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Monodromy and local-global compatibility for [ = p

Ana Caraiani

Abstract

We strengthen the compatibility between local and global Langlands correspondences for GL,, when n
iseven and [ = p. Let L be a CM field and II a cuspidal automorphic representation of GLy(Ar) which is
conjugate self-dual and regular algebraic. In this case, there is an [-adic Galois representation associated
to II, which is known to be compatible with local Langlands in almost all cases when [ = p by recent work
of Barnet-Lamb, Gee, Geraghty and Taylor. The compatibility was proved only up to semisimplification
unless IT has Shin-regular weight. We extend the compatibility to Frobenius semisimplification in all cases
by identifying the monodromy operator on the global side. To achieve this, we derive a generalization of
Mokrane’s weight spectral sequence for log crystalline cohomology.

1 Introduction

This paper is a continuation of [C]. Here we extend our local-global compatibility result to the case [ = p.

Theorem 1.1. Letn € Z>2 be an integer and L be a CM field with complex conjugation c. Let 1 be a prime
of Q and v; : Q — C be an isomorphism. Let I1 be a cuspidal automorphic representation of GL,(Ay)
satisfying

o IIV~TIloc
e II is cohomological for some irreducible algebraic representation = of GLy (L ®g C)

Let
Ri(IT) : Gal(L/L) — GL,(Q;)

be the Galois representation associated to I1 by [Sh, CHJ. Let y be a place of L above l. Then we have the
following isomorphism of Weil-Deligne representations

WD(Ri(M)|gaz,/n,)" % = Lnr,([y).

Here L, 1,(II,) is the image of II, under the local Langlands correspondence, using the geometric nor-
malization; WD(r) is the Weil-Deligne representation attached to a de Rham [-adic representation r of the
absolute Galois group of an [-adic field; F' — ss denotes Frobenius semisimplification.

This theorem is proved in [BLGGT1, BLGGT2| in the case when IT has Shin-regular weight (either n is
odd or if n is even then II satisfies an additional regularity condition) and in general up to semisimplification.
Our goal is to match up the monodromy operators in the case when n is even and II does not necessarily
have Shin-regular weight. By Theorem 1.2 of [C], II, is tempered, so ¢; 'L, 1, (II,) is pure (in the sense
of [TY]) of some weight. By Lemma 1.4 (4) of [TY], given a semisimple representation of the Weil group
of some [-adic field, there is at most one way to choose the monodromy operator such that the resulting
Weil-Deligne representation is pure.

By Theorem A of [BLGGT2], we already have an isomorphism up to semisimplification. We note that
Theorem A of [BLGGT?2] is stated for an imaginary CM field F'. For our CM field L we proceed as on pages
230-231 of [HT] to find a quadratic extension F'/L which is an imaginary CM field, in which y = y'y"” splits
and such that

[Ri(ID)| a2/ ry] = [RI(BCEyp(10))].
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This together with Theorem A of [BLGGT2]| gives the compatibility up to semisimplification for the place y of
L. Therefore, in order to complete the proof of Theorem 1.1, it suffices to show that W := W D(R,; (H)Gal(iy/Ly))F_Ss
is pure of some weight when n is even. From now on we will let n € Z>5 be an even integer.

Our argument will follow the same general lines as that of [TY]. Our strategy involves reducing the
problem to the case when II, has an Iwahori fixed vector, finding in this case the tensor square of W in the
log crystalline cohomology of a compact Shimura variety with Iwahori level structure and finally computing
a part of this cohomology explicitly. For the last step, we need to derive a formula for the log crystalline
cohomology of the special fiber of the Shimura variety in terms of the crystalline cohomology of closed
Newton polygon strata in the special fiber. Deriving this formula constitutes the heart of this paper; we
obtain it in the form of a generalization of the Mokrane spectral sequence or as a crystalline analogue of
Corollary 4.28 of [C].

We briefly outline the structure of our paper. In Section 2 we reduce to the case where IT has an Iwahori
fixed vector, we define an inverse system of compact Shimura varieties associated to a unitary group and show
that the crystalline cohomology of the Iwahori-level Shimura variety realizes the tensor square of W. The
Shimura varieties we work with are the same as those studied in [C], so in Section 2 we also recall the main
results from [C] concerning them. In Section 3 we recall and adapt to our situation some standard results
from the theory of log crystalline cohomology and the de Rham-Witt complex; we define and study some
slight generalizations of the logarithmic de Rham-Witt complex. In Section 4 we generalize the Mokrane
spectral sequence to our geometric setting. In Section 5 we prove Theorem 1.1.
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2 Shimura varieties

In this section we show that we can understand the Weil-Deligne representation W = W D(R; (H)Gal@y/Lu))F_ss

by computing a part of the crystalline cohomology of an inverse system of Shimura varieties. In the first

part we closely follow Sections 2 and 7 of [C] and afterwards we use some results from Section 5 of op. cit.
We claim first that we can find a CM field extension F’ of L such that

e [/ = EFy, where E is an imaginary quadratic field in which [ splits and F; = (F')=! has [F} : Q] > 2,
e I’ is soluble and Galois over L,
e 119, := BCp:(11) is a cuspidal automorphic representation of GL,,(Apr), and
e there is a place p above the place y of L such that H%,ﬁp has a nonzero Iwahori fixed vector
and a CM field F which is a quadratic extension of F’ such that
e p = pypo splits in F,
e Ramp/q URamg(IT) C Splg,p, o, where Fy := (F)°=', and
o 119 = BCp/p (I1%,) is a cuspidal automorphic representation of GL,,(Ar).

We can find F and F” as in the proof of Corollary 5.9 of [C]. Since purity is preserved under finite extensions
by Lemma 1.4 of [TY], to show that W is pure it suffices to show that

Wpgr == WD(R, (H%")lGal(ﬁé /F;,))ILSS

is pure. Note that in this new situation H%,ﬁp has a non-zero Iwahori-fixed vector.



We can define an algebraic group G over Q and an inverse system of Shimura varieties over F’ corre-
sponding to a PEL Shimura datum (F,*,V,(-,-), h). Here F is the CM field defined above and * = ¢ is the
involution corresponding to complex conjugation. We take V' to be the F-vector space F'™. The pairing

() VxV-=Q

is a non-degenerate Hermitian pairing such that (fvy,ve) = (v1, f*vg) for all f € F and vy,v2 € V. The last
element we need is an R-algebra homorphism A : C — Endp(V) ®g R such that the bilinear pairing

(’Ul, 1)2) — <’Ul, h(l)’()2>
is symmetric and positive definite. We define the algebraic group G over Q
G(R) = {(g, )\) € EndF®QR(V (90) R)X x R* |<gU1,g’U2> = )\<’U1,’U2>}

for any Q-algebra R.

We choose embeddings 7; : F < C such that 75 = 7 o o, where ¢ is element of Gal(F/F’) which takes
p1 to pa. For 0 € Hompg -, (F,C) we let (ps,q,) be the signature at o of the pairing (-,-) on V ®qg R.
In particular, 7 := 71|g = 72|g is well-defined. We claim that it is possible to choose a PEL datum as
above such that (pr,q;) = (1,n — 1) for 7 = 7, or 72 and (pr,q;) = (0,n) otherwise and such that Gg,
is quasi-split at every finite place v of Q. This follows from Lemma 2.1 of [C] and the discussion following
it and it depends crucially on the fact that n is even. We choose such a PEL datum and we let G be the
corresponding algebraic group over Q with the prescribed signature at infinity and quasi-split at all the finite
places.

Let 2% := BCF/(2) and F, = F°='. The following lemma is the same as Lemma 7.2 of [Sh].

Lemma 2.1. Let I1% and ZY% be as above. We can find a character ¢ : A5/E* — C* and an algebraic
representation Ec of G over C satisfying the following conditions:

o Yy = U7/

=0

e =} is isomorphic to the restriction of Z' to Rp/g(GLy) xq C, where 2
change from G to G, := Rp,o(G xq E)

" is obtained from &c by base

. §<C|}_Elx =S, and
e Ramg(y) C SplF/Fg,Q)

® 1/’|(9EX =1, where u is the place above [ induced by L;lTE_

Define II' := 3 ® I1%, which is a cuspidal automorphic representation of GL1(Ag) x GL,(Ar) and
&= uéc.

Corresponding to the PEL datum (F,*,V, (-,-), h) we have a PEL-type moduli problem of abelian vari-
eties. This moduli problem is defined in Section 2.1 of [C] and here we recall some facts about it. Since
the reflex field of the PEL datum is F’, the moduli problem for an open compact subgroup U C G(A™)
is representable by a Shimura variety Xy /F’, which is a smooth and quasi-projective scheme of dimension
2n — 2. The inverse system of Shimura varieties Xy as U varies has an action of G(A*). As in Section I11.2
of [HT], starting with &, which is an irreducible algebraic representation of G' over Q; we can define a lisse
Qi-sheaf L¢ over each Xy and the action of G(A>) extends to the inverse system of sheaves. The direct
limit

HY(X,Le) = li_r)nHi(XU xpr '\ L¢)

is a semisimple admissible representation of G(A>) with a continuous action of Gal(F’/F’). It can be
decomposed as

HY(X,L¢) = @w ® R (7)),



where the sum runs over irreducible admissible representations 7 of G(A>) over Q;. The Rgl(w) are finite

dimensional continuous representations od Gal(E’/F') over Q;. Let Ay be the universal abelian variety over
Xy, to the inverse system of which the action of G(A>) extends. To the irreducible representation £ of G
we can associate as in Section II1.2 of [HT| non-negative integers m¢ and t¢ as well as an idempotent ag¢ of
H (A xpr F',Qu(te)). (Here A denotes the me-fold product of Ay with itself over Xy and Qy(t¢) is a
Tate twist.) We have an isomorphism

Hi(XU X Fr F’,ﬁg) ~ CLgHier&(A?}& X g F/,Ql(tg)),

which commutes with the G(A>)-action.

For every finite place v of Q we can define a base change morphism taking certain admissible G(Q,)-
representations to admissible G(Q, )-representations as in Section 4.2 of [Sh|. Recall that Ramp/gURamgII! C
SpPlp/p, - I v € Splp)p, o then we can define the morphism

BC : Ty (G(Qy) — Iy ~SU(G(Qy)),

taking unramified representations of G(Q,) to unramified, 6-stable representations of G(Q,). If v € Splp/p, o
then the morphism

BC : ey (G(Qu) — Il SY(G(Qw))

can be defined explicitly since G(Q,) is split. Putting these maps together we get for any finite set of primes
GSgp such that
RamF/Q U RamQ(H) C Gﬁn C SplF/Fg,Q

a base change morphism

BC : Trr(f (G(AS™P100) @ Trr () (G (A, ) — Trryy " (G(ASH V1)) @ Terl ™ (G (A, ))-

Let p be a prime of Q which splits in E and such that there is a place of F’ above p which splits in F.
Let Ggy be a finite set of primes such that

Ramp/q URamg(II) U {p} C &gn C Splp/p, o

and set & = Gg, U {c0}. For any R € Groth(G(A®) x G(Ag,,) x Gal(F'/F")) (over Q) and 7° €
Irr™ (G (A®) define the 7-isotypic part of R to be

R{r®} =Y n(x® @ p)[x®][p),

p

where p runs over Irr(G(Ag) x Gal(F'/F’). Also define

R[ITH®] =Y " R[x®],

S
where each sum runs over 7€ € Irr}" (G(A®) such that BC(y7®) ~ IT+S.

Proposition 2.2. Let G = &g, U {o0} be as above. We have the following equality
BC(H?"2(X, Le)[ITV®]) ~ Cgly; T [Ry (%) %2 @ recy,,, (1)]

of elements of Groth(G(A>) x Gal(F'/F). Here Cg is a positive integer and recy,, (¢) is the continuous
l-adic character Gal(E/E) — Q] associated to 1 by global class field theory.



