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Abstract. Recently Lagarias introduced the Wild semigroup, which is inti-
mately connected to the 3x + 1 Conjecture. Applegate and Lagarias proved a
weakened form of the 3x + 1 Conjecture while simultaneously characterizing
the Wild semigroup through the Wild Number Theorem. In this paper, we
consider a generalization of the Wild semigroup which leads to the statement
of a weak qx+1 conjecture for q any prime. We prove our conjecture for q = 5
together with a result analogous to the Wild Number Theorem. Next, we look
at two other classes of variations of the Wild semigroup and prove a general
statement of the same type as the Wild Number Theorem.

1. Introduction

The 3x + 1 iteration is given by the function on the integers

T (x) =
{

x
2 for x even

3x+1
2 for x odd.

The 3x + 1 conjecture asserts that iteration of this function, starting from any
positive integer n, eventually reaches the integer 1. This is a famous unsolved
problem.

Farkas [2] formulated a semigroup problem which represents a weakening of the
3x + 1 conjecture. He associated to this iteration the multiplicative semigroup W
generated by all the rationals n

T (n) for n ≥ 1. We’ll call this the 3x + 1 semigroup,
following the nomenclature in [1]. This generating set is easily seen to be

G =
{

2n + 1
3n + 2

: n ≥ 0
}
∪ {2}

because the iteration can be written T (2n + 1) = 3n + 2 and T (2n) = n. Farkas
observes that 1 = 1

2 · 2 ∈ W and that if T (n) ∈ W then n = n
T (n) · T (n) ∈ W .

Therefore the truth of the 3x+1 conjecture implies that all positive integers belong
to W3. He raised the question that W contained all positive integers, a problem
later termed by Lagarias [7] the Weak 3x + 1 Conjecture.

In the course of studying Farkas’s conjecture, Lagarias [7] was led to study a
similar semigroup question concerning which integers occur in the inverse semigroup
W−1 = {g−1 : g ∈ W}. We shall refer to this as the inverse 3x + 1 semigroup (it
is also known as the wild semigroup in [1]). The inverse 3x + 1 semigroup has
generators

G−1 =
{

3n + 2
2n + 1

: n ≥ 0
}
∪ {1

2
}.

He conjectured that the integers contained in W−1 are all the positive integers that
are not divisible by 3 (“the Wild Numbers Conjecture”) and proved that this new
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conjecture is equivalent to the Weak 3x + 1 Conjecture. Applegate and Lagarias
[1] subsequently proved both of these conjectures. Their result gave a complete
characterization of the elements of the semigroup W , showing that it consisted of
all positive rationals whose denominator is not divisible by 3.

The results of Applegate and Lagarias establish that W is a very large semigroup
inside the (infinitely generated) abelian group of all rational numbers Q∗. Indeed,
if we let W+ be the semigroup generated by W ∪ { 1

3 ,−1} then W+ = Q∗. This
latter fact turns out to have a simplified direct proof, as we will show in a later
section.

In this paper we study the structure of certain semigroups S = S(A, B,C, D)
associated to similar iteration problems. These semigroups all have generating sets
of the form

S(A, B,C, D) =
〈{

An + B

Cn + D
: n ≥ 0

}〉
,

together with a finite set of additional generators, specific to each iteration problem.
We address the question of when some of these semigroups become equal to the
group of rational numbers Q∗. The specific cases we treat are the following ones.

First, we consider semigroups obtained from generalized “qx + 1 conjectures.” If
q is an odd prime, we consider the iteration of the qx + 1 function

Tq(x) =
{

x
2 for x even

qx+1
2 for x odd.

Related to the iteration above, we construct the multiplicative semigroup Wq gen-
erated by all rationals Tq(n)

n for n ≥ 1. Then it is easy to see that

Wq =

〈{
qn + q+1

2

2n + 1
: n ≥ 0

}
∪

{
1
2

}〉
.

We conjecture that the semigroup Wq is “large” for every odd prime q, in the sense
that after adding a finite number of generators to Wq, we can obtain the entire
group Q∗.

We can conceive of a “qx + 1 conjecture” as stating that sufficient iteration of
this function, starting from any positive integer n, eventually reaches 1. As in the
case q = 3, the fact that Wq is large would follow from the “qx + 1 conjecture.”
The qx + 1 conjecture is false in general. For example, it fails for q = 5, since
the iteration starting at 13 goes through the cycle 13, 33, 83, 208, 104, 52, 26, 13 and
never reaches 1. The heuristic analysis of the 5x + 1 problem suggests that the
set of integers which iterate to 1 is very sparse [8]. In this paper, we nevertheless
prove that W5[5,−1] is equal to Q∗. Thus the semigroup problem associated to
the 5x + 1 problem has a “positive” answer. Thus, our findings indicate that the
results of these semigroup problems shed no information on the truth or falsity of
the 3x + 1 problem, or the 5x + 1 problem.

The second class of semigroups we consider are the semigroups

Sq =
〈{

2qn− 1
qn− 1

: n ≥ 1
}〉



MULTIPLICATIVE SEMIGROUPS RELATED TO THE 3x + 1 PROBLEM 3

where q is a prime, which were suggested by work of Farkas [2]. In the concluding
section of the paper we discuss the semigroups

Vq =
〈{

2qn + 1
qn + 1

: n ≥ 0
}〉

which can be treated similarly to Sq. These are motivated by Farkas’s treatment
of V2 [2, 6]. To obtain results on such a semigroup Sq we assume we have added to
it as extra generators a suitably chosen finite set of rational numbers. Under the
hypothesis that the prime q has 2 as a primitive root and that q is not the largest
prime with this property, we prove that Sq will be equal to Q∗ after adding only a
finite number of extra generators. The proof will essentially show that n ∈ Sq by
induction on the positive integer n and the reason for adding the extra generators
is to ensure the base case of the induction.

2. First properties of Wq and Sq

In this section we derive some basic properties of both classes of semigroups we
consider, proving parallel results for Wq and Sq. The main idea we highlight is
that such a multiplicative semigroup contains many positive integers if and only if
it contains many inverses of positive integers.

Recall that for an odd prime q we considered the semigroup Wq given by

Wq =

〈{
qn + q+1

2

2n + 1
: n ≥ 0

}
∪

{
1
2

}〉
.

The case q = 3 is the “Wild semigroup” considered by Lagarias [7] and Applegate
and Lagarias [1]. Every rational number in the generating set of Wq is a ratio
between the value of the qx + 1 function at some positive integer n and the integer
n. If the qx + 1 iteration were to eventually reach 1 then we could express 1

n as a
product of generators of Wq. This motivates the following conjecture.

Conjecture 2.1 (Weak qx+1 Conjecture). For each positive integer n the fraction
1
n is in Wq.

We also make the following parallel conjecture.

Conjecture 2.2 (Inverse qx + 1 Conjecture). A positive integer n is in Wq if and
only if gcd(n, q) = 1.

The special case q = 3 is the “Wild Numbers Conjecture” which was proved by
Applegate and Lagarias [1]. In this section of the paper, we will prove that the two
conjectures are close to being equivalent; namely they become equivalent after we
add finitely many extra generators. In the next section of the paper we prove both
of these conjectures in the case q = 5.

