ2
i )

n

∣∣∣∣∣
3/2

≤
n∑

i=1

E{|Zi − σ2
i |3/2}/n

≤ 23/2

n

n∑
i=1

E

{(
|Zi|+ |σ2

i |
2

)3/2
}

≤ 21/2

n

n∑
i=1

E(|Zi|3/2 + |σ2
i |3/2)

by convexity of the function |x|3/2 for all x ∈ R. By as-
sumption (A2),

E|Zi|3/2 ≤C2, |σ2
i |3/2 ≤C

3/2
2

and so

E

∣∣∣∣∣
n∑

i=1

(Zi − σ2
i )/n

∣∣∣∣∣
3/2

≤ 21/2C2(1 +
√

C2)

Thus, for ϵ > 0 and M3/2 = ϵ−1ϕ−3
√
2C2(1 +

√
C2),

P

(∣∣∣∣∣
n∑

i=1

Zi − σ2
i

∣∣∣∣∣≥Mϕ2n

)
≤

E
∣∣∑n

i=1(Zi − σ2
i )
∣∣3/2

M3/2ϕ3n3/2

≤ ϵ.

As σ2
i is bounded, this implies that ∥n−1/2U0∥2 =

OP (1). Also,

∥∇2
ηη ℓ̄(η

0)∥22 = ϕ−1max
i

|b′′(η0i )|= ϕ−2max
i

|Var(Yi)|

which is O(1) by assumption (A2).

S6.0.2 Asymptotic normality of the score function We
establish the asymptotic normality of (Q̃TJ0Q̃)−1/2Q̃TU0.
The case that replaces Q̃ by Q̃m follows closely.

LEMMA S11. Suppose conditions (A1)-(A4) hold.
Then

(Q̃TJ0Q̃)−1/2Q̃TU0 d−→N(0, I),

with U0 =∇η ℓ̄(η
0) and J0 =−∇2

ηη ℓ̄(η
0).

PROOF. Consider any unit vector u ∈Rr̂ and let nΣ=

Q̃TJ0Q̃. Then

uT (Q̃TJ0Q̃)−1/2Q̃TU0 =

n∑
i=1

zi

where

zi = n−1/2ϕ−1uTΣ−1/2q̃i{Yi −E(Yi)}.
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This is a sum of independent, centred random variables
whose combined variance is one. Further, by (A2),

n∑
i=1

E(|zi|3)≤ C2n
−3/2

n∑
i=1

|ϕ−1uTΣ−1/2q̃i|3

≤ C2ϕ
−3n−3/2

n∑
i=1

∥Σ−1/2q̃i∥32.

By assumption (A4) and (C1),
n

max
i=1

∥Σ−1/2q̃i∥22 ≤
n

max
i=1

∥q̃i∥22{λmin(Σ)}−1 =O(1).

Thus
n∑

i=1

E(|zi|3)→ 0.

The asymptotic normality of the score function follows
by Lyapunov’s central limit theorem.

S6.0.3 Consistency of predictions The following re-
sults are used to show that η̂ and η̂m are consistent es-
timators of η0. To avoid repeated statements, we only de-
rive the results for η̂m. The results for η̂ can be derived
without the need for Lemmas S12 and S13.

LEMMA S12. Suppose ∥η − η0∥2 > ϕ−1c2/(2c1).
Then,

|M(η0)−M(η)| ≥ c32
16c21ϕ

4n

where M(η) = n−1E{ℓ̄(η)}.

PROOF. Let δ = ϕ−1c2/(2c1) and Bδ(η
0) = {x ∈Rn :

∥x − η0∥2 ≤ δ} be the ball of radius δ about η0. If x ∈
Bδ(η

0) then ∥x− η0∥∞ ≤ δ and so, by assumption (A1),

|b′′(xi)− b′′(η0i )| ≤ c1δ

for all i= 1, . . . , n. Assumption (A2) then implies that

b′′(xi)≥ b′′(η0i )− ϕ−1c2/2≥ ϕ−1c2/2.

We use this to show that M(x) is bounded above by a
quadratic form for x ∈Bδ(η

0). By a Taylor expansion and
the fact that ∇ηM(η0) = 0,

M(x)−M(η0) =
−(x− η0)TD(x, η0)(x− η0)

2ϕn

In particular, as the entries of D(x, η0) are bounded below
by ϕ−1c2/2,

M(x)−M(η0)≤ −c2∥x− η0∥22
4ϕ2n

, ∀x ∈Bδ(η
0).(14)

We now show that for η /∈ Bδ(η
0) we have M(η) ≤

M(x0) where x0 = tη+(1− t)η0 for some t ∈ [0,1] such
that ∥x0 − η0∥2 = δ. By a Taylor expansion,

M(η)−M(x0) =

n∑
i=1

{∇ηi
M(v(i))}(ηi − x0i )

= (1− t)

n∑
i=1

{∇ηi
M(v(i))}(ηi − η0i )

where each v(i) is on the line joining η and x0. So, there
exists si ∈ [0,1] such that v(i) = {si + t(1− si)}η+(1−
si)(1− t)η0. Then, as v(i)−η0 = {si+ t(1−si)}(η−η0)
we can rewrite each term in the summation as

{∇ηi
M(v(i))}(ηi − η0i ) =

{∇ηi
M(v(i))}(v(i) − η0i )

si + t(1− si)

=
{b′(η0i )− b′(v

(i)
i )}(v(i)i − η0i )

ϕn{si + t(1− si)}
≤ 0

where the last inequality follows by a further Taylor ex-
pansion of b′(v(i)i ) about η0i and noting that b′′(·) is a non-
negative function. Thus, for η /∈ Bδ(η

0) there exists x0

satisfying ∥x0 − η0∥2 = δ with

M(η)≤M(x0).