Proof. Let p € &g, be a prime which splits in F and such that there is a place w of F’ above the place
induced by 7 over p which splits in F', w = wiws. We start by recaling some constructions and results
from Sections 2 and 5 of [C]. It is possible to define an integral model of each Xy; over the ring of integers
Ok in K := F,,, ~ F,,, which itself represents a moduli problem of abelian varieties and to which the sheaf
Le. The special fiber Yy of this integral model has a stratification by open Newton polygon strata Y7 g 1,
according to the formal (or etale) height of the p-divisible group of the abelian variety at w; and we. Each

open Newton polygon stratum is covered by a tower of Igusa varieties Iggl,} ’7%2), where 0 < hi,hes <n—1
represent the etale heights of the p-divisible groups at w; and ws, and ni is a tuple of positive integers
describing the level structure at p.

Define

Jreh)(Qy) = QF x D, X GLp, (K) x D¢, x GLp,(K) x H GLn(Fy),

where Dy ,—p is the division algebra over K of invariant ﬁ and w runs over places of F' above 7 other

than w; and wy. The group J("1:72)(Q,) acts on the directed system of Hg(Ig(hl’h2)

vr +Le), as UP and 1 vary.
Let

H,(Ig" ") £c) € Groth(G(A®P) x J(hih2))

be the alternating sum of the direct limit of Hg(lg(hl’hQ) L¢) as in Section 5.1 of [C]. Let 7, € Irr;(G(Qp))

Urm
be a representation such that BC(m,) =~ Ll_ll_lllj (such a 7, is unique up to isomorphism since p splits in
E). Theorem 5.6 of [C] gives a formula for computing the cohomology of Igusa varieties, as elements of
Groth(G(A®) x G(Agg,\(py) X J"2)(Qy)):

BCP(H,(Ig""2), £)[ITH9]) =
= eo(—1)" T2 Cg i VO TG | ) [Red ") ()] (1)

Here ¢y = +1 independently of k1, hy and Red"1"2) is a group morphism from Groth(G(Q,)) to Groth(J(1:72)(Q,)),
defined explicitly above Theorem 5.6 of [C].

We can combine the above formula with Mantovan’s formula for the cohomology of Shimura varieties.
This is the equality

H(X,Le)= > (=) Mantg, p,) (Ho(Ig""), £¢)) (2)

Oghl,hggn—l

of elements of Groth(G(A™) x Wx). Here H(X,L¢) is the alternating sum of the direct limit of the
cohomology of the Shimura fibers (generic fibers) and

Mant s, 4, : Groth(J"-"2)(Q,)) — Groth(G(Q,) x W)

is the functor defined in [Man]. The formula 2 is what Theorem 22 of [Man] amounts to in our situation,
where hy and hy are the parameters for the Newton stratification. The extra term (—1)"17"2 occurs on the
right hand side because we use the same convention for the alternating sum of cohomology as in [C], which
differs by a sign from the conventions used in [Man]| and [Sh].

By combining formulas 1 and 2 we get

BOP(H(X, Le)[IT"€]) = eoCglyy 'TTH>7] > Mantg, ) (Red™ ") (m,)]

Oghl,hggn—l

in Groth(G(A*?) x G(Q,) x Wk). We claim that

Z [Mant(hl,h2)(Red£th’h2)(Wp) = [mp][(mp0 0 Art@:”WK ® Ll_l‘CK,n (H%’,w)]' (3)

Oghl,hggn—l



By its definition above Theorem 5.6 of [C], the morphism Red;hl’}”)(wp) breakes down as a product
(=1)+hez o @ Red™ "M (1) @ Red" ™ "2"2(1,,,) ® (Rwtw wsTw)s
where w runs over places above the place of p induced by 7g other than w; and ws. The morphism
Red"™"" : Groth(GLn(K)) — Groth(D} ), x GLy(K))

is also defined above Theorem 5.6 of [C]. On the other hand, the functor Mant s, ,) also decomposes as a
product (see formula 5.6 of [Sh]), into

Mant s, 1,)(p) = Manti,0(po) ® Mantn—p, , (Pw;) @ Mantn—p, hy (Pws) @ (Qwzw,,w, Manto,m(pw)),

where w again runs over places above the place of p induced by 75 other than w; and wy. So

> Mant g, p,) (Red("") (m,)] =
OShl,hQS’ﬂ—l

= [Manty 0(mp,0)] ® (35, 2o (=1)" [Manty—p, 4, (Red™ "™ (1, ))]) @

n—1

®( Z (_1)h2 [Ma‘ntn—hz,hz (Rednihm}m (sz))]) ® (®w7&w1,w2 [T‘—w])'
ha=0

Now by applying Prop. 2.2.(i) and 2.3 of [Sh] we get the desired result (note that the normalization used in
their statements is slightly different than ours, but the relation between the two different normalizations is
explained above the statement of Prop. 2.3).

Applying equation 3, we first see that

BC(H(X, Le)[1"]) = eoCaly T ][(mp.0 0 Artig ) wic @ ¢ ' Licn (W )] (4)
in Groth(G(A*>) x Wi ), which means that
BO(H(X, L¢)[I1V9]) = eq[y ' TIM ][R/ (IT1)],
for some [R/(IT')] € Groth(Gal(F’/F)). We show now that
[R(I1)] = Co[R(ITp)** @ recy,, (v)]

in Groth(Gal(F/F")) using the Chebotarev density theorem. Note first that R'(II') is simply the sum of
(the alternating sum of) R?l(ﬂ'oo) where 7 runs over Irr;(G(A®) such that

e BO(yn®) ~ 11+
b BO(Llﬂ-Gfin) ~ gy,
o R{,(m>) # 0 for some k.

The set of such m doesn’t depend on & if & is chosen as described above this proposition, so the Galois
representation R (IT') is also independent of &. Therefore, for any prime w; of F where II! is unramfied
and which is above a prime w of F’ which splits in F' and above a prime p # [ of Q which splits in F, we
can choose a finite set of places & containing p such that we get from equation 4

(R (1) wr,, ] = Cal(R(TE)®* @ recy,, (v))w,, |-

By the Cebotarev density theorem (which tells us the Frobenius elements of primes w; are dense in
Gal(F'/F)) we conclude that
[R'(IT)] = Ca[R(IE)®2 @ recy,,, (¥)]



in Groth(Gal(F/F")).

It remains to see that eg = 1 and that H*(X, L¢)[IT1®] = 0 unless k = 2n — 2. In fact, it suffices to show
the latter, since then H (X, L¢)[IIV:®] will have to be an actual representation, so that would force eg = 1.
The fact that H*(X, Le)[IIHS] = 0 for k # 2n — 2 can be seen as in the proof of Corollary 7.3 of [C] by
choosing a prime p # [ to work with and applying the spectral sequences in Prop. 7.2 of loc. cit. and noting
that the terms of those spectral sequence are 0 outside the diagonal corresponding to k = 2n — 2. O

Corollary 2.3. By Lemmas 1.4 and 1.7 of [TY] and by the same argument as in the proof of Theorem 7.}
of [C], in order to show that

WD(RI(H%/”Gal(F; /F,;))ILSS

is pure, it suffices to show that
WD(BO(H?*(X, L)1) gucry )"
is pure, where & is chosen such that it contains .

Now recall that p is a place of F’ above [ and such that p = pips. From now on, set K := F,, ~ Fy,,
where the isomorphism is via 0. Let Og be the ring of integers in K with uniformizer @ and residue field
k. For i = 1,2 let Iw, ,, be the subgroup of matrices in GL, (Og) which reduce modulo p; to the Borel
subgroup B, (k). Now we set

Unw = U x Ulm,pz (m) x Iwp p, X Iwy, p, C G(A™),

for some U' C G(A>) compact open and U*'** congruence subgroup at [ away from p; and ps. In Section
2.2 of [C], an integral model for Xy, /O is defined. This is a proper scheme of dimension 2n — 1 with
smooth generic fiber. The special fiber Yy, has a stratification by closed Newton polygon strata Yy, s,

with S;T C {1,...,n} non-empty subsets. These strata are proper, smooth schemes over k of dimension
2n — #S — #7T. In fact,

Yor,,sr = () Yi) 0 ([ Ya),

i€S jeT
where each Y; ; for i =1,2 and j =1,...,n is cut out by one local equation. We can also define
1,1
Y&; 2 = |_| Yo s,
S, TC{1,....n}
#S=l
#T=l2

By Prop. 2.8 of [C], the completed local rings of Xy, at closed geometric points s of Xy, are isomorphic
to
OAXUIW,S = W(K)[[Xla ey X, Y1, - Yn]]/(Xll e Xir - wa}/jl T }/js - w)a

where {i1,...,i-} C{1,...,n}, {j1,...,4-} € {1,...,n} and Wk is the ring of integers in the completion
of the maximal unramified extension of K. The closed subscheme Y7 ;, is cut out in O” Xuyy, s by X;, =0 and
Y5 j, is cut out by Y; = 0.

The action of G(A°P) extends to the inverse system Xy, /Ok. There is a universal abelian variety
Ay, /Ok and the actions of G(A*) and a¢ extend to it. We can define a stratification of the special fiber
of AUIW by

Avy, s, = Ay, Xxu,, Xvg,,s,1-

Moreover, A;Zi and Ay, and with respect to the special fiber stratification satisfies the same geometric
properties as Xy, . In particular, we shall see in the next section (or it follows from Section 3 of [C]) that it
follows from these properties that .A?;Ii can be endowed with a vertical logarithmic structure M such that

(Aglli,M) — (Spec Ok, N)



is log smooth, where (Spec Ok, N) is the canonical log structure associated to the closed point. Also, we’ll
see that its special fiber is of Cartier type. This means that we can define the log crystalline cohomology of
(AfS , M). Indeed, if W = W (k) is the ring of Witt vectors of k, then we let

H:ris (Aglli, /W)

be the log crystalline cohomology of (AZLIEW X o k, M) (here we suppressed M from the notation). This also
has an action of a¢ as an idempotent and of G(A®). From the isomorphis

H'2(X, Le) = agHP720me (A™, Qu(te)
and Corollary 2.3, we see that it is enough to show that
acW D(H?" 17 (A", Qu(te)| Gar( /1)) [T

is pure. Let 79 : W <> @; be an embedding over Z;. By the semistable comparison theorem of [N1], we have

cris

Urw Urw

lim ag(HanQerg
=

so it suffices to understand the (direct limit of the) log crystalline cohomology of the special fiber of .A?;Ii
Note that in order to apply this theorem we need to check that (A;?fw , M) is a fine and saturated log-smooth
proper vertical (Spec Ok, N)-scheme and such that its special fiber is of Cartier type. All these properties
follow immediately from the explicit description of the log structure M in Section 3.

3 Log crystalline cohomology

3.1 Log structures

Let Ok be the ring of integers in a finite extension K of Q, (p is some prime number, which is meant to be
identified with 1), with uniformizer @ and residue field k. Let W = W (k) be the ring of Witt vectors of k,
with W, = W, (k) referring to the Witt vectors of length n over k. Let Wk be the ring of integers in the
completion of the maximal unramified extension of K.

Let X/Ok be a locally Noetherian scheme such that the completions of the strict henselizations (99(75 at
closed geometric points s of X are isomorphic to

W(K)[[Xl,...,Xn,Yl,...Yn,Zl,...,Zm]]/(Xil X“ —w,le Y}S —w)

for some indices 41,...,%,j1,...,Js € {1,...n} and some 1 < r, s < n. Also assume that the special fiber YV’
is a union of closed subschemes Y1 ; with j € {1,...n}, which are cut out by one local equation, such that
if s is a closed geometric point of Yy ;, then j € {41,...,4,} and Y ; is cut out in (99(75 by the equation
X, = 0. Similarly, assume that Y is a union of closed subschemes Y5 ; with j € {1,...,n}, which are cut
out by one local equation such that if s is a closed geometric point of Y3 ; then j € {j1,...,j,} and Yo ; is
cut out in (99(,_’S by the equation Y; = 0. Then, by Lemma 2.9 of [C], X is locally etale over

Xrsm =9Spec Or[X1,..., Xn, Y1, ., Yo, Z1, ... Zn] /(X1 - -+ X, —w Y Yy —w).