Our study of the semigroup Wq will involve selectively adding to it a finite
number of extra generators. As a notation for describing semigroups with extra
generators, define for B ≥ 2 the semigroup

Wq[B] =
〈

Wq ∪
{

1
q

}
∪

{
p,

1
p

: p ≤ B, p &= q

}〉

where p runs over prime numbers. In particular, Wq[B] contains all positive integers
n ≤ B which are prime to q.
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Recall that for any prime q we have also defined the multiplicative semigroup

Sq =
〈{

2qn− 1
qn− 1

: n ≥ 1
}〉

.

We conjecture that this semigroup is “large”, so that it will equal Q∗ after adjoining
to it only finitely many generators. In order to describe the extra generators, we
define for B ≥ 2 the semigroup

Sq[B] =
〈

Sq ∪
{

p,
1
p

: p ≤ B, p &= q

}〉
.

Sometimes the extra generators being added this way are already in the semigroup
(as we shall see in the following section in the case of W5). We would hope to not
have to add any generators at all, thus proving the strongest possible result on the
semigroups Wq or Sq. This can be avoided for specific values of q via a computer
calculation. However, to obtain results for general q it seems necessary to add a
finite number of extra generators.

We now introduce several very useful ideas which will highlight our basic strategy
in studying both Wq and Sq.

Definition 2.3. Let p be a prime number. We call a positive integer p-smooth if
it is a product of primes r < p.

This property is useful because if a multiplicative semigroup S contains all primes
r < p then it contains all p-smooth numbers as well.

Definition 2.4. Let S be any of the multiplicative semigroups we are considering.
We say that a positive integer n is reduced to m in S if n

m ∈ S. That is, if one can
prove m ∈ S, it follows that n ∈ S.

We say that a positive integer n is I-reduced to m if m
n ∈ S. Thus, if 1

m ∈ S
then it follows that 1

n ∈ S.

Our strategy will be to reduce or I-reduce n to some m < n and use induction
to prove that S contains all positive integers relatively prime to some modulus or
the reciprocals of these positive integers. Notice that because S is multiplicative
the relation “reduced to” between n and m is transitive. (Note however that this
relation is not symmetric.)

Note 2.5. Definition 2.4 allows an integer n to be reduced to an integer m > n.
The notion of “reduced” does not inherently refer to reducing the size of the integer
n.

Definition 2.6. Let k be a positive integer. We call k a multiplier for a multi-
plicative semigroup S if 1

k ∈ S. We call k an inverse multiplier, or an I-multiplier
for S if k ∈ S.

If 1
k ∈ S, then once we prove that kn ∈ S for some n it will also follow that

n ∈ S. If k ∈ S, then proving 1
kn ∈ S implies that 1

n ∈ S.
Our strategy for proving n ∈ S will be to find an appropriate multiplier k for n

and then reduce kn to some m < n. Then m ∈ S will imply kn ∈ S which in turn
will imply n ∈ S. This basic strategy gives us the following theorem.



MULTIPLICATIVE SEMIGROUPS RELATED TO THE 3x + 1 PROBLEM 5

Theorem 2.7. Let q ≥ 5 be a prime and set b(q) = 50q3. Then for all B ≥ b(q)
the following conditional result holds: if 1

m ∈ Wq[B] for all integers 1 ≤ m ≤ M
then

n ∈ Wq[B] for all positive integers n ≤ M

2q3
with gcd(n, q) = 1.

In particular, if 1
m ∈ Wq[B] for all m ≥ 1 then n ∈ Wq[B] for all positive integers

n with gcd(n, q) = 1.

Proof. To prove that n ∈ Wq[B] for all integers n ≤ M
q2 which are prime to q, it

suffices to prove it for primes p &= q which are less than M
q2 . The proof will be by

induction on the prime p. The fact that all such primes p ≤ B are already in Wq[B]
gives us the base case of the induction.

Let p > B be the next prime for which we want to prove p ∈ Wq[B]. All primes
r < p, r &= q satisfy r ∈ Wq[B] by the induction hypothesis. Therefore, all p-smooth
numbers which are prime to q will be contained in Wq[B] as well. We are done if
we can find a multiplier k so that kp reduces to a p-smooth number.

For k to be a multiplier, we want 1
k ∈ Wq[B] and by hypothesis this holds for

any k < M . We wish to find a generator

kp

2n + 1
=

qn + q+1
2

2n + 1
∈ Wq

so that 2n + 1 is p-smooth. The condition on k is 2kp− 1 = q(2n + 1), so 2kp ≡ 1
(mod q). Since gcd(2p, q) = 1, this congruence can be satisfied for certain values of
k and the condition puts k in an arithmetic progression of common difference q.

If k is any term in this progression, then kp reduces to 2n + 1 = 2kp−1
q . If this

number is p-smooth and not divisible by q then we are done. There are q possible
residue classes for k modulo q2 and q − 1 of them will produce an integer 2n + 1
which is not divisible by q. We pick any class for k modulo q2 out of the q − 1.
Then k can be any term in an arithmetic progression of common difference q2. As
it runs through the terms of that arithmetic progression, 2n + 1 will run through
the terms of an arithmetic progression of common difference 2pq.

We claim that for p > 50q3, we can find a p-smooth number 2n + 1 in this
arithmetic progression which is less than (2pq)2. We defer the proof of this claim
to the next lemma. Now we complete the proof assuming the claim is true. Then
k = q(2n+1)+1

2p < 2pq3. Since p is bounded by M
2q3 we get k < M so k satisfies a

sufficient condition for being a multiplier. Thus we are done. !
Lemma 2.8. Let p and q be prime numbers with q ≥ 5. Assume that p > 50q3.
Then any arithmetic progression of common difference 2pq whose terms are rela-
tively prime to 2pq contains a p-smooth number less than (2pq)2.

Proof. It suffices to show that more than half of the invertible residue classes modulo
2pq contain a p-smooth number between 1 and 2pq. Indeed, once more than half
the residue classes are p-smooth, we can obtain any invertible residue class as a
product of two p-smooth residue classes. In all cases, the product will be a product
of p-smooth numbers and so a p-smooth number itself. It is easy to see that the
product will always be less than (2pq)2.

We shall now use a counting argument. There are a total of (p − 1)(q − 1)
invertible residue classes modulo 2pq. Out of these, the only ones whose members
between 1 and 2pq are not p-smooth are those of the form a · r, where r ≥ p is



MULTIPLICATIVE SEMIGROUPS RELATED TO THE 3x + 1 PROBLEM 6

a prime and a is an odd integer between 1 and 2q − 1 inclusive. If we let π(x)
denote the prime counting function, then for any fixed a the number of such r is
π

( 2pq
a

)
−π(p− ε) for positive ε ( 1, so if we sum over all a then it suffices to show

that
2q−1∑

a=1,a odd

(
π

(
2pq

a

)
− π(p− ε)

)
<

(p− 1)(q − 1)
2

,

or, rearranging slightly, that
2q−1∑

a=1,a odd

π

(
2pq

a

)
<

(p− 1)(q − 1)
2

+ qπ(p− ε).