The result then follows as x0 ∈Bδ(η
0) and so, by (14),

M(η)≤M(x0)≤M(η0)− c2δ
2

4ϕ2n
.

LEMMA S13. Define

α0
m = argmaxα∈RrmE{ℓ̄(Q̃mα)}

β0 = argmaxβ∈Rr̂E{ℓ̄(Q̃β)}

and β0
m = ((α0

m)T ,0)T ∈ Rr̂ . Suppose conditions (A1)-
(A4) hold and ∥(I − Pm)η0∥2 = o(1). Then,

√
n∥β0

m − β0∥2 = o(1).

PROOF. Define M(η) = n−1E{ℓ̄(η)}. A Taylor expan-
sion reveals that M(Q̃β0

m)−M(Q̃β0) is equal to

−1

2ϕn
(β0 − β0

m)T Q̃TD(η0, η0m)Q̃(β0 − β0
m)

and so

∥β0
m − β0∥22 ≤

2ϕ|M(Q̃β0
m)−M(Q̃β0)|

λmin{n−1Q̃TD(η0, η0m)Q̃}
(15)

where η0m = Q̃β0
m and η0 = Q̃β0. Our aim is to show that

|M(Q̃β0
m)−M(Q̃β0)|= o(n−1). Note that

M(PmQ̃β0)≤M(Q̃β0
m)≤M(Q̃β0)
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by definition of β0
m and β0. Then,

|M(Q̃β0
m)−M(Q̃β0)| ≤ |M(Pmη0)−M(η0)|

=
{(I − Pm)η0}TD{(I − Pm)η0}

2nϕ

≤ ∥(I − Pm)η0∥22λmax(D)

2nϕ
.

where D = D(η0, Pmη0). As ∥(I − Pm)η0∥∞ ≤ ∥(I −
Pm)η0∥2 = o(1), (C2) and assumption (A2) imply that
λmax(D) =O(1). Then,

|M(Q̃β0
m)−M(Q̃β0)|=O(∥(I − Pm)η0∥22/n)

= o(n−1).(16)

By Lemma S12, equation (16) implies that Q̃β0
m must

be in the ℓ2-ball of radius δ = c2/(2c1ϕ) about η0 for
large enough n. Hence, λmin{n−1Q̃TD(η0, η0m)Q̃} is
bounded away from zero by assumption (A3) and (A4).
Combining this with (15) and (16),

∥β0
m − β0∥22 = o(n−1).

LEMMA S14. Define

α̂m = argmaxαm∈Rrm ℓ̄(Q̃mαm)

α0
m = argmaxαm∈RrmE{ℓ̄(Q̃mαm)}

Suppose conditions (A1)-(A4) hold and assume that

n1/2∥(I − Pm)η0∥2 = o(1).

Then,

∥α̂m − α0
m∥2 =OP (n

−1/2).

The proof of this result closely follows the arguments in
Theorem 4.17 of [6] with minor modifications to account
for the differences between α0 and α0

m.

PROOF. Fix ϵ > 0. Our aim is to show that there exists
M > 0 such that for n large enough,

P(
√
n∥α̂m − α0

m∥2 >M)≤ ϵ.

For δ > 0, define An(δ) = {α ∈Rrm : ∥(Q̃T
mJ0Q̃m)1/2(α−

α0
m)∥2 ≤ δ} and ∂An(δ) to be the boundary of An(δ). Let

Eδ be the event that

Eδ = {∀α ∈ ∂An(δ), ℓ̄(Q̃mα)< ℓ̄(Q̃mα0
m)}.

We will show that for n large enough, P(Eδ)≥ 1− (1 +
ϵ′)16δ−2rm for any ϵ′ > 0, and when M2 = 2δ2ϕ/(c2c4)

it follows that P(
√
n∥α̂m − α0

m∥2 >M | Eδ) = 0. Then,
for n large enough,

P(
√
n∥α̂m − α0

m∥2 >M)≤ P(
√
n∥α̂m − α0

m∥2 >M |Eδ)

+P(Ec
δ)

= P(Ec
δ)

≤ (1 + ϵ′)16δ−2rm.

The result will follow on choosing δ2 ≥ 16rm(1 + ϵ′)/ϵ
where we have used the fact that rm is bounded above.