The closed subschemes Y; ; for i = 1,2 and j = 1,...,n are Cartier divisors, which in the local model X, s,
correspond to the divisors X; =0 or Y; = 0.

Let Y/k be the special fiber of X. For 1 <4,j < n we define Y (43) to be the disjoint union of the closed
subschemes of ¥’

(H,ll m et ﬂ H,ll) ﬂ(}/Q,ml m Tt m }/Q,Mj);

as {l1,...,1;} (resp. {my,...,m;}) range over subsets of {1,...,n} of cardinality i (resp. j). Each V() is
a proper smooth scheme over k of dimension 2n — i — j.

(Arlzi XOkk/W)(g)W,To@l(tf))[HLG] = h£n aEWD(Hzninrm{ (Am& XOKK7 Ql(t§)|Gal(K/K))[HLG]a



Remark 3.1.1. Even though this section is general, we are basically thinking of X as Ay, for some compact
open subgroup U, C G(A*) with Iwahori level structure at p; and po. Xy, (and therefore Ay, as well)
satisfies the above conditions by Prop. 2.8 of [C]. The prime p is meant to be identified with .

Let (Spec Ok, N) be the log scheme corresponding to Spec Ok endowed with the canonical log structure
associated to the special fiber. This is given by the map 1 € N — w € Og. We endow X with the log
structure M associated to the special fiber Y. Let j : Xx — X be the open immersion and 7 : ¥ — X be
the closed immersion. This log structure is defined by

M :]*(O;(K) NOx — Ox.

We have a map of log schemes (X, M) — (Spec Ok, N), given by sending 1 € N to w € M. Locally, we have
a chart for this map, given by

NN @N°/(1,...,1,0,...,0) = (0,...,0,1,...1),

1 (1,...,1,0,...,0)=(0,...,0,1...1).

It is easy to see from this that (X, M)/(Spec Ok,N) is log smooth and that the log structure M on X is
fine, saturated and vertical. We can pull back M to a log structure on Y, which we still denote M and then
we get a log smooth map of log schemes

(Y, M) — (Spec k,N).

(Here we have the canonical log structure on k associated to 1 € N — 0 € k, which is the same as the pullback
of the canonical log structure on Spec Ok.) Note that, since (X, M) is saturated over (Spec Ok, N), so its
special fiber is of Cartier type (cf. [T4]).
We can also endow X with log structures M;,M, and M. Let U; ; be the complement of Y;_; in X for
i=1,2and j=1,...,n. Let
ji,j : Ui,j — X
denote the open immersion. We define Ml,Mg and M as follows

My = [ P1,3:(05,,)NOx) | / ~

Jj=1

n

My = | B (1,(05,,)NOx) | / ~

j=1

n n

M = | @1.5+(05, ) N Ox) & P25« (0F, )N Ox) | / ~,

j=1 j=1

where ~ signifies that we’ve identified the image of O% in all the terms of the direct sums (basically we are
taking an amalgamated sum of the log structures associated to each of the Y; ;). We have a map M — M
given by inclusion on each O 5

Lemma 3.1.2. Locally on X, we have a chart for M given by
X = Spec Ox[ X1, ..., Xn,Y1,.. .. Y0, Z1, ... Zp) /(X1 Xp —w0, Y7 - - - Y, —w) — Spec Z|N" & N°],

where (0,...0,1,0...0) — X; if the 1 is in the ith position and 1 < i <r and (0,...0,1,0...0) — Y, if
the 1 s in the ith position and r +1 < i <r +s.

Proof. We shall make use of Kato-Niziol’s results on log smoothness and log regularity, namely:



e if f:T — S is a log smooth morphism of fs log schemes with S log regular then T is log regular (see
8.2 of[K2]) and

e if T is log regular, then My = j,O} N Ox, where j : U < T is the inclusion of the open subset of
triviality of T' (see 8.6 of [N2]).

Let us define the following log schemes over (Spec Ok, triv):
U := Spec Ok[X1,...,Xp,0]/(X1-- X, —0)

V :=Spec Ok[Y1,..., Yy, 7]/(Y1----- Y,—7)
W := Spec Ok[Z1,. .., Zm]

Z:=U X (Spec Ok ,triv) 14 X (Spec Ok ,triv) w

Then Z, equipped with the product log structure L is smooth over Ok and log smooth over (Spec Ok |o, 7], triv).
Therefore, Z is regular. The log structure L is given by the simple normal crossings divisor

D= (| Jx; :0))U(U(Yj =0)).

Since Z is regular, the log structure L is the same as the amalgamation of the log structures defined by
the smooth divisors (X; = 0), (Y; = 0). Locally on X, we have a commutative diagram of schemes with a
cartesian square

X — Xr,s,m Z ) (5)
Spec O — Spec Ok|1, 0]

where the inverse image of (X, = 0) in X is le, the inverse image of (¥; = 0) in X is YJ?. Therefore, the log
structure on X induced by that of Z coincides with the log structure M, defined as the amalgamated sum
of the log structures induced by the Y;' and Y. O

If we endow Spec Ok with the log structure N? associated to (a,b) € N2 s 72t% € Ok, then we claim
that we have a log smooth map of log schemes

(X, M) — (Spec Ok, N?) (6)
whose chart is given locally by
(a,b) € N* = (a,...a,b,...b) € N @& N°.

By definition, M is the amalgamated sum of M, and M, as log structures on X (or, in other words, M
is the log structure associated to the pre-log structure M7 & Ms — Ox ). Therefore, it suffices to prove the
following lemma.

Lemma 3.1.3. We can define a global map of log schemes (X, M;) — (Spec O, N) which locally admits
the chart given by the diagonal embedding N — N”.

Proof. It suffices to show that @ is a global section of M, since then we can simply map 1 € N to w € Mj.
For this, note that we have a natural map of log structures on X

Ml—)M,
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since the open subset of triviality of M is the generic fiber of X and M is the log structure defined by
the inclusion of the generic fiber. Moreover, we can check locally that this map is injective, since it can be
described by the chart N™ — N" @ N* — (N" @& N*®)/N for r, s > 1, where the first map is the identity on the
first factor. Now, locally on X we have the equation X; ----- X, = w, where X; are local equations defining
the closed subschemes Y;! of X. By definition, the X; are local sections of M, so @ is a local section of M.
But w is also a global section of M and M, < M,sowis a global section of M. O

Lemma 3.1.4. We have a cartesian diagram of maps of log schemes

(X, M) (X, M)

| |

(Spec Ok, N) —— (Spec O, N?)

where the bottom horizontal arrow is the identity on the underlying schemes and maps (a,b) € N? to a+b € N.

Proof. We go back to the notation used in the proof of Lemma 3.1.2. Locally on X, we have the following
commutative diagram of log schemes

(XaM)—>ﬁXSpec Ok [u] VXW—)Z

| | |

(Spec Ok, N) ———— (Spec Ok[u],N) ———= (Spec Ok|[r, o], N?)

where in the bottom row both 7 and ¢ are mapped to u, which is in turn mapped to 0. The second square
is cartesian and the horizontal maps in it are closed, but not exact, immersions. The first bottom map is
an exact closed immersion, while the first top map is the composition of an etale morphism with an exact
closed immersion. The lemma follows from the commutative diagram (5) and the above diagram. O

3.2 Variations on the logarithmic de Rham-Witt complex

Define the pre-log structure N> — W, [r, 0] given by (a,b) — 7%?°. By abuse of notation, we write

(Spec W, [, 0],N?) for the log scheme endowed with the associated log structure. We have the compos-
ite map of log schemes R
(Y, M) — (Spec k,N*) — (Spec Wy[r, 0], N?),

where N2 — N2 is the obvious isomorphism. We shall call (Z, N) a lifting for this morphism if (Z, N) is a fine
log scheme such that the composite map (Y, M) — (Spec W, [r, o], N?) factors through f : (Y, M) — (Z,N),
which is a closed immersion and a map (Z, N) — (Spec W,[r, 0], N?), which is log smooth. Such liftings
always exists locally on Y and give rise to embedding systems as defined in paragraph 2.18 of [HK]. If
(U, My) — (Y, M) is a covering and (Z, N) is a lifting for (U, My;) — (Spec W, [r, 0]), N?), then we may define
an embedding system ((U?, M},), (Z?, N%)) for (Y, M) — (Spec W, [r, o], N?) by taking the fiber product of
i + 1 copies of U over Y and of i 4+ 1 copies of (Z, N) over (Spec W,[r,0],N?). Since (Y, M) is an fs log
scheme, we may assume the same for the local lifting (Z, N ).

Let C(Y7 B1) /(W triv) be the crystalline complex associated to the embedding system obtained from local

loftings (Z°, N') and define )
Cy = C(Y,M)/(Wn,triv) OW,, <r,0> Wh.

Let Spec W, [u] be endowed with the log structure associated to 1 € N+ u € W, [u]. Consider the map
of log schemes G : (Spec Wy, [u],N) — (Spec W,[r.0],N?) given by 7,0 + u and (a,b) € N> — a+b € N.
The pullback of (Y, M) along G is just (Y, M). Let (Z', N') be the pullback of (Z, N) along G, equipped
with a map f' : (Y/,M’') — (Z',N’), which is the pullback of f. Then (Z’,N’) is a (local) lifting for
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(Y, M) — (Spec W, [u],N), and gives rise to an embedding system for this morphism. Indeed, what we need
to check is that (Z', N') — (Spec W,[u],N) is log smooth and that f’ is a closed immersion of log schemes.
For the first we note that log smoothness is preserved under base change in the category of log schemes and
that

(Z',N') = (2, W) x (Spec Walul,N))™)™ — (2, N) x (Spec W [u],N)

is log smooth. We also note that g : Y — (Z XSpec W, [r,o) SPEC Wn [u]) is a closed immersion, since Y — Z

is a closed immersion. The morphism of schemes Z' — (Z XSpec W, [r0] SPEC W [u]) is a composition of a

7,0]
finite morphism with a closed immersion, so Y — Z’ is a closed immersion as well. Also, g*(N @2 N) — M
is surjective and factors through (f")*(N') — M, so (f')*(N’) — M is surjective as well.

We now follow the constructions in section 3.6 of [HK]| using the embedding system obtained from the
liftings (Z', N'). Let Cy,ary/(w,, triv) be the crystalline complex associated to the composite (Z/, N') —
(W, triv). Define

Cy = Cly,mt)) (Wi triv) OWn<u> W

On the other hand, let Z” = Z’ XSpec W] Spec W,, < u > be endowed with N” the inverse image of the

log structure N’. Let £ be the log structure on Spec W,, < u > obtained by taking the inverse image of (the
log structure associated to) N on Spec W, [u]. Then (Z”, N") gives rise to an embedding system for

(Y, M) — (Spec W,, < u >, L),

with crystalline complex C(Y Define

M)/ (Spec W, <u>,L)
Cy := Cy ary/Spec Wy <us,c) EWa<u> W

Note that Cy is the crystalline complex Cy a1y /(w, ) With respect to the embedding system obtained from
(z' XSpec W, [u) SPEWn, N""). As in Section 3.6 of [HK], we have an exact sequence of complexes
0— Cy[-1] = Cy = Cy =0, (7)

where the second arrow is /\%“ and the third arrow is the canonical projection. The monodromy operator
on the crystalline cohomology of (Y, M) is induced by the connecting homomorphism of this exact sequence.

Lemma 3.2.1. Let C},; be either one of the complezes (:Z'Y, C’Y or Cy obtained with respect to a lifting (Z, ]\7)
of some cover U — Y. In the derived category, Cy, is independent of the choice of lifting (Z,N).