We now use the bounds cited in [1] that x
log(x) < π(x) < x

log(x)−1.5 for x ≥ 17, and
assume that p > 17. The left hand side of this equality is then bounded above by∑ 2pq/a

log(2pq/a)−1.5 < 2pq
log(p)−1.5

∑ 1
a , and using the easy bound 1

1 + 1
3 + · · · + 1

2q−1 <
log(2q−1)

2 + 1
2 < log(2q)+1

2 we have
2q−1∑

a=1,a odd
π

(
2pq

a

)
< pq · log(2q) + 1

log(p)− 1.5
.

Similarly, the right hand side is bounded below by

(p− 1)(q − 1)
2

+ qπ(p− ε) >
(p− 1)(q − 1)

2
+

(p− ε)q
log(p− ε)

= pq

(
(1− 1

p )(1− 1
q )

2
+

1− ε
p

log(p− ε)

)
,

and if we assume q ≥ 5 and p > 17 then it is further bounded below by pq
(

32
85 + 1

log(p)

)

as ε → 0. Dividing by pq, we see that it suffices to pick p > 17 large enough so that

log(2q) + 1
log(p)− 1.5

<
32
85

+
1

log(p)

log(2q) <
32
85

log(p)− 48
85
− 1.5

log(p)
.

Letting P = log(p) and Q = log(2q) for simplicity, we need to pick P sufficiently
large so that 32

85P 2 −
(
Q + 48

85

)
P − 1.5 > 0. This happens whenever P is bigger

than the larger root of this quadratic:

P >
Q + 48

85 +
√(

Q + 48
85

)2 + 192
85

64/85

and since Q ≥ log(10), we have Q + 80
85 ≥

√(
Q + 48

85

)2 + 192
85 , so it suffices to take

P > 85
32Q + 2. Exponentiating this, we need p > e2(2q)85/32. Therefore the lemma

is true for all p > 50q3, since

50q3 > e2(2q)85/32 = 46.58 · q85/32.

!
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Table 1. Proof that W5 contains reciprocals of all primes p ≤ 13
and contains all primes p ≤ 23.

1
3 =

(
1
2

)3 · 5·1+3
2·1+1

1
7 = 1

2 ·
(

1
3

)2 · 5·3+3
2·3+1

1
11 =

(
1
2

)2 · 1
7 · 5·5+3

2·5+1
1
13 = 1

3 · 1
11 · 5·6+3

2·6+1
1
5 = 1

13 · 5·2+3
2·2+1

3 = 5·0+3
2·0+1

19 = 3 · 5·26+3
2·26+1 · 5·10+3

2·10+1
11 = 3 · 19 · 1

13 · 5·28+3
2·28+1

7 = 11 ·
(

1
2

)2 · 5·5+3
2·5+1

2 = 7 ·
(

1
3

)2 · 5·3+3
2·3+1

13 = 3 · 19 · 1
11 · 5·28+3

2·28+1

17 = 33 ·
(

1
2

)2 · 5·13+3
2·13+1

23 = 32 · 5·4+3
2·4+1

Note 2.9. It can be shown in a similar fashion that for B ≥ 50q3 and assuming
n ∈ Wq[B] for all n ≥ 1 relatively prime to q, then we may conclude 1

n ∈ Wq[B]
for all positive integers n. This implies that the Weak qx + 1 Conjecture and the
Inverse qx + 1 Conjecture are equivalent under the hypothesis that p ∈ Wq and
1
p ∈ Wq for all primes p ≤ 50q3.

We have the analogous result for the semigroups Sq.
Theorem 2.10. Let q be an odd prime and assume B ≥ 50q3. Then the following
conditional result holds. If m ∈ Sq[B] for 1 ≤ m ≤ M with gcd(m, q) = 1 then

1
n
∈ Sq[B] for all positive integers n ≤ M

2q2
with gcd(n, q) = 1.

Proof. We argue just as in the proof of Theorem 2.7. Thus we only need to show
that 1

p ∈ Sq[B] for all prime numbers p < M
2q2 , p &= q. We do this by induction on

the prime p. From the definition of Sq[B] we know this is true as long as p ≤ B. Let
p be the smallest prime for which we want to prove that 1

p ∈ Sq[B]. Then p > b(q)
and by the induction hypothesis, all p-smooth numbers m which are relatively prime
to q already satisfy 1

m ∈ Sq[B]. Our strategy will be to find an I-multiplier k ≤ M
such that kp I-reduces to a p-smooth number which is prime to q.

We want kp = qn − 1 for some n such that 2qn − 1 is p-smooth, since 2qn−1
qn−1 ∈

Sq[B]. Then kp ≡ −1 (mod q) so the possible values of k are in an arithmetic
progression of difference q. The p-smooth number will have to be 2kp + 1, taking
values in an arithmetic progression of difference 2qp. By Lemma 2.8, one can find a
p-smooth number less than (2pq)2 in this progression. Then we choose k such that
2kp + 1 < (2pq)2 is p-smooth, which means k < (2pq)2

2p . As long as p ≤ M
2q2 we have

that k ≤ M so the chosen k will be an I-multiplier. !

3. The 5x + 1 Semigroup

Now we will focus our attention on W5, the multiplicative semigroup generated
by 5n+3

2n+1 for n ≥ 0 and 1
2 .

Theorem 3.1. The multiplicative semigroup W5 contains all n ≥ 1 with gcd(n, 5) =
1 and all fractions 1

n with n ≥ 1.
This theorem implies that both the Weak 5x + 1 Conjecture and the Inverse

5x + 1 Conjecture are true. These are special cases of Conjectures 2.1 and 2.2,
respectively.



MULTIPLICATIVE SEMIGROUPS RELATED TO THE 3x + 1 PROBLEM 8

The proof of this theorem will be based on three lemmas, which will make up an
inductive argument. Concretely, we will prove by induction on the positive integer
n that 1

n ∈ W5. Since we have 1 ∈ W5 (it is equal to 2 · 1
2 ) it suffices to I-reduce

n to some positive integer m < n. We will provide a systematic way of doing this
through the following lemmas.

Lemma 3.2. For any positive integer n < 1211 − 1 we have 1
n ∈ W5.

Proof. We will show that any n < 1211−1 I-reduces to some m < n. We may easily
check that 1

p ∈ W5 for all primes p ≤ 13 and that W5 contains all primes p ≤ 23
with p &= 5; these computations are done in Table 1. We can use all odd k ≤ 23 as
I-multipliers. Thus for any odd k ≤ 23 it suffices to I-reduce kn to some m, since
this will imply that n also I-reduces to m. After picking a specific value of k we
I-reduce kn to some F (kn) such that F (kn)

kn ∈ W5. However, we only allow one of
three choices for F (kn).

F (kn) =






kn
2 if kn is even

kn
3 if kn is odd, but 3 | kn
5kn+1

2 otherwise.

Notice that these choices make sense, since F (kn)
kn will always equal 1

2 , 1
3 or a fraction

of the form 5N+3
2N+1 , all of which belong to W5. If n is even or a multiple of 3 we can

pick k = 1 and immediately I-reduce n to F (n) with F (n) < n. In this case we are
done.