Let nΣmm = Q̃T
mJ0Q̃m and λ= (nΣmm)1/2(α−α0

m).
Then, for n large enough,

sup
α∈An(δ)∪∂An(δ)

√
n∥α− α0

m∥2 ≤ sup
∥λ∥2≤δ

∥λ∥2
λ
1/2
min(Σmm)

≤

√
δ2ϕ

c2c4
.(17)

by (A2) and (A4).
On the event Eδ , the maximum likelihood estimator is

in the set An(δ). This is because if for all α ∈ ∂An(δ),

ℓ̄(Q̃mα)< ℓ̄(Q̃mα0
m)

then ℓ̄(Q̃mα) has a local maximum at a point α̂m inside
An(δ) satisfying

∇αℓ̄(Q̃mα̂m) = 0.

Standard results imply the uniqueness of a local maxi-
mum, and so this point must be the MLE. Combining this
with (17), when M2 = 2δ2ϕ/(c2c4), it follows that for n
large enough,

P(
√
n∥α̂m − α0

m∥2 >M |Eδ) = 0.

Finally we show that P(Eδ)≥ 1− (1+ ϵ′)16δ−2rm for
any ϵ′ > 0 and n large enough. For all α ∈ ∂An(δ),

ℓ̄(Q̃mα)− ℓ̄(Q̃mα0
m) = (α− α0

m)T Q̃T
mU0

m

− 1

2ϕ
(α− α0

m)T Q̃T
mDQ̃m(α− α0

m)

= λT (Q̃mJ0Q̃m)−1/2Q̃T
mU0 +∆1

−∆2 −
λTλ

2

where λ= (Q̃mJ0Q̃m)1/2(α−α0
m), D =D(Q̃mα, Q̃mα0

m)
and

∆1 = λT (Q̃mJ0Q̃m)−1/2Q̃T
m(U0

m −U0)

∆2 =
∥{Q̃T

m(D− ϕJ0)Q̃m}1/2(Q̃mJ0Q̃m)−1/2λ∥22
2ϕ

By (C1), (C3) and Lemma S13,

sup
α∈∂An(δ)

|∆1| ≤ δ∥(Q̃T
mJ0Q̃m)−1/2∥2∥Q̃T

m(U0
m −U0)∥2

= o(1).
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By equation (17) and (A4),

sup
α∈∂An(δ)

∥Q̃T
m(α− α0

m)∥∞ = o(1).

Then,

sup
α∈∂An(δ)

|∆2| ≤ sup
α∈∂An(δ)

∥{n−1Q̃T
m(D− ϕJ0)Q̃m}1/2∥22 ×

∥{n−1Q̃T
mJ0Q̃m}−1/2∥22 sup

α∈∂An(δ)
∥λ∥22

= o(1)

by the arguments in (C1) and (C2). Thus,

sup
α∈∂An(δ)

ℓ̄(Q̃mα)− ℓ̄(Q̃mα0
m) = sup

∥λ∥=δ
λTZ − δ2/2 + o(1)

≤ δ∥Z∥2 − δ2/2 + o(1).

where Z = (Q̃T
mJ0Q̃m)−1/2Q̃T

mU0. By the arguments in

Lemma S11 (replacing Q̃ with Q̃m), ∥Z∥22
d−→ χ2

rm and
so for any ϵ′ > 0,

P(∥Z∥2 ≤ δ/4)≥ 1− (1 + ϵ′)P(χ2
rm > δ2/16)

≥ 1− (1 + ϵ′)16δ−2rm

when n is large enough. When ∥Z∥2 ≤ δ/4 the event Eδ

holds and so

P(Eδ)≥ 1− (1 + ϵ′)16δ−2rm

for n large enough.

LEMMA S15. Suppose conditions (A1)-(A4) hold and
n1/2∥(I − Pm)η0∥2 = o(1). Then,

∥η̂m − η0∥3 =OP (n
−1/6).

PROOF. By uniqueness of the maximum likelihood es-
timators,

η̂m = Q̃mα̂m = Q̃β̂m

η0 = Q̃β0.

where α̂m is defined in Lemma S14, β0 is defined in
Lemma S13, and (β̂m)T = ((α̂m)T ,0). Similarly, write

η0m = Q̃mα0
m = Q̃β0

m

where α0
m is defined in Lemma S14 and (β0

m)T =
((α0

m)T ,0). By Lemma S14, ∥
√
n(α̂m−α0

m)∥2 =OP (1).
By Lemma S13,

√
n∥β0

m − β0∥2 = o(1). Then,
√
n∥β̂m − β0∥2 ≤

√
n(∥β̂m − β0

m∥2 + ∥β0
m − β0∥2)

= ∥
√
n(α̂m − α0

m)∥2 + o(1)

=OP (1).

So, by assumption (A4),

∥η̂m − η0∥22 = (β̂m − β0)T Q̃T Q̃(β̂m − β0) =OP (1).

Further, assuming ∥q̃i∥∞ is bounded for all i= 1, . . . , n,

∥η̂m − η0∥∞ ≤ max
i=1,...n

∥q̃i∥2∥β̂m − β0∥2 =OP (n
−1/2).

Then,

∥η̂m − η0∥33 ≤ ∥η̂m − η0∥∞∥η̂m − η0∥22 =OP (n
−1/2).
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