Proof. We may work etale locally on Y, in which case we have to show that for any two liftings (Z7, N 1) and
(Za, NQ) we have a canonical quasi-isomorphism between the corresponding complexes and moreover, that
these quasi-isomorphisms satisfy the obvious cocycle condition for three different liftings.

First, we show that the complexes corresponding to (Z;, N1) and (Zs, No) are quasi-isomorphic. We
may assume that i; : (Y, M) — (Z;, N;) is an exact closed immersion for i = 1,2. Let ijo : (Y, M) —
(Zy xw, Zg,leg) be the diagonal immersion of (Y, M) into the fiber product of (Zl,Nl) and (Zg,]\?g)
as fs log schemes over (W,,,triv). Let (Z127]\~]12) be a log scheme such that etale locally on Y we have a
factorization of 712

(Y, M) 4, (Z12, N12) % (Zy x Za, Nixa),

with g log etale and f an exact closed immersion. This factorization is possible by Lemma 4.10 of [K1]. Let
D; be the PD-envelope of Y in Z; (again, for i = 1,2 or 12). (Since we have exact closed immersions, the
logarithmic PD-envelope coincides with the usual PD-envelope in these cases.) It suffices to show that the
canonical map

W Op, ww

Zl,Nl)/Wn,tM’v <§§(921 (Z12,N12)/Wn,triv ®0212 0D12 (8)

is a quasi-isomorphism. This follows from paragraph 2.21 of [HK]. For completeness, we sketch the proof
here. Let py : (Z12, N12) — (Z1, N1) be the log smooth map induced by projection onto the first factor. For
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any geometric point g of Y, the stalks at § of N1 and pj N coincide, so by replacing (Z12, N12) with an etale
neighborhood of § — Z12, we may assume that Ny = piN;. Then the map p; : Z12 — Z; is smooth in the
usual sense. Since the problem is etale local on Y, we may assume that Z15 ~ Z; Qw, W, [t1, . . ., t,] for some
positive integer r and such that Y is contained in the closed subscheme of Z15 defined by ¢t; =--- =t, = 0.
As in Proposition 6.5 of [K1], we also have Op,, ~ Op, < t1,...,t,. >, the PD-polynomial ring over Op, in
r variables. The quasi-isomorphism (8) is reduced then to the standard quasi-isomorphism

Wi = Qw,itr,te] OWoaltr,eonte] Wa <ti, .. te >

The quasi-isomorphism 8 commutes with ®w,, <7 o>W, so it induces a quasi-isomorphism
Cyz, — Cz,-
Now consider the morphism Zi2 — 71 obtained by pulling back Z12 — Z; along G. We claim that the
canonical morphisms C, = — Cy and C, — C7 are quasi-isomorphisms as well. This is proved in the
same way as in the case of C (for C, , — C3, it amounts to proving that the logarithmic de Rham-Witt

complex is independent of the choice of embedding system). The quasi-isomorphisms are also compatible

with the canonical maps C;, — C}, — Cl,.

Note that the above result also implies that in the derived category, C" commutes with etale base change.
Indeed, if Y5/Y; is etale and (Z;, Ny) is a lifting for (Y1, M) — (Spec Wy, [r, 0], N?) then by [EGA IV] 18.1.1
we can find, locally on Y5, an etale morphism Zs — Z; such that the following diagram is cartesian

Y2—>Z2.

L

Y — 73

We take Ny on Z to be the inverse image of Ny. Then (Zz, N») is a lifting for (Ya, M) — (Spec W, |7, o], N?)
and, since log differentials commute with etale base change (Prop. 3.12 of [K1]), €, ) on Y3 is just the
pullback of C( 75) O1 Y.

We are left with veryfing the cocycle condition. The canonical quasi-isomorphism 712 : Cz, = Oy, factors
through C' ., , since by construction Zi2 is log etale over Z; x Z and so we have a quasi-isomorphism

Cyi vz, = Cy,,. Let (Zs, N3) be another lifting. Then we have the following commutative diagram of
complexes:

CZ1 X ZoXZ3 ?

PN

Z1><Z2 Z1><Z3 Z2><Z3

where all the maps are quasi-isomorphisms. This proves the cocycle condition. O

Corollary 3.2.2. The following sheaves on'Y are well-defined and commute with etale base change:
Wncfjg, = HI (C:'Y) W@y =M1 (C’Y) and Wywi :=H?(Cy ),

The sheaves Wyowy. make up the g-th terms of the log de Rham-Witt complex associated to (Y, M). We have
canonical morphisms of sheaves on Y :

Wool — Wi — Whw.
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In order to understand the monodromy N, we will study the short exact sequence of complexes
0 — Whwy [—1] = Wby = Whwy — 0,

which we obtain below from the short exact sequence (7). In Section 4 we will construct a resolution of
this short exact sequence in terms of some subquotients of Wnify. For now, since these complexes are
independent of the choice of lifting, we will fix a specific kind of lifting of (Y, M) over (W|r, o], N?), which
we call admissible liftings, following the terminology used in [H] and [Mo]. Since Y is locally etale over

K‘,S,m = Spec k[Xlu' .- 7X’n,7§/17" -7Yn7Z17' Zm]/(Xl """ X’I‘7Y1 e YS)7
we consider the lifting
Zrsm =Spec W[Xy1,...,Xn.Y1,..., Y0, Z1, ... Zpy1,0) /(X1 - -+ - X -1 Y;—o0).

of (Yy s.m, N"®N*)/(W|[r.0],N?). The log structure on Z, s ,,, is also induced from N" @ N* (with the obvious
structure map sending N” to products of the X; and N° to products of the Y;). We let Z/Z, ; . to be etale
and such that the diagram

(Y,M) ——> (Z,N) ,

l |

(Yysm, NTON®) —— (Z,. g, N" © N?)

is Cartesian, with the log structures on top obtained by pullback from the ones on the bottom. Then locally
on Y, the complexes Wy,&y, W,y and W,wy- are just pullbacks of the corresponding complexes on Y. 5,
with respect to the lifting (Z; s.m, N” @ N®). Note that admissible liftings exist locally on Y.

Now we will explain the relationships between C~'3',, C~')', and C;,. First, note that we have the functoriality
map G*W(Z,N)/(Wn,trw) — W(Z' N") /(W triv), Which induces a canonical map

O(Y,M)/(Wn,trw) Qw,, <r,o> Wn <u>= Cly vy /(w, triv)s

which in turn induces a canonical map C'Y — C'Y. By composition, we also get a map C’Y — Cy. We claim
that we can identify Cy with C;./ (L — d2) A Cy and Cy with Cy./ (dT—T ANCy + do A C'Y) . We explain this
in the case of Cs .

Lemma 3.2.3. We have an isomorphism

= dr do = ~ =
Cy/|——— ) ACy' 5 Cy.
v/ ( - p > — Ly
Proof. Let (Z,N) be an admissible lifting of (Y M) over (Spec Wy [r,0],N?). Let (D, Mp) be the divided
power envelope of (Y, M) in (Z,N). Note that the kernel of the map Op — Oy is generated by 7" and
o™, The divided power envelope (D, Mp) of (Y, M) in (Z’, N') satisfies the following property:

OD’ = OD ®Wn<‘r,o> Wn <u >,

where the map W,, < 7,0 >— W,, < u > is 7" o[l — wu[?). The complexes (:Z'Y and C; are defined as
follows: .
CY = (w&Z,N)/(Wn,triv) Koy OD) W, <7,0> Wn <u > ®Wn<u>W =

= (w'

(2.8 (W riv) EWalro] Walu]) ®0,, Opr @w, <u> W

and
Cy = (WZ/,N//Wn,triv) X0, Op' @w,, <u> Wh.
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Note that since we’ve chosen an admissible lifting (Z’, N) has Z Xy, [r,0] Wh(u| as its underlying scheme
because N @z N is already fine and saturated. It is enough to show that the sequence

(=)

—1 T o

“(2,8) ) (W triv) OW,lr.o) Walul ~ — “ﬁZ,N)/(Wn,tm) W, [r,0) Walu] — W(z! N (W triv) — 0 )

is exact, where the second map is induced by functoriality. We denote by G* the pullback along Spec W, [u] —
Spec W, [, o] or along Z' — Z. By proposition 3.12 of [K1], we have the following diagram of exact sequences
of sheaves on Z’

G*

1 *, .1 *, .1
“iSpec W [r,0],N2) /(W triv) B, Oz -G Y(2,8) ) (W triv) G “(z,8)/(Spec W [r,0],N?)

| | |

AW, [u) Ozn ———=w| —uw

n

1 1
0 “(Spec W, [u],N) / (W, triv) Z',N') [ (Wh,triv) (Z',N")/(Spec W, [u],N) 0

The rightmost vertical arrow is an isomorphism, since (Z’, N') was obtained by pullback from (Z, N). In
order to show that the middle vertical arrow is a surjection, it is enough to check that %“ is in its image, but

both ‘{7‘7 and d—TT map to %“ . We also see similarly that the kernel of the middle vertical arrow is generated
by d—TT - ‘{7". The exactness of (9) follows. O

Corollary 3.2.4. We have an isomorphism

do

= d = = ~
Cy/ <—T ANCy 4+ A cf) = Gy
T (o

Proof. This follows from the exact sequence (7) and the Lemma 3.2.3. O

Lemma 3.2.5. The sections df and %" € WniJ’l/ are global sections, independent of the choice of admissible

lifting. The same holds for % € Wows-.

Proof. We will explain the proof only for df since the same proof also works for %" and i—“. We use basically

the same argument as for Lemma 3.4 of [Mo], part 3. We consider two admissible liftings of (Y, M), (Z1,N1)
and (Z2, No) and we let (Z12, N12) be defined as in Lemma 3.2.1. It is enough to show that locally on YV

dr 1 o

— S W R ) (W triv) @0z OD
and

dr’ )

7 € W25, N0) /(W triv) DOz Op,

(Z12-,N12~)/(Wn-,t7’iv) ®0212 OD12 )'

Note that dT—T € N; and % € N, have the same image in M. This is because locally on Y we have
commutative diagrams

have the same image in H!(w

(Yv M) (ZiaNi)

| |

(kv N2) - (Wn [7-7 U]v Nz)

for i = 1,2, so both d{ and 4z map to the image of (1,0) € N? in M. By the construction of (212,1\712),

!

(see the proof of Prop. 4.10 of [K1]) we know that df — 4 — ;€ Nys. Moreover, if aqa : N1g = Oz, is

=
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the map defining the log structure of Z;5 then m maps to 0 € M, so v = aja(m) € (’);12 maps to 1 € Oy.
Therefore,

dr dr’  dv

/ 3

T T v

for some v € Op,, for which W,, < v -1 >C Op,,. But then we see that % € d(W,, < v—1>) using the

fact that the power series expansion of log(v) around 1 belongs to W,, < v — 1 >. Therefore, dT—T — dT—T,/ is

exact and the lemma follows. O

As in the classical case ([IR, HK]), we can define operators F : Wn+1<f)q — Wn@q, V. Wni)q — Wn+1<f)q

and the differential d : W,,@? — W09, which satisfy
42 =0,FV = VF = p,dF = pFd,Vd = pdV and FdV = V.

Indeed, fix local liftings (Z,, Ny,) of (Y, M) — (Spec Wy[r,0],N?) and denote the crystalline complex C:"Zn

by C:','l. We can see that C’,’l is flat over W, in the same way as in Lemma 2.22 of [HK] (using an admissible
lifting) and we have

C,, ®z/pmz LIP"Z = C,,

for m <n. We let I : Wn+15)' — Wn@' be the map induced by éﬁﬂ — (:Z','L, V. Wni}' — Wn+15)' be the

map induced by p : C’,’L — C’,’L +1- We define d to be the connecting homomorphism in the exact sequence of
cohomology sheaves associated to the exact sequence of crystalline complexes

O%éﬁﬂé’én%éﬁﬁo.
The same operators can be defined for W.wy and W.wy,.