If gcd(n, 12) = 1, the first step of the I-reduction does not give us F (kn) < n.
Still, if n ≡ 7 (mod 12) we can again pick k = 1 and I-reduce n to F (F (F (n))) =
5n+1

12 < n. This is an example of our basic strategy. For any n < 1211−1 we can pick
a successive sequence of I-multipliers k1, . . . , kj such that m = F (kjF (. . . F (k1n))
satisfies m < n. We can find the values of the I-multipliers k1, . . . kj for each
n < 1211 − 1 using a computer search. Thus, each n < 1211 − 1 I-reduces to
some m < n and the computer search records the largest value of the ratio m

n as
694
695 ≈ 0.99856. !

Remark 3.3. The computer search finds a sequence of I-multipliers for each n with
the property that going from n to m doesn’t require dividing by more than 1211.
This means that any positive integer n′ ≡ n (mod 1211) gives us some m′ < n′ from
the exact same sequence of I-multipliers. Thus, instead of working with positive
integers, we are working with residue classes modulo 1211.

Lemma 3.4. Let M ≥ 1211 − 2. Assume that 1
n ∈ W5 for all n ≤ M . Then

m ∈ W5 for all m ≤ M
250 with gcd(m, 5) = 1.

Proof. We follow the argument from the proof of Theorem 2.7. The main point is to
show that primes p ≤ M

250 with p &= 5 belong to W5. To do this, it suffices to prove
that a p-smooth number less than (10p)2 appears in every arithmetic progression
with difference 10p. By Lemma 2.8, this follows from the inequality

π(10p) + π

(
10p

3

)
+ π

(
10p

5

)
+ π

(
10p

7

)
+ π

(
10p

9

)
< 2(p− 1) + 5π(p− ε).

This inequality holds for 167 ≤ p ≤ 700 by computer search.
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Using the approximation x
log(x) < π(x) < x

log(x)−1.5 for x ≥ 17 given in [1], we
see that the inequality above follows for p > 17 from the inequality

∑ 10p/a

log(10p/a)− 1.5
< 2(p− 1) +

5(p− ε)
log(p− ε)

,

where the sum is taken over odd a < 10. Letting ε → 0, this inequality is true for
p = 701, and the difference between the right side and the left side is easily shown
to be an increasing function for p ≥ 700 by computing derivatives. We conclude
that we can find the desired p-smooth number whenever 167 ≤ p ≤ M

250 . For the
primes p < 167 other than 5 we show directly by means of a computer search that
they belong to W5. This completes the proof of the lemma. !

Lemma 3.5. Let j ≥ 11. Assume that every n &≡ −1 (mod 12j) can be I-reduced
to some m < n. Then every n &≡ −1 (mod 12j+1) can be I-reduced to some m < n.

Proof. From the hypothesis of the lemma, we can I-reduce all the integers in all
the residue classes modulo 12j+1 except for l · 12j − 1 with 1 ≤ l < 12. It is
enough to show how to handle these extra residue classes. Let n = l · 12j − 1 with
1 ≤ l < 12. We use k = 12i+1

5 as an I-multiplier, where i is the largest integer
satisfying j − 10 ≤ i ≤ j − 3 and i ≡ 2, 6, 14 or 18 (mod 20). First, notice that
the smallest value of such an i is 6, obtained for j = 11, . . . , 16. Now, for i in
those congruence classes, k = 12i+1

5 is always an integer and it is always prime to
5. Also, since i ≤ j−3 we have that k < 12j−2

123 < 12j−2
250 , so by Lemma 3.4, k ∈ W5.

Therefore we can use it as an I-multiplier.
For the chosen k, 2F (kn) = (12i + 1)(l · 12j − 1) + 1 is divisible by 12i. This

means that kn can be I-reduced to m0 = l · 12j + l · 12j−i − 1. Since j − i ≤ 10
and 1 ≤ l < 12, we have m0 &≡ −1 (mod 1211). This means that we can further
I-reduce m0 to some m < m0 as in Lemma 3.2. Moreover,

m0 <
12i + 2

12i
n ≤ 126 + 2

126
n.

Even though m0 might not be in fact smaller than n, it is close enough to it that
once we I-reduce m0 to m we get

m <
694
695

m0 <
694
695

· 126 + 2
126

· n < n.

Therefore, we can I-reduce all n of the form l · 12j − 1 with 1 ≤ l < 12 to some
m < n. This proves that W5 contains 1

n for all n < 12j+1− 1. Any positive integer
n′ ≡ n (mod 12j+1) can give us some m′ < n′ from the exact same sequence of
I-multipliers. This finishes the proof of our lemma. !

Proof of Theorem 3.1. We now put together the three lemmas. We prove by in-
duction on j ≥ 11 that 1

n ∈ W5 for all n < 12j − 1 and m ∈ W5 for all m < 12j−1
250

satisfying gcd(m, 5) = 1. Lemmas 3.2 and 3.4 give us the base case of the induction
for j = 11. Assume now that the induction hypothesis is satisfied for some j ≥ 11.
Then lemma 3.5 implies that 1

n ∈ W5 for all n < 12j+1−1. This makes the hypoth-
esis of lemma 3.4 for j + 1 true and as a result m ∈ W5 for all m < 12j+1−1

250 which
satisfy gcd(m, 5) = 1. As j becomes larger and larger we see that W5 contains all
fractions 1

n and all positive integers m which are prime to 5. !
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4. The semigroups Sq

We return to the study of the semigroups Sq which we have defined for every
prime number q

Sq =
〈{

2qn− 1
qn− 1

: n ≥ 1
}〉

.

Remember also that for B ≥ 2, Sq[B] is the semigroup obtained from Sq by adding
a finite number of extra generators (specifically prime numbers p &= q which are less
than B and their inverses). We make the following conjecture.

Conjecture 4.1. Let q be a prime number. There exists some B ≥ 2 such that
Sq[B] contains all positive integers n and their inverses 1

n which satisfy gcd(n, q) =
1.

We will prove this conjecture in a few special cases.

Theorem 4.2. The semigroup S2 generated by rationals of the form 4N+3
2N+1 for

N ≥ 0 contains all odd integers n > 1.

Proof. The proof is by induction on the odd integer n. First, we notice that for
N = 0 we get 3 ∈ T2. Let G(n) = n−1

2 for n odd. Now let n be an odd integer
greater than 1 so that n′ ∈ S2 for all 1 < n′ < n. Let 2j be the largest power
of 2 that divides n − 1, so that n ≡ 2j + 1 (mod 2j+1), and let k = 2j − 1.
Then kn ≡ −1 (mod 2j+1), so kn will reduce to G(kn) ≡ −1 (mod 2j) which
can be further reduced. We eventually get kn to m0 = G(G . . . G(kn)), where
G is composed with itself j times. We can compute m0 explicitly as k(n−1)

2j . Let
m = n−1

2j < n. From the choice of j, we know that m is odd. We have kn
m0

∈ S2, but
this fraction is the same as n

m . If m = 1 we find directly that n ∈ S2. Otherwise,
m ∈ S2 by the induction hypothesis and n

m ∈ S2, so n ∈ S2 as well. !
Corollary 4.3. Conjecture 4.1 is true for q = 2.