Lemma 3.2.6. Letn = 1. Locally, fix an admissible lifting (Z, 1\7) as above. Let F'r be the relative Frobenius
of Y/k. We have Cartier isomorphisms

C™ i wd 5 HI(Fr.wy),

C™h @y v o) ©la) B = HUETL (W0 N0y 1 i O] )
and -

A—1 . ~ .

¢ w(qz,z\'z)/(k,tm) Dkft,s) b — HI(Er (W(Z,N)/k,tm Drit,s] K))-
Proof. Note that (Y, M)/(Spec k,N) is log smooth of Cartier type. The Cartier isomorphism for Wiwy,
is then defined in section 2.12 of [HK]. Similarly, (Z’, N')/(Spec k,triv) and (Z, N)/(Spec k, triv) are log
smooth and of Cartier type. Thus, the morphisms C~' and C~* for ¢ and C¥ are induced from the Cartier
isomorphisms for these schemes.

Since we are working locally on Y, we may assume that Y = Y7 X Y5 and that the lifting Z = Z; X Zs,

where Z1, Z5 are smooth over k and Y; is a {educed normal crossings divisor in Z;. Let Z; be the ideal defining

Y; Xy Z3_; in Z for i = 1,2. To check that C~1isan isomorphism, we use the following commutative diagram
of exact sequences:

153

q q q q q
Wy @hlh————————>w, 5, ®hdw, g, 8L ——>w, 5, Y 0
HIUEraw g @ T1T2) ——=HIFraw, g 0T Ow, g ®Ta)) —= HIU(Fruw, o ) —= HI(F.Cy) —0.
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Z,M)/k,triv
phism, by 4.2.1?1 of)[/DI]. Similarly, the complexes on its left are (sums of) products of complexes of the form
in/k(i logY;) for i = 1,2, which also satisfy a Cartier isomorphism, by 4.2.1.3 of [DI]. Therefore, the first
three vertical arrows are isomorphisms. Once we know the exactness of the top and bottom sequence we can
also deduce that the rightmost vertical arrow is an isomorphism. The exactness of the top row follows from

the definition of C%.
The exactness of the bottom row follows from the cohomology long exact sequence associated to short
exact sequences from the top row combined with the Cartier isomorphisms for the first three arrows which

tell us that the coboundary morphisms of these short exact sequences are all 0. Indeed, if we let Qk 2.5 be

The complex w is the same as Q'Zl/k(log Y1) ®k Q'Z2/k(10g Y5), so it does satisfy a Cartier isomor-

the complex obtained by completing the inclusion of complexes

Wiz iy @Dty 2 Wiy gy @1 Ow iy gy @ L2

to a distinguished triangle, then we get a long exact sequence

R ’H,q(th)N)/k QR ITIe) — Hq(wtz,ﬂz)/k Q7L ® Hq(wtz,N)/k ®R7I) — Hq(th,N)) —

From the Cartier isomorphism for and, we deduce that

Hq(w' ®1112) — Hq(

(Z.8)/k 21,

wtz,]\?)/k RTL)® Hq(w&Z,N)/k

so the coboundaries of the long exact sequence are all 0. By continuing this argument, we deduce the

exactness of the entire bottom row and this proves that C~'lisan isomorphism.
Now we prove that C~! is an isomorphism. We will show that C~! is an insomorphism in degree g as
well. From the short exact sequence (7), we get the following commutative diagram with exact rows:

0 oLt CL CcL 0.

| | |

0 ——= HI Y (Fr.Cy) — HI(Fr.Cy) — HI(Fr,Cy) —=0

To see that the bottom row is exact, we have to check that in the long exact cohomology sequence associated
to the top row the coboundaries are all 0, which is equivalent to showing surjectivity of H4(Fr.Cy) —
HI(Fr.C; ). However, by the top row and the Cartier isomorphism C'~!, the composite

CL — CF — HY(Fr.Cy)

is surjective, so the desired map is surjective as well. Now we have a map of short exact sequences, where
the left and right vertical maps are isomorphisms, so the middle one must be as well. O

Using the Cartier isomorphisms, we can define canonical projections 7 : WnJrl(f}i/ — Wncfji,. The con-
struction works in the same way for W, @;-. The definition of 7 for W, wy- can be found in section 1 of [H| in
the semistable case and in section 4 of [HK] in general. The constructions in [H| and in [HK] are the same,
although they are formulated slighlty differently. Our construction follows that in section 1 of [H|, by first
defining a map p : Wn(f;i/ — WnHiJi/ and then showing that p is injective and its image coincides with the
image of multiplication by p on Wn+1(f}i/. The projection 7 will then be the unique map which makes the
following diagram commute:
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The map p : W,o% — W, 1104 is induced from p~"t1Fr* C:'§/ — C:'Q, where Fr : (Z,N) — (Z,N) is a
lifting of the Frobenius endomorphism of (Z, N) xw k such that Fr*(W{r,o]) C W[, o]. The injectivity of
p and the fact that its image coincides with that of mulriplication by p are deduced as in Section 2 of [H] (or
as in Lemma 6.8 of [Na|) from the Cartier isomorphism and from the fact that Cy is W —torsion-free (when

we take C- to be the crystalline complex associated to an embedding system for (Y, M) over W).
Now we will consider a different interpretation of the monodromy operator N. Taking the cohomology
sheaves of the short exact sequence

0= Cy[-1]—=Cy = Cy =0
we get a long exact sequence of sheaves on Y’
..._>an§1/_1 —}Wn&)g, —}angf — ...

whose coboundaries are actually all 0. This can be checked as in Lemma 1.4.3 of [H], since it suffices to see
that the induced map on cocycles Zq(éy) — Z%(Cy) modulo p™ is surjective and we can use the Cartier
isomorphisms in Lemma 3.2.6 to give an explicit formula for cocycles modulo p™. So we have a short exact
sequence of sheaves on Y

0= Wowl ' = Wool — Wawi — 0, (10)

which is compatible with operators m, F,V and d. We have a morphism of distinguished triangles in the
derived category D(Yy:, W) of sheaves of W-modules on Y:

Cy [-1] Cy Cy Cy

N

Wity [—1] ——= W@y ——= Wwy —= Wy,

The left and right vertical maps are defined in the proof of Theorem 4.19 of [HK]| and the middle one
can be defined in exactly the same way. Note that the definition of the maps in Theorem 4.19 has a
gap which is corrected in Lemma 7.18 of [Na|, namely checking that they commute with the transition
morphisms 7 : Wy 1wy — Wywy. The fact that the middle map commutes with the transition morphisms
7 Whp1wy — W,0y can be checked in the same way as in Lemma 7.18 of [Na|, using the corresponding
Cartier isomorphism to check that the complexes W, &y give rise to formal de Rham-Witt complexes as in
definition 6.1 of loc. cit. and thus applying Corollary 6.28 (8). We also need to check that that lim, W,,&i
is torsion-free, but we can use the fact that this is known for lim, W, w;j and the exact sequence (10). The
first and third vertical maps are quasi-isomorphisms by theorem 4.19 of [HK], so we get an isomorphism of
distinguished triangles. Thus, the exact sequence (10) induces the monodromy operator N on cohomology.

Assume that Y has an admissible lifting Z over (W][t,s],N?) and set Z = Z @w k. We consider a few
more variations on the de Rham Witt complex, which we will only define locally on Z. Let W,,{2,, be the de
Rham Witt complex of Z. Let

Y =Spec k[X1,..., X0, Y1, Yo, Zuy o T/ Xy X,

and
Y2 =Spec k[X1,..., X0, Y1, .. Y, Z1, .o 2] /Y0 - Y.

Each Y is a normal crossings divisor in Z; 5, Xw k. Let D; be the structure sheaf of the divided power
envelope of Y? in Z, g, and ID!, = ker(D! — Oy-). For i = 1,2 let W,Q,(—logY?) be the (pullback to
Z) of the “compact support” version of de Rham Witt complex of Z,. s, with respect to Y. This complex
was introduced by Hyodo in section 1 of [H] and it is defined by

WaQ3 | (=logY") = HU(Qyy, (logY') @0y, . ID),)

18



Let W,,Q,(—logY?! —log Y?) be the pullback from Z, s to Z of the complex defined by
WanZT,S,m(_ 1ogY1 1OgY2) Hq( Zrs.m NTONs /W, ®Oz IDlng)

This third complex is meant to approximate a product of complexes of the form W, Qz(—logY). When
n = 1, consider Z* = Spec k[X1,..., Xpn,t]/(X1 -+ X, — t), Z? = Spec k[Y1,..., Y, u]l/(Y1 -+ Y5 —u)
and Z3 = Spec k[Z1, ..., Zy]. Then

Wiy (= logY! —logY?) ~ Q1 (= logY'!) @ Qg (= logY?) @ Qs - (11)

All these also are endowed with operators F, V', differential d and projection 7, and they also satisfy a Cartier
isomorphism.

Lemma 3.2.7. Let W,,Q be either of the complezes W, Q2,, W,,Q, (= log V) fori=1,2 or W, Q,(—log Y-
logY?). Let
WQ =limW,Q.
«—

Then W ®H§ R, = W,Q.
Proof. For n =1, and W,,Q, and W,,Q,(—logY*) we have Cartier isomorphisms

Wi S H(FWLQ),
by result 4.2.1.3 in [DI]. For W, Q,(—logY! —logY?) the Cartier isomorphism follows from the product

formula (11) and from the Cartier isomorphisms above. Let Z,, = Z xy W,,. By abuse of notation, we write
0, for the complex of sheaves of W,-modules such that

WL =H' Q).

In fact, we have complexes €2, Qg(— log Y?) or Qg(— log Y'! —logY?)) which give the corresponding com-
plexes Q; , Q5 (—log Y?) or Qz (—log Y! —logY?)) when reduced modulo p™. We also denote any of the

initial complexes over W as €2,. Then there is an explicit description of cocycles modulo p", which is given
by o

d- ( nQH-l) Z kfn sz +kasz 1
k=0 —
where f : QY — QY is defined by f = Fr/p’. This is the same as formula A from editorial comment 11
in [H| and is proven in the same way as in that paper and in the same way as in the classical crystalline
cohomology case (see 0.2.3.13 of [I]).

As in the case of W,wy, W.Q (and W) are endowed with a differential d, operators F, V satisfying the

usual relations and a canonical projection 7, : W, 11Q" — W, Q" such that pom, coincides with multiplication
by p on W, 1.
We claim that the lemma follows from the Cartier isomorphism, from the description of cocycles modulo
in Q, and from the formal properties of W, Q2. The proof is the same as for Lemma 1.3.3 of [Mo]. We
outline the argument in order to show that it applies to our case as well. To prove the desired result, we use
the flat resolution of R,, as an R-module given by

7

(F™,—F™d) av™ +v

0—R —> RO R R—R,—0

and it suffices by Corollary 1.3.3 of [IR] to prove that the sequence

(F™ *F d) Vr4yn

0— WQ—! wotewe V" wai 5 w0 =0

is exact. The last map is the canonical projection 7 : WQ! — W, Q.
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Exactness at the first term follows from the fact that multiplication by p (and hence also F') is injective
on W' Indeed, multiplication by p on W, factors as pom, and p is injective by definition, so if p(x,) =0
for all n then m,(z,) = z,—1 =0 for all n, so x = (x,,) = 0.

Exactness at the last term is the statement that 7 is surjective, which follows by construction, since
p=pom, pis injective and the image of p : W,,2 — W,,; 10" coincides with the image of multiplication by
.

Now we check that kerm = dV"WQ +V*"WQ'. Recall that 7, : W11 — W, is the canonical projection.
It is enough to show that kerm, = dV"W1 Q0 + V*W1 Q). First, if £ = V™a + dV"b € W, 4112, it suffices to
check that pz = 0 and indeed pr = FV" ta+dFV" b = 0. Now, let [z],11 € ker 7,, where z is an element
of 0, modulo p"*!'. Then [pz],+1 = p[z]n+1 = 0, so it must be the case that pr = p"*a+db. We get db =0
mod p, so by the description of cocycles mod p we have b = pb’ + Fb" + db”, so that db = pdb’ + pFdb".
Thus,

[2]n+1 = [p"alnt1 + [d0 )1 + [Fdb]ny1 =

= V"aps1 + dlp"Fb" |1 = V"[a] + dV"[FB"].

Now we check exactness at the second term. First, note that the sequence
Won 29~ 5 W, 0071 4 w7, 00

is exact, which is proved in the same way as Lemma 1.3.4 of [Mo], by taking the long exact sequence of
cohomology sheaves of the short exact sequence

0— Qy/p"Qy LN QZ/p%QZ — Qy/p"Qy — 0.

We note that the proof of the analogous statement in the classical case in [I] I (3.21) is wrong and corrected
in [IR] IT (1.3). Nakkajima proves this statement for formal de Rham-Witt complexes in [Na| 6.28 (6), using
the same argument as Lemma 1.3.4 of [Mo].
We now claim that the projection
W /p" W — W,
is a quasi-isomorphism. This implies that
d7 1 (p"WQ?) = Frw Qe

so if dV"z 4+ V™y = 0, then dx + p”y = 0, which in turn implies x = F"z and y = —F"dz for some
z € W91, This checks exactness at the second term. Moreover, the fact that

WQ /p"WQ — W,
is a quasi-isomorphism follows in the same way as corollary 3.17 of [I], boiling down to the Cartier isomor-

phism and to the description of ker 7 as dV™ + V™. O

Remark 3.2.8. We note that one can use the Cartier isomorphisms to check properties 6.0.1 through 6.0.5 of
[Na] for Q,,Q,(—logY?) and Q,(—logY! —log Y'?), thus proving the analogue of Proposition 6.27 of loc.
cit. for all three complexes. Then Theorem 6.24 of |[Na| also implies Lemma 3.2.7.

3.3 The weight filtration

The goal of this section is to define a double filtration Pj; on W(f;i/, which will be an analogue of the weight
filtration defined by Mokrane on W,&; in the semistable case (see section 3 of [Mo]).

Let (Z, N) be an admissible lifting of (Y, M) over (W][r, o], N2). We know that such liftings exist etale
locally. Let Z,, = Z xw W,,. Let N; be the log structure on Z (or Z,,) obtained by pulling back the log
structure on Z, , ., associated to

N = WXty .., Xp Y1, Yo, 20, Zo]
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(0,...,0,1,0,...,0) = X;

when 1 is in the ith position. Define N» analogously. The pullback of N; to Y is the same as M;. For
i =1,2, we have maps of sheaves of monoids N; — N.
We define the following filtration on w

(20 N) ) (Wi, triv)”

meq = Im(

q—i—j q
(Zn,N) /(W triv) ®an L w

i J
W20 81)) (W triv) © W 2, o)/ (W triv) (zn,N)/(Wn,tm))
for 4,5 > 0 and ¢ + j < ¢g. This filtration respects the differential and induces a filtration P; ; C:'i/ on C:'i/
(whllcth can be thought of as a quotient of wﬁzn,z\?[)/(wn,triv)’ as in the proof of Lemma 3.2.6). Note that if
we le

q _ k q—k q
Pesz . 50y )W iy = T2, 0w triv) @ X2k = Wz 8y W iriv)

then Py is the weight filtration defined in 1.1.1 of [Mo] and Piij&ZmN)/(Wmtrw) C BJrjw&ZmN)/(Wn,triv)'

For i = 1,...,r, let D;; be the pullback to Z of the divisor of Z, ; ,, obtained by setting X; = 0.
Similarly, for ¢ = 1,...,s, let Dy ; be the pullback to Z of the divisor of Z, s ., obtained by setting ¥; = 0.
For i,j > 0 let D) be the disjoint union of

Dy, Xz Xz D1g; Xz Dagy Xz -+ Xz Day,,

over all ky,...,k; € {1,...,r} and ly,...,l; € {1,...,s}. And let 7; ; : D("J) — Z be the obvious morphism,
with D,(f’J), 7;,; the pullbacks to Z,, . Let
o a P o o
Grig 5, Ry (W triv) = Plvﬂw(zn,zv)/(wn,tm)/(R*J“(Zn,ﬁ)/(wn,tm) + owlw(zn,z\?)/(wn,triv))'

For i,5 > 1 we will define a morphism of sheaves

. a4 . q—i—j
Res : Gri iz 5/ w,arivy = (T80
. . dx dXy, . dYi dYs, . .
which extends to a morphism of complexes. If w = a A S22 A A S A S Ao A 2 s a local section
Xy Xk, Y, \F
of P; jw! with k1 < --- <k;and l; <--- <lj, then

(Z0,N) /(Wi ,triv)
Res(w) = O‘|D1,k1 Xz XzD1 g, XzD21y Xz-XzD2,; "

This factors through P;_; ; + P; j_1 and extends to a global map of sheaves.

Alternatively, we can follow the construction in section 3 of chapter II of [D]. Let DF be the disjoint union
of intersections of k divisors D, , with j = 1,2 and k; € {1,...,n}. These intersections are in one-to-one
correspondence with images of injections

Foll kY= {1,...,n}U{L,....n}

and so we denote one of these k intersections by D; (even though it only really depends on Imf). We have
D = | |itj=r D = Lt s Df. Let 74 : D} — Z, be the closed immersion. In 3.5.2 of [D], a morphism
,j>0

—k
P (Tf)*%i - Pkw(qzn,N)/(Wn,triv)/P’f—l

(and then a morphism ps2, which dependes on an ordering of {1,...,n} U{1,...,n}) is associated to each
such injection and the sum of ps over all injections f determines an isomorphism

q

P+ (7)., [—K] = P’““’(zn,N)/(Wn,m'v)/P’“*1

by Proposition 3.6 of Chapter II of [D].
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We are only interested in injections ¢; ; : {1,...,i+75} = {1,...,n}U{1,...,n} with image of cardinality
i in the first {1,...,n} term and cardinality j in the second {1,...,n} term. We let Res™* be the sum of
the morphisms pp over all injections ¢; ;. When we have an injection of type g; ;, the image of the morphism
p2 defined by Deligne falls in

o9
P jw

(Zn,N)/(Wn,triv)/(Pi_l’j +Pijo1) C Piyjwf Wn,m'v)/Pi“—l'

(Zn,N)/(

For k > 1, we have the direct sum decompositions

Pkw(zn,N)/(Wn,triv)/P’f—l = @ Grivjw(zn,zv)/(wn,triv) and

i+ji=k
4,520
q—k _ @ q—i—j
71 )82 = T ) .
(k)* p® /W, (w)* DD W,
it+j=k
4,520

It is easy to check that the isomorphism p matches up the (7, j) terms in each decomposition. Putting this
discussion together, we get the following.

Lemma 3.3.1. Fori,j > 1, the map

—1 q—i—j q
Res (1) Q9 — Gri jw < .
( ZJ)* DD W, LI 20, N) [ (W, triv)

s an isomorphism.
We also have the following analogue of Lemma 1.2 of [Mo].

Lemma 3.3.2. We have an exact sequence of complezes

(Z0,N)/(Wy triv)

(Z0,N) [ (Wy triv)

0= P_1,1w (Zn,N) ) (Witriv)

— Piflﬁjw @Piyjflw

(Z1,N) )/ (Wh triv)

(20 K0) ) (W sty 7 O-

—)Pw-w — GTZ'J'(U

The long exact cohomology sequence(s) associated to this have all coboundaries 0, so we get the exact sequence:

0— ’Hq(Pi_Lj_lw' ) — Hq(Pi_l,jw' ) ©® Hq(PiJ’_lOJ

(Z,N) | (Wh triv) (Z,N) [/ (Wh triv) &Zn,N)/(Wn,triv)) -

— HIU(P; jw, )) — HIUQ

(2, N) /(W triv [—i—j]) = 0.

Dy(li’j) /Wn

Proof. The first assertion is clear. In order to show that the second sequence is exact, it suffices to show the
following two statements about cocycles:

—y T
L ZB09 8 jwtriey 80,
| o . q . 4 . q
N ZPZ_LJW(ZmN)/(Wmtm)EBZP’l_lw(ZmN)/(Wmt””) — Z(Pz—l,gw(zn,z\?)/(wn,tm)+Pz,g—1w(zn,N)/(Wn,triv))-

The first statement is proved in the same way as the main step in Lemma 1.1.2 of [Mo]. If « is a local section
of ZQ4 77 assume that o is supported on some

ng’j)/Wn
Dyjy Xz Xz Dig, Xz Dagy Xz -+ Xz Day,,

for some ki,..., ki, l1,...,0; € {1,...,n}. Let

p:Zy—>Digy Xz Xz D1, Xz Doy Xz -+ Xz Doy,
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be the retraction associated to the immersion
Dygy, Xz Xz Dy, Xz Doy Xz -+ Xz Doy, — Zp.

A TEA A b
k l-

satisfies dw = 0 and Res(w) = a. From this, we know that the coboundarles of the long

Then p*a lifts « to a section of ZQ‘IZ:%& and the section w, = p*« /\ k1 ARERWA

T
Fii 2, ) ) (W i)
exact sequence associated to
0— P4 ]w

— P@jw'

(20N ) (W)~ G159 50

(Zn N)/(W trw)+P7-7 1w(Z N)/(W ,triv) (Zn N)/(Wn,trw)

are 0, so we also know that

'Hq(Pifl,jthm <

8) ) (W trioy T Dii =19

) = HI(P; jw,

(Zn,N) /(W triv) (Zn N)/(Wn,triv))

for every i,7 > 1.

For the second statement, we have to prove that if & € P;_q jw!
satisfy d(a + B) = 0 then we can find o/ € ZP,_; jw!
such that o/ + 38" = a+ 5. If a € Pi*lﬁjflw(zn,z\?)/(wn,m'v)
o =0,8 = a+ 8. The same holds for 8. Otherwise, we have da € P;_1 j_1 so by the injectivity proved
in statement 1 for (i — 1,7), we know that do = day + dag for some o € P;_q j—1 and as € P,_a ;. Thus,
we’ve reduced our problem from (i — 1,7) to (¢ — 2, j). Proceeding by induction, we may assume that ¢ = 0.

In that case dag; € Py j—1. By (the same argument as in the proof of) Lemma 1.1.2 of [Mo|, we have an
injection

(20 K1) /(Wi tw)andBEPJ 1w?

!
(2o R) (W iy 20 BT € 2D 1“(2 N/ (Wi, triv)
then we are done, since we can just take

(Zn,N) /(W triv)

,Hq(Poﬁjflwv

(20 R ) (W i) FLI (P50

(Zn,N)/(Wn,triv))’

so that implies dag; = dovg;q1 for some a1 € Py j—1. Then

[ [
ai=a— (Z Qoi41) € ZPq 5,0 =0+ Z Q41 € ZP; 51
i'=0 =0

satisfy the desired relations. O

The double filtration P; ; on w; induces a double filtration P; ; on c 'z, and for ¢, > 1 the

(Zn,N) /(W triv)

residue morphism Res : Pdw( 20 N) /(W triv) QqD (Z])J/ factors through P; ;Cz, .

Lemma 3.3.3. For any two admissible liftings (Z,, N) and (Z, N) of (Y, M) we have a canonical isomor-
phism ~ 5
azz, : H(Pi;Cs, ) = HY(P,;Cx, )
satisfying the cocycle condition for any three admissible liftings.
Moreover, the residue morphism Resz : Hq(PmC:"Zn) — HITI(Q
cohomology satisfies the compatibility

~ q .
DD ) = WoQ5.,, induced on

Resz, = Resz, oaz, z,.