Proof. This follows from Theorems 2.10 and 4.2. !
We will now study the semigroup S3 generated by all rationals of the form 6n+5

3n+2

with n ≥ 0 a positive integer. Let us add the extra generators 2 and 1
5 . We notice

that 2, 5
2 , 11

5 , 23
11 can be obtained from the generators, so all the primes 2, 5, 11, 23

can also be obtained. Similarly 1
2 , 1

3 and 1
5 can be obtained, so the semigroup with

the extra generators is actually S3[5]. We prove the following theorem.

Theorem 4.4. The semigroup S3[5] contains all integers not divisible by 3 and
their inverses.

Proof. We shall prove that n ∈ S3[5] by induction on n. We claim S3[5] contains
both n and 1

n for all n ≤ 2041 with gcd(n, 3) = 1. This can be verified through
a computer search. For the induction step, it suffices to show we can reduce each
integer n to some m < n with n

m ∈ S3[5]. As we’ve seen in the proof of Theorem
3.1, we can reduce an entire residue class simultaneously once we’ve managed to
reduce its smallest representative.

Our argument will be based on two crucial lemmas, the proofs of which we give
below. The first lemma says that, assuming 1

m ∈ S3[5] for all m ≤ 2j+1 prime to 3,
we can reduce all residue classes modulo 3 · 2j+1 except for the residue class of 1.
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The second lemma says that, assuming 1
m ∈ S3[5] for all m ≤ 7l+2 prime to 3, we

can reduce all n ≡ 1 (mod 3 ·2j+1) as long as n &≡ 1 (mod 3 ·7l+1). Putting the the
two lemmas together, we find that as long as 1

m ∈ S3[5] for all m ≤ max(2j+1, 7l+1)
prime to 3 we can reduce all positive integers n &≡ 1 (mod 3 · 2j+1 · 7l+1) which are
prime to 3.

Assuming the truth of the two lemmas, we prove the result up to the bound
M = 7l+2 by induction on l. If S3[5] contains all inverses of prime to 3 integers up to
the bound M , then it must also contain all prime to 3 integers n ≤ M2

14 ≤ 2j+1 ·7l+1

where j satisfies 2j ≤ M < 2j+1. Since M ≥ 2041 > 50 · 33 we can apply Theorem
2.10. This means that S3[5] will contain the inverses of all the integers up to

M2

14·2q2 = M2

252 > 7M which are prime to 3. Now we can go through the same
argument again, this time using 7M = 7l+3 as our bound instead of M . The
theorem follows by induction on the integer l. !

Lemma 4.5. Let j ≥ 3. Assume that 1
m ∈ S3[5] for all m ≤ 2j+1 with gcd(m, 3) =

1. Then all the integers n in all the residue classes modulo 3 · 2j+1 except for the
class of 1 can be reduced to smaller integers using multipliers no greater than 2j+1.

Proof. We first note that any n ≡ 2 (mod 3) can be very easily reduced to G(n) =
n−1

2 < n if it is odd or to n
2 < n if it is even. From now on we shall consider only

the case n ≡ 1 (mod 6). Observe that for such an n any odd multiplier k which
satisfies k ≡ 2 (mod 3) allows us to reduce kn to G(kn) = kn−1

2 . (This is true
because we have kn = 6n′ + 5 which can be reduced to 3n′ + 2.)

It is not hard to see that we can reduce most residue classes modulo 8. Indeed,
we can perform a reduction by taking the multiplier k = 5. If n ≡ 5 (mod 8)
then we can reduce n to 5n−1

8 < n and we are done. If n ≡ 7 (mod 8) then
we reduce it to m = G(G(5n))

2 = 5n−3
8 < n. Finally, n ≡ 3 (mod 8) reduces to

m = G(G(G(5n))) = 5n−7
8 < n. Thus, the only residue class modulo 8 that we

haven’t reduced is 1.
We show now how to reduce all residue classes modulo 2j+1 except for the class

of 1. Let i ≤ j be the greatest integer such that n ≡ 1 (mod 2i), or equivalently
n ≡ 2i + 1 (mod 2i+1). Two cases arise depending on the parity of i. First, if
2 | i then 2i + 1 ≡ 2 (mod 3), so we can choose k = 2i + 1. It is easy to see
that k < 2j+1 which implies 1

k ∈ S3[5], so k actually is a multiplier. Furthermore,
kn − 1 ≡ 22i + 2i+1 ≡ 0 (mod 2i+1). Therefore, we can reduce n to m = kn−1

2i+1 <
kn

2i+1 < n and we are done with the first case. Second, if 2 ! i then 2i + 3 ≡ 2
(mod 3) and also 2i + 3 < 2j+1, so we can choose k = 2i + 3 as our multiplier.
Then kn − 3 ≡ (2i + 1)(2i + 3) − 3 ≡ 0 (mod 2i+1). In this case we can reduce n

to m = G(G(kn))
2i−1 = kn−3

2i+1 < n. Thus we have shown that we can reduce all residue
classes modulo 2j+1 except for the residue class of 1. !

Lemma 4.6. Let j ≥ 3. Assume that 1
m ∈ S3[5] for all m ≤ 7l+2 with gcd(m, 3) =

1. Then any n ≡ 1 (mod 3 · 2j+1) can be reduced to a smaller integer as long as
n &≡ 1 (mod 3 · 7l+1).

Proof. We already know that 1
7 ∈ S3[5], so if at some point in reducing n we reach a

multiple of 7, we can simply divide it by 7 and get a smaller integer. Furthermore,
for reducing integers we shall keep using the iterating function G(n) = n−1

2 , noticing
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in addition that if n ≡ 5 (mod 6) and 7i | G(n) then G(n)
7i ≡ G(n) (mod 6) is either

even or congruent to 5 (mod 6).
Now assume that n ≡ 1 (mod 2j+1). We shall try to reduce most residue classes

that n could belong to modulo 7l+1. First, we show that if n &≡ 1 (mod 7) then
it is quite easy to reduce n. Indeed, for n ≡ 2 (mod 7) we use 11 as a multiplier,
going from n to 11n and further to 11n−1

2 which is a multiple of 7, so we reduce n
to m = 11n−1

14 < n. For n ≡ 3 (mod 7) we use 5 as a multiplier and get to 5n−1
2 ,

which is still divisible by 2 (as n ≡ 1 (mod 8)) so we get the odd integer 5n−1
4 .

This integer is divisible by 7 so we can further reduce it to m = 5n−1
28 < n. For

n ≡ 4 (mod 7) we use 23 as a multiplier and get from n to 23n−1
14 ≡ 5 (mod 6),

so we can apply G one more time and get to 23n−15
28 < n. For n ≡ 5 (mod 7)

we use 17 as a multiplier and notice that 17n − 1 ≡ 0 (mod 28) so we reduce to
m = 17n−1

28 < n. For n ≡ 6 (mod 7) we first reduce to m0 = 5n−1
4 = 1

2G(5n) ≡ 2
(mod 7) in order to switch to a better residue class modulo 7. Finally we reduce
n to m = 11m0−1

14 < 11
14

5n−1
4 < 55

56n < n. In this way, we have seen that if n &≡ 1
(mod 7) then n can be reduced. This will be the base case for an argument by
induction.