Proof. The proof of the first part is basically the same as the proof of Lemma 3.2.1. We take admissible
lifts (Z1, N) and (Z2, N) (we denote the log structures on both simply by N, as it will be understood from
the context which is the underlying scheme). As in the proof of Lemma 3.2.1, we form (Z12, N), which is
smooth over (Z;, N), even though it is not quite an admissible lift. However, Z14 is etale over

Spec W(X1,..., X0, Yi,..., Yo, X0, X0, Y Y o W EY /(X — XL Y0 = Y.

n71 ’ Hr J

23



Ziam defined as above, in terms of log structures Nl and ]\72
(which come from formally “inverting” the X; and X! or the Y; and Y). Then the same argument used in
the proof of Lemma 3.2.1 gives us quasi-isomorphisms

So we can endow 0212 . with a filtration P; ; C;

P, iCz,, — P ;Cz,,

for ¢ = 1,2, which satisfy the right compatibility condition for three admissible lifts.
For the second part, we follow the argument in Lemma 3.4 (2) of [Mo]. We let

A dXk, Aen dXg, A dy, AA dy,
Xy Xe, Y Y,
i o4
be a section of P“Jw(zl,n,N)/(Wn,trw) and
X, dX; dYy/ ay;
"—a' A kinion ki hon o b
RS X, U Y
3 o9 — s 4
be a sectlolj of szﬂw(zg,n,sz)/(wn,trw) such that w = w' in me(zlm)N)/(Wmm,v). We have to check that
ooy = @lpyg- But
dXy, dXy, dY dyy,
w—w' =(a—ad)A LA A AN A4,
( ) Xy LU \
o o q .
where ¥ € szﬂflw(zm,N)/(Wn,m'v) + Ril’Jw(Zz,n.,N)/(Wmtriv)' This means that
d Xy, dXy, dY; dyy,
a—a )N =—2LA... A EA—LAA ‘
( ) Xy LU \
i ; o S N —
is also a section of PW*lw(Zm,N)/(Wn,trm) + P“l"]w(Zm,N)/(Wn,tm'v)’ so (@ —« )|D§12,2 =0. O

Corollary 3.3.4. We can define the sheaves
Py jWai} = HU(P,;Csy).
The complezes P; ; Wni)y form an increasing double filtration of Wnify such that the graded pieces fori,j > 1
Gri jWo@y := P, jWy&y/Pij—1+ Pi_1
are canonically isomorphic to the de Rham Witt complexes of the smooth subschemes Y (9 :
Res: Gry jWn0y = WpQy i [—i — 5)(—=i — j).

Lemma 3.3.5. The constructions in this sections are compatible with the transition morphisms m, in the
following way.

1. The following diagrams are commutative:
W :q ™ :q
n+1Wy —= WnpWy
Adjl lAdf
W :q T :q
n+1Wy — WnWy

and
~ q T ~ q
Whp1wy —— Wyay

d. d
/\T"l l/\TU

:q s :q
Whi10y —— Wyrwy
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2. The projection 7 : Wy 4100% — W,0L preserves the weight filtration P, j on Wy,&% for m = n,n + 1.
3. The morphism  : PMWnH@% — P, ; Wnijlq/ is surjective.

Proof. The first part follows in the same way as Proposition 8.1 of [Na], by using a local admissible lifting
(Z,N) of (Y, M) together with a lift of Frobenius ®. Then ®*(7) = 77 (1 +pu) for some u € Oz QWir,o] Wn <
7,0 > and so ®*(dlog ) is equivalent to pdlog7 modulo an exact form. The same holds for o.

The second part follows in the same way as Proposition 8.4 of [Na]. The question is local, so we may
assume that the admissible lift (Z, N) is etale over Spec W[X1,..., X,,Y1,...,Y,],N" @& N°. First we see
that, for a lift ® of Frobenius we have that ®*(dlog X;) is equivalent modulo an exact form to pdlog X; for
1 <4 < r and that @*(d logY;) is equivalent modulo an exact form to pdlogY; for 1 < j <s. This implies
that the map p : anY — WnHwY preserves the weight filtration F; ;.

In order to see that = : WnHwY —>~an}, al§o preserves P; ; we use a descending induction on (,7) in
lexicographic order. Note that P. ;W,w{ = W,,&{., so there is nothing to prove in this case. We can prove
the result for (r, s — 1) in the same way as Proposition 8.4 (2) of [Na|, using the commutative diagrams

q—i—j

Zq Res
Py jWh10y —— n+1QY(1 )

=z R
Py jWaiy —== W, Q4 [/
for (i,j) successively equal to (r,s), (r —1,s),...,(1,s). At the last step we get a commutative diagram of

exact sequences

qg—s—1

0—— Pr,571Wn+1@gf + PO,sWnJrlwg/ —_— T7571Wn+1wgf + Pl,sWnJrlwg/ I nJrlQ y(1,s) —0 5

Py s i Wool + Py W,od W, QL ——=0

0 Py s 1 Wool + Py W,wd
which means there is an induced morphism 7 : Pns_anJrl(f)g, + PO,SW,,H@% — Pns_anch,q/ + PO,SW,@%.
At this stage, we note that we can define

v = | y <ﬂ Yf)

icT

This will be a simple reduced normal crossings divisor over k and we can endow it with the pullback of the
log structure M; so that (Y, M) is a (k, N)-semistable log scheme, in the terminology of section 2.4 of [Mo].
There is a surjective residue mophism obtained via restriction

~q Res
Py Wil %8 BWLaS

which respects the weight filtrations. Just as the commutative diagram 8.4.3 of [Na] is obtained, we can use
the injectivity of p : W&l .., — Wn107..,, for Y (0:) /i (Corollary 6.28 (2) of [Na]) to see that there is a
commutative diagram

P015Wn+1wy % POWnJrlw

PO.,sany —>'R P()an

Y(O s) °*

Y(O s)
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We therefore get a commutative diagram of exact sequences:

~4 ~4
0—— PT,S—IWn—i-lWY —— r,s—an—i-lWY + PO,sWn—i-lWY I POWn-i-lW —0 s

| |

P s 1 Wood + Py sWyad PoW,&%,

Y(O s)

0 Pr,s—lwn(f)g/

— =0

y(O 5)

so there is an induced morphism 7 : PT7571WH+1@§/ — Prys,lwn@,q/.

Finally, the third part follows in the same way as Corollary 8.6.4 of [Na|. For an admissible lift (Z, N),
let Z1 := Z Xw k. We have surjective morphisms VVanZ1 — P070Wn<f);1,, which commute with the transition
morphisms 7. So 7 is surjective for P . Using the exact sequences of the form

0— Po_’jflwn(:}g/ — Po_’jWnC:J?/ — Powndlg/:g’j) —0

and the surjectivity of = on the third term, we prove by induction on j that 7 is surjective for Py ;. The
same statement holds for P; o.Then, we prove that 7 is surjective for a general P; ; by induction on i + j,
using the exact sequences of the form

0— Pi—l,jWn(Dg/ + Pz-,j_an&)g, — ,Pi)jWn(Dg/ — W, Qg/(:])] — 0.

4 Generalizing the Mokrane spectral sequence

We define a double complex W, A" as follows. Its terms are

J
g iiio .
WpAY = @ Wooo 72 /Pyt jva + Pijrajk fori,j >0
k=0

and W, AY := 0 otherwise. The operators d, 7, F, V' of W.&' induce operators d’, 7, F, V of the pro-complexes
W.AJ. For x in the direct summand Wn(:};;‘rj+2/Pk1i+j+2 + Piyjyo,j—k of W, A% d'x is the class of (—1)7dz,
where Z is a lift of z in W&y DIFIT2 We also have a differential d” : W,, A — W,, A%+ given by

d//x:(_l) (ﬁ/\ +d_/\x),

T g

where 2 and 22 are the global sections of W, &} defined in Lemma 3.2.5. We have d’d” = dd’, so we indeed
get a double pro complex (W.A",d’,d"). As in Lemma 3.9 of [Mo], we can use devissage by welghts to see
that the components of this pro- complex are p-torsion-free. Let W. A" be the simple pro-complex associated
to the double pro-complex W.A".

We define now an endomorphism v of bidegree (—1,1) of W, A" which will induce the monodromy
operator on cohomology. For each k € {0,...,j} we have natural maps

~itj+2 i+j+2 ~iti+
Wy 2 ) Prisjrat+Prgyag—i = Wa@y 7/ Poigjia+Pigja jr1-k®Wa@y 2 [ Pogt i oo+ Pt gk,

which are sums of (—1)**/*!proj on each factor. Summing over k we get maps v : W, A% — W, A*=1+1,
which induce an endomorphism v of bidegree (—1,1).
The morphism of compexes anY — W, A° given by

dr do
r— — N—Azx
T o
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factors through Wyw;. We get a morphism of complexes
0 : Whwy — WA

The following lemma is analogous to Theorem 9.9 of [Na|. It ensures that the resulting spectral sequence
will be compatible with the Frobenius endomorphism (defined as an endomorphism of W,,-modules). We let

®,, : Whwy — Wyhwy be the Frobenius endomorphism induced by the absolute Frobenius endomorphism of
(Y, M),

Lemma 4.1. Let n be a positive integer. Then the following hold:

1. There exists a unique endomorphism &)n of W, A" of double complexes, making the following diagram
commutative:

W1 AT™ T W, AT™

qul l%‘%m

W, Aam g7 gam

2. The endomorphism <i>n induces an endomorphism P, of the complex W, A", fitting in a commutative
diagram
Py
Whwy —— Whwy .

@l~l@

W, A O W, A

3. Finally, the Poincare residue isomorphism Res fits in the following commutative diagrams fori,j > 1:

~q Res q—i—j
Gri,jany —_— WnQ

Y (i,9) ’
‘I}nl lpi+j(bn
Gri Wood By, Qi
1,5 VVnWy nsS by (i)

where W, is an endomorphism of Wn(fJY which respects the weight filtration P; ; and which induces i)n

on W,A".

Proof. The proof is essentially the same as that of Theorem 9.9 of [Na]. We emphasize only the key points.
We can define a morphism %7 : W,,0% — W,,&{ via the composition

= p = pj71 = F =
Wo@d B WGl T Wy 08 5 Wodl.

The fact that these morphisms commute with the maps %/\ and ‘{T"/\ follows from the proof of the first part
of Lemma 3.3.5. This implies that the second diagram is commutative. The fact that the U, respect the
weight filtration follows from the analogous statement for p, which is proved in Lemma 3.3.5 as well. This
means that we can use W/7+9+2 to define endomorphisms &)Z;q of W,, A7, at least for j > 1. For j = 0 we use

the Frobenius endomorphism ®,, of W, (Oy (x+1.5-r+1) ) together with the residue isomorphisms to define i)%q .
The commutativity of the first diagram now follows from the definitions, from the commutative diagram

~q,m T ~q,m
Wity —— Wywy

qul l‘l’ﬁ’m

W, Aem 4y gam
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(which is deduced from pd = dp and dF = pFd) and from diagram 9.2.2 of [Na] in the case of a smooth
morphism. The fact that the first diagram is commutative ensures the uniqueness of 2. Finally, the third
commutative diagram follows from the surjectivity of m proved in Lemma 3.3.5, from from diagram 9.2.2 of
[Na] in the case of a smooth morphism and from the commutative diagrams

~q Res q—i—j
Pi,jWn-l-lWY > n+lgy(m‘)

~q Res q—i—j
Pi,jWnWy —> W, Qy(l )

for¢,5 > 1. O
Proposition 4.2. The sequence

0= Wawy S WAL WAt
1S exact.

Proof. We follow the proof of Prop. 3.15 of [Mo]. Let 6 : W,y Vil Wn(b; — anY be defined by

dr d
(x, y)l—>—/\a:+—a/\y

It suffices to check that the sequence

dr
_C' . )

=i (%
W2 T T Y wai e Wbt b WLl
dr A do A

T =1 i =i d’”’
—3 any+2/(P0 i+2 + PZ+2 0) —> an +3 (P17i+3 + B+3,0) S an;g/(P07i+3 + B+311) — ... (12)

is exact. We do this by using first a devissage by weights, reducing to the case n = 1 and then using the fact
that the scheme Y is locally etale over a product of (the special fibers of) strictly semistable schemes.
We let

K_4 =W, 2,
K_3=W,ob o W,oi !,
K,Q = anY,

K; @anﬂJr /Py i+jt2 + Pivjt2i—k,7 > 0.

For j > —4,j # —1 we define a double filtration of K as follows:
PrmK 4= Pgm oWy 2,

~i—1 i1
Pl,mK—S = H—2,m—anw§/ 3] H—l,m—2an§/ )
H,mK—2 = Pl—l,m—IWnd§/7

Tt .
P K @Pmc g~k Waly™ 2 [ Pitjro + Piijio gk, j = 0.
k=0

Here we set the convention Pl,mWn(fJi = 0 if either I < 0 or m < 0. The sequence (12) is a filtered sequence
and to prove exactness it suffices to prove exactness for each graded piece

Grlm —le _]/(Hm lK +Pl lmK)
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For I,m > 0 we can rewrite the sequences of graded pieces as:
=2 Zi—1 Zi—1 =g
Gr1721m72anY — Grlfgymflwan D Grl,lym,QanY — Grl,lym,lwnwy —

— Gy, Waoy? = Gripn,mWady™ @ Gry e Wit — L

For [ < 0 or m < 0 the sequence is trivial.
It suffices to show that the sequence of complexes

Gr1721m72Wn5}i/[—2] — GI‘l,Zm,anu:Ji/[—l] D GI‘lfmeQWn(f}i/[—l] — GI‘l,Lm,an(f}i/ —L)

Grym Wa@y [2] = Crip1.m Wa@y [3] © Grpme 1t Wa@y [3] — . ..
is exact. Note that we can check this locally. When I,m > 1 we know by Lemma 3.3.4 that
GrmWa@y ~ WiQy o [ — m] (=1 — m).

For I = 0 and m > 1 let Ypo.m be the normal crossing divisor of D%™ corresponding to s = 0. In this case
we have

GrymWo@y = [WyQpom (—1og Ypoerm) — Wy Qpo.m]
and for [ = 0, m = 0 we have the quasi-isomorphism
GrymWowy =~ Wy (—log Y —logY?) — W,Q,(—logY"!) @ W,,Q,(—logY?) — W, Q]
where Z = Z ®w k. In any case, Grl,mWncff satisfies the property

(lim Gry,, W,@') @F Ry, =~ Gry Wy
+~n

by Lemma 1.3.3 of [Mo] and Lemma 3.2.7. By Prop. 2.3.7 of [12], it suffices to check exactness of the
sequence (4) for n = 1.

For n = 1 and working locally with our admissible lifts we know that the exact sequence (4) is the
pullback to Y of the corresponding exact sequence on Y; Xj Ys. We can assume that Y = Y; X Y3 and
Z =7y Xy Zy. Each Y, for i = 1,2 is a reduced normal crossings divisor in Z;, for which we know that

Grli_gwld)i/i [—1] — Gry, 1 Whoy, —

Gl“[Wl(I)'Yi[l] — Grl-i-lWl(D'yi [2] — ...

is exact, by the proof of Proposition 3.15 of [Mo]. In other words, for ¢« = 1,2 we have quasi-isomorphisms
between the top row and the bottom row. Multiplying the quasi-isomorphisms for ¢ = 1 and 2 gives us
excatly the quasi-isomorphism ¢ needed to prove the exactness of (4) in the case n = 1. Here, we use the
Cartier isomorphisms for W@y, and for Wi0y and the fact that

(w&Zth)/k ®0z, Oy;) @k (w&ZLNZ)/k ®0oy, Oy,) =~ Wiz 5y @0z Oy,

where the two complexes on the left determine Wiwy, for ¢ = 1,2 and the one on the right determines
W15 O

Corollary 4.3. The morphism of complezes © : Wywy — W, A" is a quasi-isomorphism. It induces a
quasi-isomorphism © : Wwy, — WA,

Proposition 4.4. The endomorphism v of W.A™ induces the monodromy operator N over H7, . ((Y,M)/(W,N)).
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Proof. We define the double complex B;, as follows:
B, =W, AY oW, A% i j>0
d (1, 22) = (d'w1,d z2)
d"(z1,22) = (d"z1 + v(x2),d" z2).
We have a morphism of complexes ¥ : W, &; — B;, defined as follows, for z € W, &}

d d d d
\I’(LL') = ((—U — —T> N x (mod PO,i—i—l + Pi+1,0)7 77— A\ ?U N x (mod P07i+2 =+ H+2)0)) .

g T

Thus we have a commutative diagram of of exact sequences of complexes:
0 —— Whwi [—1] — W,0y —— Wywy — 0,

l@[l] l@ l@

0——W,A[-1] B; WpA ——0

n

where the left and right downward arrows are quasi-isomorphisms. Thus, ¥ is also a quasi-isomorphism
and the commutiatve diagram defines an isomorphism of distinguished triangles. Thus the monodromy
operator N on cohomology is induced by the couboundary operator of the bottom exact sequence, which by
construction is v. o

We can compute the monodromy filtration of the nilpotent operator N on cohomology from the mon-
odromy filtration of v on W, A". We will exhibit a filtration Py(W,A") = &, j>0P(W,, A¥) which satisfies
the following:

1. I/(Pk(WA)) C Pk_g(WA')(—l)
2. For k > 0 the induced map v* : Grg(W.A") — Gr_,(W.A")(—k) is an isomorphism.

A filtration satisfying these two properties must be the monodromy filtration of v.

Note 4.5. From now on, we will not work in the category € of complexes of sheaves of W-modules but rather
in Q ® €, which is the category with the same set of objects as €, but with morphisms Q ® Home (A4, B).
We will in fact identify the monodromy filtration of v on Q ® W, A", but for simplicity of notation we still
denote an object A of € as A when we regard it as an object of Q ® €.

Define P, (W, A") := @®; j>0P,(W,,AY) for | > 0, where

0 ifl<2n—2—j

P(W, A"y :={ " . _ - i . .
" @?C:O(aniﬁ““ Pk+m+1,2jfk+l72nfm+3an;jj+2/Pk,i+j+2 + Pj_kitjt2) Hl1>2n—2-—3

It is easy to check that v(P; (W, A%)) C P,_oW, A" 1J=1 Moreover, we can also compute the graded pieces
Gr(WnA") = D, j>o Gri(W, A7), where

iy __ [0 ifl<2n—2-
®7._o @l 22t Crlhmi1.2j—kti—2n-meaWaon 772 if1>2n -2 —j°

For | = 2n — 2+ h, with h > 0 we claim that v induces an injection Gr;(W,, A¥) — Gr;_1(W,,A¥). This can
be verified through a standard combinatorial argument. We have

i hti
Gri(WaAY) = D D Griism)+1,2in1- (ko) Waldy 2
k=0 m=0
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and
G4+1 htj—1

Gl"lfl(WnAij) = @ @ Gr (k+m)+1,2j+h+1— (k+m)Wn~Z+j+2
k=0 m=0

The map v sends the term corresponding to a pair (k,m) to the direct sum of terms corresponding to
(k,m) and to (k 4+ 1,m — 1). Therefore, it is easy to see that v restricted to the direct sum of terms for
which k + m is constant is injective, so v is injective. Moreover, we see that " induces an isomorphism
Grop_oin(Wy A ~ Grgn_g_h(WnAi_h’j"’h), since the terms on the right hand side are of the form

J htj

~Z+J+2
@ @ G (km) 41,2+ h1— (km) W@y’
k=0 m=0

and the terms on the left hand side are of the form

Jj o htJ
~Z+J+2
@ @ G (m)+1,2j+h+1— (ktm) Wn@y "7,

m=0k

so on either side we have the same number of terms corresponding to k + m. Since the filtration P;(W,, A")
satisfies the two properties above, it must be the monodromy filtration of v.
Note that the differentials d”’ on Gr;(W.A") are always 0. Using the isomorphisms in Corollary 3.3.4 we
can rewrite
Jj Jth
Gran—24n(W.A") ~ @ @ @ (WA (et mr2itnti-cerm) ) [=25 — B)(=j — h).

§>0,5>—h k=0 m=0
Thus, we get the following theorem.
Theorem 4.6. There is a spectral sequence

Jj jth

—hyith _ i—2j— h y (km+1,2j+h+1—(k+m) i
£y - @ @ @ Hcms /W)( J h)
j>0,j>—h k=0 m=0

= Hi . (Y/W).

Remark 4.7. Note that the closed strata Y (1:/2) are proper and smooth so the E~"*" terms of the spectral
sequence are strictly pure of weight ¢ + h. If the above spectral sequence degenerates at the first page, then

Hérls(Y/W) is pure of weight 1.

5 Proof of the main theorem

In this section we prove the main theorem. By the discussion at the end of Section 2 its proof reduces to
the following proposition.

Proposition 5.1. Let .A?;Ii be the universal abelian variety over X;va The direct limit of log crystalline
cohomologies - -
lim ag (Hejs ™ " (AL, xox kW) @w Qu(te))[IT°]

Cris
Urw

is pure of a certain weight.
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Proof. Recall that we’ve chosen
Uty = U < U2 (m) x Twyp, X Twy, p, C G(A™).

Pick m large enough such that (m)Ulpl’m(m)XIW"vPl *Iwaps o£ () where m; € Irry(G(Qy) is such that BC(m;) =
Ll_lﬂl. The results of Sections 3 and 4 apply to A;?fw We have a stratification of its special fiber by closed

Newton polygon strata Ang’SyT with S;T C {1,...,n} non-empty. By Theorem 4.6 we have a spectral
sequence

Jj Jth

g = B DB D AR s/ )

§>0,5>—h k=0 m=0 #S=k+m+1
#T=2j+h+1—(k+m)

= Hiio (AL, X0u k/W).
We replace the cohomology degree i by i + mg, tensor with Q (te), apply ae (which is obtained from a linear

combination of etale morphisms), passing to a direct limit over U’ and taking the IT1*®-isotypic components
we get a spectral sequence:

i j+h
—hyit+h . i+me—2j—h,, (me, . = 1
e = B PP b lim(agHeg ¢ ((AGS 50/ W) (=1 = 1) ©wire Qu(te)) I
j>0,5>—h k=0 m=0 #S=k+m+1 U'

#T=2j+h+1—(k+m)

= lim(ag He( ™ (g, %05 k/W) ®wir, Qulte))[ITHE].

cris
Ul

For any compact open subgroup U! C G(A>!) and any prime p # [ with isomorphism lp : Qp 5 C set
¢ = (1p) " 'y& and I := (1) "IN
We have e - l
dim@z (lil}nachris N ((‘AUIi;,S,T/W)(_j - h) QW, 7o Ql))[nl)G]U
Ul
= dimg, (lim ag H 4™ ~2 (A7 o Q,))[(T)®]Y
Ul

. . i—27— l
= dimg, (lim H'~%~"(Xu,,,s,7, L&) [(TT) ]
Ul
The first equality is a consequence of the main theorem of [GM] and of Theorem 2 (2) of [KM]. The
former proves that crystalline cohomology is a Weil cohomology theory in the strong sense. The latter is
the statement that the characteristic polynomial on H*(X) of an integrally algebraic cycle on X x X of
codimension n, for a projective smooth variety X/k of dimension n, is independent of the Weil cohomology
theory H.

The dimension in the third row is equal to 0 unless ¢ = 2n — 2 by Prop. 5.10 of [C]. Therefore,
E;h,i+h

1

= 0 unless ¢ = 2n — 2, so the F; page of the spectral sequence is concentrated on a diagonal. The

spectral sequence degenerates at the F; page and the term corresponding to Ef 2n=2th i strictly pure of

weight h + 2n — 2 4+ m¢ — 2t¢, which shows that the abutment is pure. (|
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