Assume that any n ≡ 1 (mod 2j+1), n &≡ 1 (mod 7i) for some i ≤ l can be
reduced to some m < n. Let n ≡ 1 (mod 7i) such that 7i+1 ! n − 1. Then n is
congruent modulo 7i+1 to some t · 7i + 1 with 1 ≤ t ≤ 6, so we can prove that n is
reducible by providing the reduction steps for each t. In each case, we want to use
an integer k congruent to both n−1 ≡ (7− t) ·7i +1 (mod 7i+1) and 5 (mod 6) as a
multiplier. In fact it will suffice to let k = k′ · 7i+1 + (7− t) · 7i + 1 for some k′ < 7.
For n ≡ 7i + 1 (mod 7i+1), we let the multiplier be k = 4 · 7i+1 + 6 · 7i + 1, and we
have kn − 1 ≡ 0 (mod 7i+1) and kn − 1 ≡ 2 (mod 4). We divide G(kn) by 7i+1

and apply G again. If G
(

G(kn)
7i+1

)
is even, then we can divide by 2 and get a number

m < kn
8·7i+1 < n. If G

(
G(kn)
7i+1

)
is odd, then it is also congruent to 2 (mod 3) so we

can apply G once more. Applying G sends an integer to less than half that integer,
so again we get m < kn

8·7i+1 < n. So in the case n ≡ 7i + 1 (mod 7i+1) we are done.
If n ≡ 2 · 7i + 1 (mod 7i+1) then the inverse of n modulo 7i+1 is 5 · 7i + 1 ≡ 0

(mod 6). We use k = 5 · 7i+1 + 5 · 7i + 1 as a multiplier in order get to G(kn)
divisible by 7i+1. We notice that kn−1 ≡ k−1 ≡ 8 ·5 ·7i (mod 2j+1) so 8 | kn−1.
This means that 4 | G(kn) in addition to 7i+1 | F (kn) by construction. Then we
can take m = G(kn)

4·7i+1 < k
8·7i+1 n < n.

In the remaining cases, we have n ≡ t ·7i +1 (mod 7i+1) with 3 ≤ t ≤ 6. Taking
k = (6t − 14) · 7i + 1 as a multiplier, it is easy to verify that kn ≡ 1 (mod 7i+1)
and k ≡ 5 (mod 6). Then m0 = G(kn)

7i+1 < k
14·7i n is either even or congruent to 5

(mod 6). If it is even we divide by 2 and if it is odd we apply G again, so in either
case we have reduced m0 to an integer m ≤ m0

2 < k
28·7i n < (6t−13)·7i

28·7i n < n. Thus
we have shown that we can reduce all residues but 1 (mod 7i+1), so the induction
step is complete. !

5. Semigroups Sq, for q having 2 as a primitive root

In this section we prove conjecture 4.1 for a substantial class of primes, namely
those when q satisfies two hypotheses:

H1: 2 is a primitive root modulo q;
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H2: There is a prime p > q such that p has 2 as a primitive root.
The second hypothesis is not as important, since it is believed there are infinitely
many primes for which 2 is a primitive root. In fact, Hooley [4] has shown that
assuming suitable Riemann hypotheses are true, then Artin’s conjecture on primi-
tive roots holds, and in particular 2 is a primitive root for infinitely many primes q.
The results of Hooley imply that 2 should be a primitive root for a positive propor-
tion of primes, with proportion given by Artin’s constant C = 0.3739.... Moreover,
Heath-Brown [3] showed unconditionally that there are at most two exceptional
primes for which Artin’s conjecture fails. If 2 is not one of these exceptions, then
we will have proved our conjecture for infinitely many primes. Putting together the
hypotheses, we get the folowing result.

Theorem 5.1. Let q be a prime which satisfies (H1) and (H2). Then there exists
some finite B ≥ 2 depending on q such that Sq[B] contains all positive integers
which are prime to q and their inverses.

The question of finding B arises. Our general argument allows us to find an
upper bound for it, which is of the form pq2 · 2p+3q−2 where p is the smallest prime
greater than q with 2 as a primitive root. In practice, for small q it is easy to find
much better bounds for B. For q = 3 we’ve seen that it is enough to take B = 5.
One can use a computer search to find B for q = 5, 11, 13, 19.

We shall now give the general argument for q > 3 as long as it satisfies the
hypotheses of the theorem. We make use of a few technical lemmas.

Lemma 5.2. Let n ≡ −1 (mod q) be an odd integer. Then n can be reduced to
G(n) = n−1

2 .

Proof. It’s easy to see that n = 2qN − 1 for some N ≥ 1, so it can be reduced to
G(n) = qN − 1. !

Notation 5.3. Let n and j be positive integers, with n odd. Let nj denote the
smallest positive integer for which n · nj ≡ 1 (mod 2j).

In particular, nj < 2j . If we think of it as a residue class, nj is the inverse in
Z/2jZ of the residue class of n.

Lemma 5.4. Assume that j ≥ q − 1 and that 1
k ∈ Sq[B] for all k ≤ 2j which are

prime to q. Then any integer n in a residue class modulo q · 2j for which both nj

and njn− 1 are prime to q can be reduced to a smaller integer using multipliers no
greater than 2j.

Proof. If q ! nj then nj belongs to an invertible residue class modulo q. Since 2 is a
primitive root modulo q, the integers of the form 2i − 1 cover all invertible residue
classes modulo q except for −1 . As a result, one can pick i between 1 and q−2 such
that (2i − 1) · nj · n ≡ −1 (mod q) as long as nj · n &≡ 1 (mod q). We will multiply
n by (2i − 1)nj . The resulting integer m0 = (2i − 1)nj · n is congruent to 2i − 1
modulo 2j and to −1 (mod q). Therefore, we can reduce m0 to G(m0) = m0−1

2 ,
which is still congruent to −1 (mod q) and congruent to 2i−1−1 modulo 2j−1. We
can apply G a total of i times and we get

G(. . . G(m0)) =
m0 − (2i − 1)

2i
.
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This integer is still divisible by 2j−i, so after a total of j steps we get (2i−1)njn−(2i−1)
2j .

In fact, what we’ve shown is that (2i−1)njn
(2i−1)m ∈ Sq[B], where m = njn−1

2j . Thus
njn
m ∈ Sq[B] and we can reduce n directly to m = njn−1

2j < n using nj < 2j as a
multiplier. !

When we find a series of steps to reduce simultaneously all the integers in a
given residue class to smaller integers, we refer to this series of steps as a way of
reducing the entire residue class. Lemma 5.4 allows us to reduce many residue
classes modulo q · 2j . Indeed, assume that some residue class n modulo q · 2j has
not been reduced modulo q · 2i for any q − 1 ≤ i ≤ j. Let a denote the inverse
of the residue class of n modulo q. Then ni has to be either 0 or a modulo q for
all q − 1 ≤ i ≤ j. On the other hand, each ni ≡ nq−1 (mod 2q−1) so nj can be
written as nq−1 +

∑j
i=q εi2i−1 where εi is either 0 or 1. Truncating the sum after

the term εi2i−1 gives us the value of ni. We deduce that the only powers of 2 with
coefficient 1 are those congruent to a or −a modulo q. Moreover, a and −a have
to appear alternately in the sum, to ensure that the sum at any point is either 0
or a modulo q. Also, since 2 is a primitive root modulo q, the difference between
the exponents of 2 which give a and −a as residues is exactly q−1

2 . Note that for
q > 3 we have q−1

2 ≥ 2. We will show that the residue classes that do not reduce
must have nj = nq−1.

Lemma 5.5. Assume that ni = 2i−1 + ni−1 and that q | ni−1. Then n can be
reduced to a smaller integer using a multiplier less than 2i+1 and so can its entire
residue class modulo q · 2i+1.

Proof. Let 0 < a < q − 1 be the inverse of the residue class of n modulo q. Since
ni−1 ≡ 0 (mod q) we must have that 2i−1 ≡ a (mod q), otherwise we are done.
Moreover, ni+1 = ni, since the difference between consecutive exponents of nonzero
terms in nj has to be at least 2 for q > 3. Then (2l − 1)(2i−1 + ni−1) ≡ ni−1(2l −
1) − 2i−1 (mod 2i+1) for l ≥ 2. If we pick l such that 2i+1 > (2l − 1)ni−1 > 2i−1,
then ni−1(2l− 1)− 2i−1 is the residue class of ni+1(2l− 1) modulo 2i+1. Moreover,
if we let k = ni−1(2l − 1) − 2i−1 then k ≡ −a (mod q), so kn ≡ −1 (mod q).
Following exactly the same steps of reduction as in Lemma 5.4 we see that we can
reduce n to kn−(2l−1)

2i+1 < n. Moreover, this reduction process only depends on the
residue class of n modulo q and modulo 2i+1.

We’re only left to check that we can pick the appropriate l. This is easy to check
by placing ni−1 between 2h and 2h+1 for some h ≤ i− 1. Let l = i− h and notice
that (2l−1)ni−1 > 2l−1+h = 2i−1 (hence l ≥ 2, or we would have ni−1 > 2i−1) and
(2l − 1)ni−1 < 2l+h+1 = 2i+1, as desired. !

Lemma 5.5 reduces all the residue classes with more than one 2i term added
after nq−1, using multipliers no greater than 2j+1. Indeed, if at least two terms are
added, then one of these terms will be added to a multiple of q. Assume nj &= nq−1.
The only possibility is that nq−1 is prime to q and there is just one term added after
it, so nj = 2i + nq−1. Then nj will be a multiple of q and 2i ≡ −a (mod q). Let
l = i + q − 1. We shall reduce this case, using multipliers no greater than 2j+q−1.

Proposition 5.6. Let C1 = 2q−1. For the semigroup Sq[B], with q satisfying
hypotheses (H1) and (H2), the only residues modulo 2j which do not reduce using
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potential multipliers less than C1 · 2j are those for which nj = nq−1. The number
of such residues is bounded as j →∞, since nq−1 takes values less than 2q−1.

Proof. Notice that nl = ni+1 = nj , since otherwise nl = ni+1 + 2i+ q−1
2 and we use

Lemma 5.5. In this case, we notice that (2l − 1)nj is congruent to k = 2l − nj

modulo 2l. Also, k ≡ 2l ≡ −a (mod q) so kn ≡ −1 (mod q). Thus, we reduce n to
kn−(2l−1)

2l < n. The multiplier used is at most 2l < 2j+q−1 = C1 · 2j . !
Let p > q be a prime number for which 2 is a primitive root and assume p ∈ Sq[B]

(for example if B ≥ p). Let j be sufficiently large and let n be a positive integer
for which nj = nq−1. Then we will show that we can reduce n modulo pl using
multipliers not larger than C2pl as long as n is not congruent to (nq−1)−1 modulo
pl. It is clear that if p | n then n can be reduced to n

p , so we shall assume that n is
in an invertible residue class modulo pl.

We give an explicit way to construct the appropriate multiplier for n if nq−1 ·
n − 1 &≡ 0 (mod pl). First, notice that by the same argument as in Lemma 5.4,
instead of requiring the multiplier to be exactly −a modulo q it is enough to find
a multiplier k ≡ nq−1 (mod 2j) that is not congruent to 0 or a modulo q. If k is
such a multiplier, then we can multiply it by some 2h − 1 to get (2h − 1)k ≡ −a

(mod q) and obtain (2h−1)kn−(2h−1)
2j after j steps. The 2h− 1 cancels as before and

we are left with kn−1
2j .

Unfortunately, we may have k > 2j , but we can still try to select k such that
pi | kn− 1 for some large enough i. In that case, knowing that p ∈ Sq[B] allows us
to divide by it, so we would be able to reduce n to kn−1

2j ·pi < n. Indeed, assume that
i− 1 < l is the largest exponent such that pi−1 | nq−1 · n− 1 .

We want to find a multiplier of the form k = 2j ·t·pi−1+nq−1 such that pi | kn−1
and t < p. This condition is equivalent to 2j ·t·n ≡ −nq−1·n−1

pi−1 (mod p), or that 2j ·t
covers all invertible residues modulo p. At the same time, we have the restriction
that 2j · t can not be congruent to −nq−1 or a−nq−1 modulo q. Now, nq−1 is either
0 or a modulo q, so in either case, one of the restricted residues is 0. If we require
t to be invertible modulo q we are left with only one restricted residue. We use the
following result.

Lemma 5.7. Assume that 2 is a primitive root modulo q ≥ 5 and that there exists
a prime p > q such that 2 is a primitive root modulo p. Then such a prime p can be
chosen so that for any invertible residues r, s modulo p, q respectively we can choose
q − 1 ≤ j < p + q − 2 and t < p with q ! t such that 2j · t ≡ r (mod p) but 2j · t &≡ s
(mod q).

Proof. Since 2 is a primitive root modulo p we know that 2j (mod p) covers all
invertible residues modulo p when j varies between q − 1 and p + q − 3. There
are p− 1 such residues and they are in bijective correspondence with the values of
t ≡ r · 2−j (mod p). Thus each value of j determines a value of t = t(j). Assume
that for all such pairs t and j we get 2j · t ≡ s (mod q). Then if j ≤ p − 2 and
j′ = j + q − 1 we must have either q | t(j) or q | t(j′) or q | t(j) − t(j′). There
are less than

⌊
p
q

⌋
positive integers less than p which are divisible by q, so there are

at most 2
⌊

p
q

⌋
values of j that fall under the first two cases. On the other hand,

assume that t(j′) = t(j) + bq, where b can be positive or negative and thus take
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any of 2
⌊

p
q

⌋
values. Then by our assumption 2j+q−1(t(j) + bq) ≡ 2jt(j) (mod p)

or 2j+q−1 · bq ≡ r(1 − 2q−1) (mod p). Thus, each value of b determines at most
one value of j. This accounts for another 2

⌊
p
q

⌋
values of n. The total number of

values j can take between q− 1 and p− 2 is p− q. If we can find p such that 2 is a
primitive root modulo p and p > q + 4

⌊
p
q

⌋
then we are done.

For q = 5 we can simply choose p = 19. For q ≥ 11 and p > 2q the inequality
p > q +4,p

q - is satisfied. If there is no prime p > 2q with 2 a primitive root modulo
p, then we can choose such a p between q and 2q. The inequality we want becomes
p > q +4. If p = q +4, however, then 16 divides either p2−1 or q2−1, so quadratic
reciprocity then implies that 2 is a quadratic residue either modulo p or modulo q.
This contradicts the assumption that 2 is a primitive root modulo both p and q, so
the only way that p > q + 4 might not be satisfied is when p = q + 2.

Suppose that p = q + 2. Then the only pair of invertible residues modulo p with
difference q is (1, q+1). The values of j and j′ corresponding to this pair must have
difference a multiple of q− 1 and must be between q− 1 and 2q− 1. The only such
pairs are (q− 1, 2q− 2) and (q, 2q− 1). For both these pairs, t and t′ are 1 and −1.
Also, the exponents q−1, q, 2q−2, 2q−1 become −2,−1,−4,−3 if reduced modulo
p − 1. This implies we have either 2−2 ≡ −2−4 (mod p) or 2−1 ≡ −2−3 (mod p),
which both give p = 5. However, p > q ≥ 5 so we have reached a contradiction,
and thus it follows that p > q + 4 as desired. !

Lemma 5.7 implies that as j varies between q − 1 and p + q − 1, 2j · t covers all
invertible residues modulo p while always avoiding one specified residue modulo q.
As a result, we can always pick t and j to get our desired multiplier k, and k will
be less than 2p+q−2pl. Let C2 = 2p+q−2. Then we can reduce almost all residues
modulo pl using multipliers no higher than C2pl.

The only integers that can not be reduced are those congruent to (nq−1)−1

modulo 2j and modulo pl. Therefore they are at least as large as 2jpl+1
2q−1 , and so we

conclude that all of the integers up to 2jpl+1
2q−1 that are not divisible by q belong to

Sq[B]. We can now use induction to get the proof of Theorem 5.1 for q > 3.

Proof of Theorem 5.1. Suppose 1
m ∈ Sq[B] for all integers m ≤ M which are prime

to q (For the base case of the induction, we pick M = B). We set j = ,log2
M
C1
-

and l = ,logp
M
C2
-. Then we have shown above that all integers n which are prime

to q and less than M2

2pC1C22q−1 can be reduced to smaller integers using multipliers
no larger than M . Therefore, Sq[B] contains all these integers n ≤ M2

2pC1C22q−1 . Set

C = 2p+3q−2pq2.

From Theorem 2.10, we find 1
m ∈ Sq[B] for all integers m ≤ M2

C prime to q. It
suffices to start out with B > C, to ensure that each bound M ≥ B can be replaced
by M2

C > M + 1. The theorem follows by induction. !
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6. Concluding remarks

The basic argument used in proving that Sq[B] contains almost all rationals for
large enough B can be adapted to prove a similar result for the semigroups

Vq =
〈{

2qn + 1
qn + 1

: n ≥ 0
}
∪ {2}

〉
,

where q is a prime number. In order to account for extra generators, we set

Vq[B] =
〈

Vq ∪
{

1
p
, p : p ≤ B, p &= q

}〉
.

For large enough B and as long as q satisfies (H1) and (H2) we claim that Vq[B]
contains n, 1

n for all positive integers n such that gcd(n, q) = 1. The proof of this
fact is analogous to the proof of the corresponding statement for Sq[B]. The only
essential difference is that we use the reduction of m ≡ 1 (mod 2q) to n = m+1

2 . For
a general m &≡ 0 (mod q) we try to find multipliers k such that km ≡ 1 (mod 2q).
The basic strategy remains that of reducing residues modulo higher and higher
powers of 2 and of r. One question that arises from verifying these results is what
happens when 2 is not a primitive root modulo q and whether we can adapt the
above strategy to this case.

Another promising direction is adapting the basic strategy to various semigroups
obtained by adjoining extra generators to Wq, Sq, Vq. In doing so, we have a found
an easy proof of a weakened version of the Wild Numbers Theorem. Let

W+
3 = 〈W3 ∪ {3,−1}〉 .

By the Wild Numbers Theorem, W+
3 = Q∗ . We explain an easier, direct proof of

this fact, based on the following two lemmas.

Lemma 6.1. Let M 0 0 and suppose that 1
m ∈ W+

3 for all positive m ≤ M . Then
n ∈ W+

3 for all positive n ≤ M2

147 .

Proof. The main step is reducing n. Let G(n) = 2n−1
3 for all n ≡ 2 (mod 3). We

clearly have n
G(n) ∈ W+

3 , so n ≡ 2 (mod 3) can be reduced easily. Suppose now
that n ≡ 1 (mod 3j) but n &≡ 1 (mod 3j+1). We use k = 1

2 (1 + 3j) as a multiplier.
If n ≡ 1 + 2 · 3j (mod 3j+1) then G(kn) will be divisible by 3j so we reduce n to

m =
G(kn)

3j
<

3j + 1
3j+1

· n < n.

If instead n ≡ 1+3j (mod 3j+1) then we reduce n to m′ = G(kn)
3j−1 . However, m′ ≡ 2

(mod 3) so it can be reduced in turn to m = G(m′) < 2
3m′. We’ve managed to

reduce n to

m <
2
3

· 3j + 1
3j

· n < n.

Thus, we can reduce all residue classes modulo 3j+1 except for the residue class of 1
using multipliers no greater than 3j+1. Similarly, we can reduce all residue classes
modulo 7i+1 other than the residue class of 1 using multipliers no greater than 7i+1.
Putting these two facts together, we see that n ∈ W+

3 for all n < M
3 · M

49 . !
The next lemma is proved similarly, by I-reducing residue classes modulo higher

and higher powers of 2 and of 5.
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Lemma 6.2. Let M 0 0 and suppose that m ∈ W+
3 for all positive m ≤ M . Then

1
n ∈ W+

3 for all positive n ≤ M2

50 .

Putting the two lemmas together, along with a computer search to verify that
W+

3 contains n, 1
n for all n ≤ 104 we get the following result.

Proposition 6.3. The semigroup W+
3 contains all positive rational numbers.

This proposition is weaker than the Wild Numbers Theorem; however, it gives
a partial answer to a question posed in [7]. The argument of Lagarias and Apple-
gate uses a bootstrap induction which deduces the validity of the Wild Numbers
Theorem over some interval from the validity of the Weak 3x+1 Conjecture over a
larger interval. Lagarias asks whether there is an argument that could be applied
symmetrically to both directions. It turns out that if we add 3 as a generator to W3

then the function G(n) = 2n−1
3 for n ≡ 2 (mod 3) generates a dynamical system

similar to the one obtained from iterating the 3x + 1 function. This suggests that
adding q as a generator to Wq, Sq (or Vq) makes it considerably easier to prove the
desired results.
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